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Dynamics of Vortex Dipoles in Anisotropic Bose–Einstein Condensates∗
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Abstract. We study the motion of a vortex dipole in a Bose–Einstein condensate confined to an anisotropic
trap. We focus on a system of ODEs describing the vortices’ motion, which is in turn a reduced
model of the Gross–Pitaevskii equation describing the condensate’s motion. Using a sequence of
canonical changes of variables, we reduce the dimension and simplify the equations of motion. We
uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we
find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to
stochastic reversals in the overall direction of rotation of the dipole. Near the separatrix orbit in
the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In
a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the
problem further. Numerical calculations are used to illustrate the phenomena discovered through
the analysis. Using the results from the reduced system, we are able to construct complex periodic
orbits in the original, PDE, mean-field model for Bose–Einstein condensates, which corroborates the
phenomenology observed in the reduced dynamical equations.

Key words. vortex dynamics, nonlinear Schrödinger equation, Gross–Pitaevskii equation, Bose–Einstein con-
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1. Introduction. An atomic Bose–Einstein condensate (BEC) is a state of matter occur-
ring only at extremely low temperatures. It is a gas composed of atoms (typically alkali atoms
that behave as bosons) which, near absolute zero, lose their individual identity and share a
single macroscopic wave function. The wavefunction of the cloud of BEC particles obeys the
Gross–Pitaevskii (GP) equation, namely, the cubic nonlinear Schrödinger equation with an
added external potential used for confining the atoms. BECs are inherently three-dimensional,
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700 GOODMAN, KEVREKIDIS, AND CARRETERO-GONZÁLEZ

although strong confinement in one or two directions can effectively render the BEC two- or
even one-dimensional. In nondimensional units (see, e.g., [18] for a discussion of the relevant
adimensionalization), a cloud of repulsive BEC particles confined in a quasi-two-dimensional
trap is described by the GP equation

(1.1) iut = −1

2
Δu+ |u|2u+ V (x, y)u,

where u(x, y, t) is the BEC wavefunction—whose observable in the experiments is its associated
density |u|2—and the potential V (x, y) contains the effects of externally applied magnetic and
optical fields which are used to trap the condensate at a particular location in space. In most
studies, V (x, y) is taken to be isotropic about the origin; yet, in a few more recent studies,
the critical potential role of anisotropy in V (x, y) has been investigated. The current study
uses methods from Hamiltonian perturbation theory to gain a deeper understanding of the
effects this anisotropy can have on the dynamics.

We note that this anisotropy is entirely straightforward to implement in ongoing exper-
iments (see relevant discussion below) by means of the detailed available control over the
magnetic traps that typically are used to induce the parabolic confinement [44, 45].

Like an ordinary inviscid fluid, the BEC flow may possess highly localized vortex lines or,
if confined in a quasi-two-dimensional geometry, localized vortices. These may be idealized as
point vortices, in which the vorticity is nonzero only at the vortex’s center. Following a closed
curve that encircles exactly one such vortex, one finds the phase of the wavefunction to have
increased, or decreased, by 2π (or multiples thereof); this quantization of the circulation is,
arguably, the most fundamental difference between the superfluid BEC vortices and those of an
ordinary inviscid fluid. In order for a smooth solution of (1.1) to support a phase singularity,
u must vanish at the point vortex core. Notice, in addition, the freedom in the clockwise
or counterclockwise nature of the phase rotation (mirrored in the, respectively, negative or
positive charge of the vortex).

The first experimental observation of vortices in atomic BECs [31] by means of a phase-
imprinting method between two hyperfine spin states of an 87Rb BEC [58] paved the way for a
systematic investigation of their dynamical properties. Stirring the BECs [29] above a certain
critical angular speed [28, 48, 52] led to the production of a few vortices [28] and even of
robust vortex lattices [47]. Other vortex-generation techniques were also used in experiments,
including the breakup of the BEC superfluidity by dragging obstacles through the conden-
sate [41], as well as nonlinear interference between condensate fragments [49]. In addition,
apart from unit-charged vortices, higher-charged vortex structures were produced [24] and
their dynamical (in)stability was examined.

1.1. Recent precedents. Although much of this earlier work was focused on single vor-
tices (or large clusters of vortices constituting vortex lattices), recently, a lot of attention has
been paid to the problem of the motion that arises when a few vortices (i.e., small clusters)
interact. These studies were partially seeded by the use of the so-called Kibble–Zurek mech-
anism in order to quench a gas of atoms from well above to well below the BEC transition
in the work of [57]. The result of this was that phase gradients would not have sufficient
time to “heal,” as would happen by adiabatically crossing the transition, but would rather
often freeze, resulting in the formation of vortices and even multivortices. Subsequently, aD
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technique was devised that enabled for the first time the systematic dynamical visualization of
such “nucleated” vortices [9] and even of vortex pairs, i.e., dipoles consisting of two oppositely
charged vortices. The technique involved pulsing a microwave beam through the BEC that
would expel a small fraction of it that could be imaged. This, in turn, spearheaded further
studies [34, 56] which developed particle models that predicted the dipole dynamics (equilib-
ria, near-equilibrium epicyclic precessions, and far from equilibrium quasi-periodic motions)
observed in these experiments. A nearly concurrent development produced such vortex dipoles
(one or multiple) by the superfluid analogue of dragging a cylinder through a fluid [40]. The
role of the cylinder here was played by a laser beam. More recently, use of the above visu-
alization scheme [9] together with rotation has made it possible to “dial in” and observe the
dynamics of vortex clusters of, controllably, any number of vortices between 1 and 11 [39].
This led to the observation that such configurations may suffer symmetry-breaking events. As
a result, instead of the commonly expected antidiametric pair, equilateral triangle, or square
configurations, it is possible to observe symmetry-broken configurations featuring asymmetric
pairs, isosceles triangles, and rhombi or general/asymmetric quadrilaterals [60]. To further
add to these developments, yet another experimental group [50] produced 3-vortex configura-
tions but of alternating charge in the form of a tripole (i.e., a positive-negative-positive or its
opposite).

Naturally, this considerable volume of experimental developments has triggered a number
of corresponding theoretical efforts. Again, as for ordinary fluids, it is possible to derive a
finite-dimensional system of ODEs that describes the motion of these vortices, in which each
vortex induces a velocity field, and each vortex moves under the velocity field induced by the
other vortices. Numerical studies have shown that the motion of vortices evolving under the
GP equation (1.1) is mimicked by the motion arising in the ODE dynamics [25, 39, 54, 55, 60].
Analysis of the ODE system, displayed below in (2.1), has allowed for the prediction of many
different dynamical phenomena in the GP equation, but also detailed numerical computations
have been systematically used to unravel the evolution of these few vortex clusters [21, 38].

For example, Torres et al. [56] examined the vortex dipole consisting of two counterrotating
vortices of equal and opposite vorticity, showing the existence of fixed points, in which the two
vortices sit stably at a fixed distance on opposite sides of the magnetic trap’s center. They
additionally found periodic orbits in which the two vortices travel at constant angular velocity
around a circle centered at the trap’s center, keeping an angle of 180 degrees between them.
Both of these types of orbits, known as guiding centers, are shown to be neutrally stable.
Finally, they found families of quasi-periodic orbits, or, more specifically, relative periodic
orbits. These solutions appear periodic when viewed in an appropriate rotating reference
frame, so that in the laboratory reference frame, these orbits display whirls upon whirls (i.e.,
epitrochoidal motion).

Other studies [39, 60] have looked at small systems of two to four corotating vortices. The
same types of solutions, such as relative stationary and relative periodic solutions, are found.
However, the stationary and periodic solutions are shown to lose stability in Hamiltonian
pitchfork bifurcations that result in the creation of new solutions in which the symmetry of
the solutions is broken, even in the absence of anisotropy. The case of three vortices but with
opposite charges (i.e., two positive and one negative or vice-versa) has also been a focal point
of recent interest [20, 23], due especially to its potential for chaotic dynamics.D
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An additional direction that has been receiving a fair amount of interest is that of imposing
asymmetries on the potential V . For instance, McEndoo and Busch [32] use a variational
method to study the existence and stability of steady arrangements of small numbers of
vortices in an anisotropic trap. They find that above a critical level of anisotropy the ground
state arrangement undergoes a bifurcation, from a lattice in the isotropic case to a linear
arrangement along the major axis of the anisotropic trap. Subsequently, the same authors
explored the vortex dynamics in such anisotropic traps [33]. Stockhofe et al. [54, 55] showed
that of the one-parameter family of stationary arrangements of a vortex dipole, only two
survive the imposition of anisotropy: the arrangement with both vortices along the minor
axis of the trap is always unstable, while the arrangement along the major axis is stable for
small anisotropy but destabilizes when the anisotropy is increased beyond some threshold.
This conclusion is then generalized to larger clusters of vortices. It is the dynamics that arises
in the presence of small anisotropy that will be the systematic focus of the present study.

1.2. Organization of article. The remainder of the article is organized as follows. Sec-
tion 2 introduces the differential equations and their Hamiltonian form. A change of variables
is made that reduces the equations by one degree of freedom in the case of zero anisotropy.
This isotropic reduced equation is studied in detail in section 3. This is very similar to work in
[39, 60], but the reduction allows us to understand the solutions more thoroughly. In section 4
we derive a further reduced ordinary differential system that explains the effects of anisotropy
very clearly. We then sketch the derivation of a separatrix map for this system, simplifying
the dynamics further and allowing us to explain the various families of periodic orbits that
arise due to the anisotropy. Section 5 contains the results of numerical simulations, including
studies of the ODEs of vortex motion, and a bifurcation diagram based on the separatrix map.
In section 6 we use the results obtained for the reduced ODE to construct complex periodic
solutions for the original PDE, the GP equation. Here, despite the apparent complexity of
the orbits, good correspondence is found between the ODE and the PDE findings. Finally,
we discuss the impact of this work and future directions in section 7.

2. Mathematical formulation. Although our principal focus will be on the study of the
ODEs, as indicated above the results will be corroborated by full numerical simulations of the
PDE of the GP type from which these ODEs are derived (see section 6). This derivation can
be obtained in a wide variety of ways. In the mathematical literature, it can be obtained by
reverting to the semiclassical limit of the GP equation (i.e., the limit of large density, using as
a small parameter the inverse of the density) and applying a variational approach [42], or by
means of moment methods [17, 22] (by suitably decomposing the field), or through techniques
based on the Fredholm alternative [4]. All of these techniques derive effective equations for
the vortices as particles which incorporate two crucial features: the rotation of the vortices in
the (here, anisotropic) trap and the pairwise velocity-field induced interactions between the
vortices. On the physical side, there have also been numerous derivations of such equations
both in the isotropic setting (see, e.g., [3]; for relevant reviews see [6, 7], and for a recent
extension summarizing earlier literature see [8]) and even in the anisotropic [32] setting, based
chiefly on applying variational methods to a suitable vortex-bearing ansatz.D
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2.1. Equations of motion and fixed points. A cluster of N vortices in an anisotropic
BEC confined in a magnetic trap satisfies the ODEs

ẋk = −skQω2
yyk +

B

2

∑
j �=k

sj
yj − yk
ρ2jk

,

ẏk = skQω
2
xxk −

B

2

∑
j �=k

sj
xj − xk
ρ2jk

for k = 1, . . . , N,

(2.1)

where (xk, yk) gives the Cartesian coordinates of the kth vortex, sk = ±1 is its charge, and
ρ2jk = (xj − xk)

2+(yj − yk)
2. By rescaling the independent and dependent variables, we may

set Qω2
x = 1 and Qω2

y = 1 + ε [6, 53]. We here consider the vortex dipole case: N = 2 with
s1 = 1, s2 = −1. For the remainder of the paper, we fix the parameter B = 0.22 describing the
ratio of time-scales of rotation due to the vortex interactions and due to precession induced
by the applied magnetic trap.1 We work in the regime of weak anisotropy, namely, ε � 1.

Remark 2.1. The equations, as presented, contain the additional assumption that the vor-
tices remain close to the trap’s center. The full equations, in the case of isotropic traps, contain
a modification to the precession frequency, i.e., an increase in the precession frequency as the
outer rim of the condensate is approached; see, e.g., [19, 39, 60] for some of the implications
of this modification. While we have not worked out the modified equations in the anisotropic
case, we are here considering the leading-order effects of adding anisotropy and thus have rea-
son to believe the simpler equations can provide insight into the general behavior; see also the
relevant comparison between our ODE and PDE results below, which a posteriori justify the
present considerations.

It is shown in [56] that when ε = 0, system (2.1) has a one-parameter family of fixed points
(i.e., a resonance) of the form

(2.2) (x1, x2, y1, y2) =

√
B

2
(cos θ,− cos θ, sin θ,− sin θ) , 0 ≤ θ < 2π,

in which the two vortices lie on opposite sides of, and are equidistant from, the origin. When
ε �= 0, only four of the fixed points on the resonance survive. Letting �x = (x1, x2, y1, y2), these
fixed points are

(2.3) �xY = ±
√

B

4(1 + ε)

⎛
⎜⎜⎝

0
0
1
−1

⎞
⎟⎟⎠ and �xX = ±

√
B

2

⎛
⎜⎜⎝

1
−1
0
0

⎞
⎟⎟⎠ .

These solutions consist of orbits aligned on the y-axis (�xY) and the x-axis (�xX). When
0 < ε < 1, the arrangement �xX is stable and �xY is unstable, while when ε < 0, the opposite is
true. We will assume throughout, without loss of generality, that ε > 0.

We will be concerned with the dynamics that accompany this symmetry-breaking pertur-
bation. The primary tools will come from Hamiltonian mechanics.

1This number is obtained as the ratio of two frequencies ωvort ≈ 0.005 and ωpr = 0.023, associated,
respectively, with intervortex interaction and individual vortex precession in [39].D
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2.2. The Hamiltonian formulation. Stockhofe [53] showed that this system is Hamilto-
nian with canonical position and momentum variables qk = xk and pk = −skyk, respectively,
and Hamiltonian

H(q, p) =

N∑
k=1

⎡
⎣q2k + (1 + ε)p2k +

Bsk
4

N∑
j=k+1

sj ln ρjk

⎤
⎦ ,

where ρ2jk = (qj − qk)
2 + (sjpj − skpk)

2. For the vortex dipole this reduces to

H = H0 + εH1 =
1

2

(
p21 + q21 + p22 + q22

)− B

4
log
(
(p1 + p2)

2 + (q1 − q2)
2
)
+
ε

2

(
p21 + p22

)
.

We introduce two successive canonical changes of variables that clarify the dynamics while
preserving the Hamiltonian structure. First, we define action-angle coordinates

qj =
√

2Jj cosφj and pj =
√

2Jj sinφj , j = 1, 2,

which transforms the Hamiltonian into

H0 = J1 + J2 − B

4
log
(
J1 + J2 − 2

√
J1
√
J2 cos (φ1 + φ2)

)
,

H1 = J1 sin
2 (φ1) + J2 sin

2 (φ2) .

Since H0 depends on the angle variables only through the combination (φ1 + φ2), we define
the additional canonical change of variables

(2.4) θ1 = −φ1 + φ2, θ2 = φ1 + φ2, ρ1 =
−J1 + J2

2
, ρ2 =

J1 + J2
2

,

which yields the Hamiltonian H = H0 + εH1, with

H0 = 2ρ2 − B

4
log

(
ρ2 −

√
ρ22 − ρ21 cos θ2

)
,

H1 = ρ1 sin θ1 sin θ2 + ρ2 (1− cos θ1 cos θ2) .

(2.5)

It is this latter form that we will use.
Remark 2.2. The proper limits on the new angle variables are −2π ≤ θ1 < 2π and 0 ≤ θ2 <

4π. Nonetheless the reduced Hamiltonian is 2π-periodic in these angles. The natural limits
become important when inverting the change of variables (2.4) to obtain the vortex paths.

3. Analysis of the unperturbed equation. We first set ε = 0 and consider the dynamics
due to the unperturbed Hamiltonian H0. In this limit, the variable θ1 is cyclic: it does not
appear in H0 as a result of the rotation invariance of the underlying system, an invariance that
is broken when ε �= 0. Thus, the angular momentum ρ1 is an additional conserved quantity,
in involution with H0 so that H0 is a completely integrable Hamiltonian. This conservation
law is generic for isotropic traps. The interesting phenomena described in later sections result
mainly from the breaking of this isotropy.D
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The reduced system obeys the ODEs

θ̇2 = 2−
(√

ρ22 − ρ21 − ρ2 cos θ2

)
B

4
(
ρ2
√
ρ22 − ρ21 −

(
ρ22 − ρ21

)
cos θ2

) ,(3.1a)

ρ̇2 =
B
√
ρ22 − ρ21 sin θ2

4ρ2 − 4
√
ρ22 − ρ21 cos θ2

.(3.1b)

The additional angle θ1 satisfies the evolution equation

θ̇1 =
−B
4

ρ1 cos θ2

ρ2
√
ρ22 − ρ21 − (ρ22 − ρ21) cos θ2

.

The system (3.1) has a single equilibrium

(3.2) (θ∗2, ρ
∗
2) =

(
π,

√
ρ21 +

B2

64

)
.

In the laboratory frame, the overall angular velocity is

Ω1 ≡ θ̇1 =
16ρ1

B +
√
B2 + 64ρ21

.

Translating this back to the (x, y) coordinates gives

⎛
⎜⎜⎝
x1
x2
y1
y2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2

√√
B2 + 64ρ21 − 8ρ1 cos

(
Ω1
2 (t− t0)

)
−1

2

√√
B2 + 64ρ21 + 8ρ1 cos

(
Ω1
2 (t− t0)

)
1
2

√√
B2 + 64ρ21 − 8ρ1 sin

(
Ω1
2 (t− t0)

)
−1

2

√√
B2 + 64ρ21 + 8ρ1 sin

(
Ω1
2 (t− t0)

)

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Here, the two vortices trace circular orbits, with both vortices collinear with and on opposite
sides of the origin. The circle of fixed points (2.2) is obtained by setting ρ1 = 0. This family
of periodic orbits forms a two-dimensional tube in R

4. When ρ1 �= 0, the direction of rotation
depends on its sign. The circle with ρ1 = 0, on which there is no motion, is called a resonance
and is structurally unstable to symmetry-breaking perturbations.

Figure 1 shows the typical shape of the phase plane in the case ρ1 = 0 (left) and ρ1 �= 0
(right). The case ρ1 = 0 is simpler. All the orbits, which are traversed counterclockwise, form
a nested set of closed curves encircling the fixed point at (θ2, ρ2) = (π,B/8) (see blue dot).
This fixed point is known as a “guiding center” in the BEC literature [56]. The accessible
phase space is 0 < θ2 < 2π and ρ2 > |ρ1| ≥ 0, and system (3.1) shows the vector field to
be singular at the boundaries. The singularity at the left and right boundaries is due to
the impossibility of collisions between the vortices. The singularity along the bottom edge is
simply that of polar coordinates.D
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Figure 1. Phase plane of reduced system (3.1) with B = 0.22 with (a) ρ1 = 0 and (b) ρ1 = 0.01.

When |ρ1| > 0, the left and right edges of the domain are no longer singular. The bottom
edge remains singular, with two apparent hyperbolic fixed points at ρ2 = |ρ1| and θ2 = π/2
or 3π/2. These are not in fact fixed points or even relative fixed points in the (x, y) or (p, q)
coordinate systems. At these points ρ̇2 = 0, but θ̇2 is singular. When the solution reaches
this point, one of the two vortices reaches the minimum of the trap, and its angular direction
in the reduced coordinates, though not in the lab coordinates, jumps discontinuously.

The singularity may be removed by putting the right-hand side of ρ̇2 and θ̇2 into (3.1)
over common denominators. The system obtained by considering only the numerators of these
expressions is nonsingular and has the same trajectories as system (3.1). In the desingularized
system, these fixed points are hyperbolic. They are connected by three heteroclinic orbits—
two along the line ρ2 = |ρ1| (recalling the periodicity in the θ2 direction) and a third extending
into the region ρ2 > |ρ1|. The solutions near the elliptic fixed point oscillate counterclockwise,
and those outside the separatrix move to the left. These points and their invariant manifolds
play the same role as separatrices as they would if they were actual fixed points.

Each of the orbits in the phase planes of these systems is periodic in the (θ2, ρ2) coordinate
system and quasi-periodic in the full (x, y) coordinates. The motion in (x, y) coordinates is
complicated, but, because (θ2, ρ2) evolves independently of θ1, we may remove the θ1 depen-
dence from the solution entirely. We show such solutions in Figure 2. In the case ρ1 = 0 all
the solutions are in fact periodic. The fixed point of system (3.1) corresponds to the two vor-
tices sitting along a line through the origin at equal distance from the origin. In the periodic
orbit, the two vortices trace closed paths around these fixed points, the right vortex moving
counterclockwise and the left orbit clockwise, satisfying x1 = −x2 and y1 = y2. The farther
the orbits start from the fixed point, the closer they come to colliding.

When ρ1 �= 0, the motion is more complicated. The vortices can pass close to each other
without colliding. There are two families of orbits with very different dynamics, corresponding
to solutions exterior to or interior to the separatrix. These orbits are depicted in Figure 2(b)
together with the separatrix (thick orbits). On the separatrix orbit one of the vortices crosses
the origin, at which point its tangent direction changes discontinuously, as a result of the
logarithmic singularity of H0.D
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Figure 2. Typical orbits for two interacting vortices in an isotropic (ε = 0) BEC. The solid blue line
corresponds to the orbit of one vortex and the dashed green line to the orbit of the other vortex. Matching orbits
for each pair correspond to the closest initial conditions (filled squares and circles) pairs from the origin. (a)
Closed orbits of two vortices when B = 0.22 and ρ1 = 0. At t = 0, the solutions start on the x-axis at maximal
distance apart (see filled squares and circles). They rotate about their centers in opposing directions (see arrows
indicating the direction of the orbits), nearly collide, and then move off again. (b) “Closed orbits” of the system
with ρ1 = 0.01, which are closed when viewed in an appropriate rotating reference frame. The orbits depicted
with the thick lines correspond to the the separatrix in Figure 1(b). The solutions outside the separatrix cross
the line x = 0 without colliding. The equilibrium positions (2.3) are depicted by the black empty circles.

Most of the above results are obtained by Torres et al. [56], although the reduced phase
space provides a more global picture of the dynamics. The features not noticed in that study
are the separatrix orbit and the corresponding orbits outside of this separatrix which encircle
the origin and both fixed points (see Figure 2(b)). These authors use the more realistic model
for the trap as discussed in Remark 2.1. It is straightforward to check that these features
persist in the latter case.

4. Analysis of the perturbed system in a neighborhood of the resonance.

4.1. Change of variables and leading-order asymptotics. We can expect that when ε > 0,
there will be interesting dynamics near the resonance, which is given as the fixed point of the
reduced system in (3.2). When ε > 0, ρ1 varies slowly, and so does ρ∗2, which had been a fixed
point. We introduce a further change of variables to fix this point at the origin by defining
new variables (Θ2, R2) = (θ2−π, ρ2−ρ∗2). This is extended to the full four-dimensional system
using the generating function [10] of type three2

F3(ρ,Θ) = −Θ2

(
ρ2 −

√
B2

64
+ ρ21

)
−Θ1ρ1 − πρ2.

2Recall that the angle variable θj is a position and the action variable ρj is a momentum.D
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This gives the implicit change of variables from (θ, ρ) to (Θ, R):

θj = −∂F3

∂ρj
, Rj = − ∂F3

∂Θj
.

In terms of the new variables

Θ1 = θ1 +
(θ2 − π)ρ1√

B2

64 + ρ21

, Θ2 = θ2 − π, R1 = ρ1, and R2 = ρ2 −
√
B2

64
+ ρ21,

the Hamiltonian takes the form

H =
B

4

(
β + 8R2 − log

(√
16R2 (β + 4R2) +B2 cosΘ2 + β + 8R2

))
+ ε

(
1

8
(β + 8R2)

(
cosΘ2 cos

(
Θ1 − 8Θ2R1

β

)
+ 1

)
−R1 sinΘ2 sin

(
Θ1 − 8Θ2R1

β

))
,

where β =
√
B2 + 64R2

1. Upon initial inspection, this form does not appear to be an im-
provement over the previous form of H. Its utility becomes apparent when we assume the
trajectory remains in a neighborhood of the resonance, i.e., when R1, R2, and Θ2 are small.
A maximal balance is achieved by the assumptions

(4.1) R1 = O(
√
ε), R2 = O(

√
ε), and Θ2 = O(

√
ε).

These make the leading-order Hamiltonian O(ε) and the perturbation O(ε3/2). The leading-
order Hamiltonian then yields

Happrox =
4

B
R2

1 +
8

B
R2

2 +
B

16
Θ2

2 + ε

(
B

8
cosΘ1 +R2 +R2 cosΘ1

)
.

An additional canonical change of variables (R2 → R2−εB/16) removes one of the O(ε) terms
while adding a new term at the ignored higher order, yielding

Happrox =
4

B
R2

1 +
8

B
R2

2 +
B

16
Θ2

2 + ε

(
B

8
cosΘ1 +R2 cosΘ1

)
.

Using the above change of variables, we may rewrite the evolution equations as

Θ̈1 − ε sinΘ1 − 8ε

B
R2 sinΘ1 = 0,(4.2a)

R̈2 + 2R2 +
Bε

8
cosΘ1 = 0.(4.2b)

This is quite a well-known system, and similar systems have been studied many times before
using different methods. The model system consisting of a pendulum coupled to a harmonic
oscillator goes back to Poincaré’s seminal work on the geometric approach to mechanics [46]
as described by Holmes [16]. A similar system was derived by Lorenz as a model of the
“atmospheric slow manifold” [27] and subsequently analyzed by Camassa, Kovacic, and Tin [2],D
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who rigorously found some of the same features to be described below, but who stopped short
of writing down an explicit iterated map like that identified below. A simple approach in which
phase-plane analysis and matched asymptotics expansions are used to derive a discrete-time
iterated map is developed in a series of papers by Goodman and Haberman [11, 13, 14]. In the
final paper [11, section 7B], this system was reduced, formally, to a singular iterated map from
the plane to itself. We briefly reiterate that calculation in the present context. We compare
the analytical predictions of this approach with appropriate simulations of system (2.5) in
section 5.3.

The appearance of a normal-form system (4.2) is a generic feature in the following sense. In
the limit ε = 0, the (Θ2, R2) equation corresponds to simple harmonic motion, and trajectories
of this system are nested ellipses surrounding the origin. The other angle Θ1 varies at a
constant rate, and we may define a Poincaré map each time Θ1 = 0 mod 2π. The trajectories
of this map lie on the same family of ellipses. For sufficiently small nonzero values of ε, KAM
theory ensures that most of these ellipses persist, but those whose period is a rational multiple
of the frequency T2 = 2π/

√
2 of the (Θ2, R2) motion will break up into a sequence of fixed

points of alternating elliptic and hyperbolic type. In a band containing these fixed points, the
nonlinearity looks precisely like that of a pendulum [26].

4.2. Derivation of an iterated-map approximation. Clearly, taking ε→ 0 naively in (4.2)
yields an uncoupled system, so the limit must be taken carefully. To do this, scale time by
τ =

√
εt. In terms of this variable, dropping subscripts on R2 and Θ1, and letting (·)′ denote

τ -derivatives, (4.2) is rescaled to

Θ′′ − sinΘ− 8

B
R sinΘ = 0,(4.3a)

R′′ + λ2R+
B

8
cosΘ = 0,(4.3b)

with λ2 = 2/ε. Note that the coupling is now formally O(1), but, because Θ and R evolve on
such different time-scales, the energy transfer between the two modes is exponentially small.
Temporarily setting R = 0, the first component conserves a pendulum-like energy

(4.4) E =
1

2
Θ′2 + cosΘ− 1.

Because (4.3a) depends on R(τ), the energy E also evolves in time under the full dynamics
of (4.3).

The map is constructed in consultation with Figure 3, which shows a numerical simulation
of the equations of motion in form (4.3). Panel (a) shows Θ(τ) and identifies a sequence of
“transition times” τj at which Θ = π mod 2π. We also define a sequence of “plateau times” tj
(not shown) satisfying τj−1 < tj < τj, defined as the times at which the solution makes its
closest approach to the saddle point at Θ = 0 mod 2π. Panel (b) shows that at the times τj,
the energy undergoes a rapid jump between two plateaus. On the plateaus where E < 0, the
solution librates, with zero net change of the angle over one period, while on those with E > 0,
the solution rotates, with Θ changing monotonically by ±2π. Panel (c) shows the evolution of
R(τ). The amplitude and phase of this oscillatory variable are different at each τj, and theseD
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(c)

Figure 3. Figure used in constructing the iterated map. (a) Θ(τ ) with horizontal dashed lines at Θ = π
mod 2π, the minima of the potential V (Θ) = cosΘ−1. This defines a sequence of times τj (see filled blue circles
in all panels) at which Θ(τj) reaches these minima. (b) The energy E(τ ) in the pendulum-like component. (c)
The evolution of the oscillatory variable R(τ ).

change slightly at each transition time. The interval between transitions is longer on plateaus
where E is near zero, so that R(τ) oscillates more on these periods.

We define Ej to be the plateau value of energy on the interval (τj−1, τj) and assume that
on this interval

(4.5) R = Rbefore(τ) ≈ − B

8λ2
+ C (cj cos λ(τ − τj) + sj sinλ(τ − τj)) .

Although written in terms of the transition time τj, this represents the state of the system near
the plateau time tj , where cosΘ ≈ 1. The constant C is chosen below to normalize the variables
and eventually simplify the derived map, and cj and sj are the corresponding amplitudes
for the cosine and sine components. Thus, we seek a map of the form (Ej+1, cj+1, sj+1) =
F (Ej , cj , sj). This is done for a very similar system in [11], so we include here only a brief
sketch of the derivation, with somewhat less precise language.

The solution is approximated using a matched asymptotic expansion, alternating between
“outer solutions” near the saddle points and “inner solutions,” along which the approximate
solution is given by the heteroclinic trajectory ΘH(τ) = 4 tan−1 (e±τ ). First, an approximate
solution to (4.3b) satisfying condition (4.5) is given by variation of parameters:

R(τ) = Rbefore(τ)− B cosλ(τ − τj)

8λ

∫ τ

−∞
sinλ(s− τj) cos (ΘH(s − τj)) ds

+
B sinλ(τ − τj)

8λ

∫ τ

−∞
cos λ(s− τj) cos (ΘH(s − τj)) ds.

(4.6)
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In the limit τ → ∞, the first of the above integrals vanishes by symmetry, so as τ − τj → +∞

R(τ) = Rafter(τ) ∼ Rbefore +
B sinλ(τ − τj)

8λ

∫ ∞

−∞
cosλ(s − τj) cos (ΘH(s− τj)) ds.

We define C to be the coefficient of sinλ(τ − τj) in the above equation. Evaluating the integral
by residues then gives

C =
Bπ

4 sinh πλ
2

.

This then simplifies the above formula to

(4.7) Rafter(τ) = − B

8λ2
+ C (cj cos λ(τ − τj) + (sj + 1) sinλ(τ − τj)) .

Next, the change in energy is calculated using

Ej+1 − Ej =

∫
I

dE

dτ
dτ =

∫
I

(
Θ′′

H(τ)− sinΘH

)
Θ′

H(τ) dτ =

∫
I

(
8

B
R(τ) sinΘH(τ)

)
Θ′

H(τ) dτ,

where E is given by (4.4) and I is the time interval [tj , tj+1]. The integral is approximated by
replacing the interval I with the whole line and using the formula (4.6) for R(τ). Two more
steps complete the calculation: the first is an integration by parts to move the τ derivative
from Θ′

H sin (ΘH) to R, and the second is a residue integral identical to that performed above.
These lead to the following recurrence relationship for consecutive E values:

Ej+1 = Ej − 32λ2C2

B2
(1 + 2sj).

Formula (4.7) is given in terms of (τ − τj). To complete the specification of the map, we
must rewrite it in terms of (τ − τj+1), and thus we need to find (τj+1 − τj). The matching
procedure, described in detail in [11, sec. III], yields the expected result to leading order: it
is the time between two successive approaches to Θ = π mod π along the periodic orbit of
(4.3a) with R set to zero and energy Ej+1. This is found to be

τj+1 − τj ≈ log
32

|Ej+1| .

With this, we find

(
cj+1

sj+1

)
=

(
cosψj+1 sinψj+1

− sinψj+1 cosψj+1

)(
cj

sj + 1

)
, where ψj+1 = λ (τj+1 − τj) .

Close inspection shows that the reduced discrete map conserves an energy

H =
B2

32C2λ2
Ej +

(
c2j + s2j

)
.
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Using this energy, we may eliminate Ej and reduce the dimension of the map from three to

two. Defining Zj = cj + i
(
sj − 1

2

)
and Ψ(Z) = 2λ log Cλ

B +λ log
∣∣∣|Z|2 −H

∣∣∣, the map takes the

particularly simple form Zj+1 = F(Zj) with

(4.8) F(Z) = e−iΨ(Z+ i
2)
(
Z +

i

2

)
+
i

2
.

The constant − i
2 used in defining Zj is convenient because the inverse map now takes an

almost identical form:

F−1(Z) = eiΨ(Z− i
2)
(
Z − i

2

)
− i

2
.

When H < 0, the argument in the logarithm in the above functions is bounded below, but
for H > 0, the logarithmic term in F(Z) and, respectively, F−1(Z), is singular on the circles

Γ+ =

{
Z ∈ C :

∣∣∣∣Z +
i

2

∣∣∣∣
2

= H
}

and Γ− =

{
Z ∈ C :

∣∣∣∣Z − i

2

∣∣∣∣
2

= H
}
.

4.3. Interpretation of the maps. Further, let D+ and D− be the discs interior to these
circles, and let Dc

+ and Dc− be their complements. The phase space of the map can have three
different configurations depending on H.

• Configuration 1: When H < 0, the system has too little energy for the pendulum to
rotate, and all solutions stay in the librating mode. The discs do not exist in this
configuration.

• Configuration 2: For 0 < H < 1
4 , the discs are disjoint.

• Configuration 3: Finally, for 1
4 < H, the two discs have nontrivial intersection.

In configuration 1, generalize the definitions of the disks to D+ = D− = ∅ and their com-
plements Dc

+ = Dc
+ = C. With this notation, if Zj ∈ D−, then the pendulum is outside the

separatrix (rotating) on iterate j, whereas it is inside (librating) if Zj ∈ Dc
+. Similarly, if

Zj ∈ D+, the pendulum rotates on step j + 1, and for Zj ∈ Dc
+ it executes a libration at

step j + 1. In configuration 2, the empty intersection of the two disks indicates that at these
energy levels, the pendulum mode can be in the rotational state for at most one iteration at
a time before returning to the libration state, while in configuration 3, the solution may stay
in the rotational mode arbitrarily long.

4.4. Fixed points and periodic points. As an example of the type of calculation that
can be accomplished using this map, we note that fixed points of map (4.8) correspond to
periodic orbits of the ODE system. Clearly, solutions to the fixed points of the map (4.8)
satisfy

∣∣Zj+1 − i
2

∣∣ = ∣∣Zj +
i
2

∣∣, so that a fixed point Z∗ satisfies Z∗ = X ∈ R. Using this value
in the map yields an implicit formula for these fixed points that can be solved numerically:

(4.9) X = −1

2
cot

Ψ
(√

X2 + 1
4

)
2

.

Note that R(t) is assumed to be small enough that it satisfies a linear ODE, and that the
magnitudes of X(t) and R(t) are of the same size up to the scaling constant C, but thatD
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this equation has a countably infinite and unbounded family of solutions. Therefore, large
solutions fail to satisfy assumption (4.1) and likely do not correspond to actual solutions of
the ODE from which the map was derived.

We also find two families of period-two points. The first family, which we call type 1,
consists of pairs of complex points Z1 and Z2 that are complex conjugates of each other:
Z2 = Z̄1. In the second family, type-2 period-two points, Z1 and Z2 are real, with Z2 =
−Z1. Again, we can find explicit values of H where these families arise in period doubling
bifurcations. While we do not write down these families of solutions, we will draw a partial
bifurcation diagram below in section 5.3.

5. Numerical experiments. We turn now to numerical studies, guided by the analysis
presented above. We begin with two numerical simulations of the initial value problem, with
initial conditions chosen to display behavior in the interesting regimes already identified. We
then use Poincaré sections to place these simulations within a wider view of the dynamics,
showing how chaotic dynamics coexists with periodic and quasi-periodic dynamics when the
anisotropy parameter ε is nonzero. Finally, we discuss the bifurcations of periodic orbits based
on the iterated map derived in section 4.2.

5.1. Initial-value problem simulations. Figure 1 shows two distinguished regions in the
phase space of the isotropic ε = 0 system: near the separatrix between librating and rotating
periodic orbits and near the guiding center fixed point (θ∗2, ρ∗2). By performing simulations
with initial conditions near these regions, we are able to find interesting dynamics.

Near the separatrix. First, we show the dynamics in a neighborhood of the separatrix
that exists when ρ1 �= 0. We initialize the solution with parameters B = 0.22 and ε = 0.2,
and with initial conditions close to the point (θ2, ρ2) = (3π/2, |ρ1|), where the separatrix
orbit leaves the bottom edge of the reduced phase diagram. The actual initial condition is
(θ1, θ2, ρ1, ρ2) = (4.7421, 4.7068,−0.0050, 0.0052), which lies on the energy level H = 0.3, for
later reference. A portion of the projection of the phase plane onto the coordinates (θ2, ρ2) is
shown in Figure 4. The solution jumps between the interior of the separatrix and the exterior
several times, in a manner we show below to be chaotic.

−12π −8π −4π 0
0

0.05

0.1

θ
2

ρ 2

Figure 4. The (θ2, ρ2) component of the motion near the separatrix of Figure 1. The solution is plotted in
red when the instantaneous energy H0(θ2, ρ1, ρ2) lies below the separatrix value and in blue when it lies above.

To explain the dynamics of the vortices, we show the solutions in the position variableD
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(x1, x2, y2, y2) obtained by undoing the repeated change of coordinates performed in section 2.
A small portion of this numerical trajectory is shown in Figure 5(a). The dynamics is rem-
iniscent of the ε = 0, ρ1 = 0 case shown in Figure 2(a). While that figure represents the
relative motion of the vortices from a rotating reference frame, the present figure is in the
fixed reference frame. In the unperturbed case, the two particles’ positions are mirror images
of each other across the y-axis, while for the perturbed problem, there is some small deviation
from this symmetry. The perturbed orbits are chaotic and do not close. Occasionally one
vortex or the other encircles the origin. This happens precisely when the position (θ2, ρ2)
crosses to the outside of the separatrix shown in Figure 4.

−0.4 −0.2 0 0.2 0.4

−0.2

0

0.2

x

y

(a)

−0.2 0 0.2

−0.2

−0.1

0

0.1

0.2

x

y

(b)

Figure 5. The reconstructed particle trajectories from (a) the near-separatrix orbit and (b) the near guiding
center.

Near the guiding center. Figures 5(b) and 6 show a simulation of dynamics near the guiding-
center fixed point. The parameters B and ε are as in the previous simulation, and the initial
condition chosen is (θ1, θ2, ρ1, ρ2) = (0.11, π, 0, 0.024), which lies close to an unstable fixed
point of the Poincaré map described in the next section. In this figure, note that θ1 switches
chaotically between three behaviors: monotonically increasing, monotonically decreasing, and
oscillating. The sign of ρ1 is opposite that of dθ1/dt. Also note that θ2 ≈ π to within 0.15
radians (about 9◦), and the variation of ρ2 is much smaller than that of ρ1, indicating that the
two vortices remain nearly collinear with, and on opposite sides of, the center of the magnetic
trap. The phase-plane diagram shows that the (θ1, ρ1) dynamics stay close to what appears
to be a pendulum separatrix, consistent with the reduced system (4.2).

Referring to the reconstruction of the laboratory-frame trajectories in Figure 5(b), we
describe the dynamics of the two vortices. The vortices remain nearly opposite each other.
When they approach the unstable solution �xY on the y-axis, they slow down. From the
reduced system (4.2), the potential energy is high at this point, so the kinetic energy is small.
Depending on their kinetic energy, they may either turn around or else may, after a pause,
continue in the direction they were headed. Depending on which orientation they are rotating,
one vortex will move on the “inside track” closer to the origin and the other along the “outside
track.”

5.2. Poincaré sections. The results of a few initial-value simulations are insufficient to
understand the dynamics and can be put into a better context by plotting Poincaré sections.
We define the Poincaré section to be the set of intersections of a given trajectory with the
hyperplane θ2 = (2n + 1)π that cross with θ′2(t) < 0. This corresponds in the limiting caseD
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Figure 6. Numerical solution of initial value problem near the guiding center orbit. (a)–(d) Evolution of
the components of the solution. (e) Phase portrait projected to (θ1, ρ1) coordinates.

ε = 0 to a half-line extending upward from ρ2 = ρ∗2 in Figure 1. In order to plot multiple
trajectories in the same figure, all trajectories must be chosen to lie on the same level set
of the full Hamiltonian H∗ = H(θ, ρ; ε). Taking (θ1, ρ1) as parameterizing the section, this
implicitly fixes the value of ρ2. For a given value of H∗, the set of accessible coordinates
(θ1, ρ1) may be significantly smaller than the natural domain θ1 ∈ S1, |ρ1| ≤ ρ2.

Reducing the dynamics from system (2.1) to system (2.5) and then to the Poincaré section
in two dimensions increases the density of information in the figure. Complete understanding
of the two-vortex dynamics, implied by the Poincaré section, requires “undoing” the corre-
sponding reductions. For H ≥ H(�xY), the Poincaré map has a fixed point (θ1, ρ1) = (0, 0)
which corresponds to the unstable fixed point �xY when H = H(�xY) and to a periodic orbit
surrounding it otherwise, corresponding to the periodic orbits of Figure 2(a) with the ori-
entation of the plot rotated by 90◦. These fixed points are always unstable, as is �xY. For
H ≥ H(�xX), the Poincaré map has a fixed point at (π, 0) corresponding to the stable equilib-
rium �xX at H = H(�xY) and the periodic orbits surrounding it otherwise. As H decreases, the
region of the (θ1, ρ1) plane accessible to intersect with physical orbits of system (2.5) shrinks.
For H < H(�xY), the fixed point at (0, 0) disappears, and for H < H(�xX), the Poincaré section
is empty.

Figure 7 shows four Poincaré sections computed from numerical simulations, with each
set of like-colored points coming from the same computed orbit. The first three panels have
ε = 0.2. As the energy is decreased, and ρ1 is held fixed, the accessible region of the section
decreases, and for H � 0.2245, the accessible interval of θ1 values does not include the entire
interval [−π, π] for any value of ρ1. Panel (a) shows H = 0.2246 just above H(�xY). The
Poincaré section looks like a perturbed pendulum phase plane, consistent with the reductionD
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Figure 7. The Poincaré sections on the hyperplane θ2 ≡ π mod 2π with parameter B = 0.22 in all
sections and ε = 0.2 in all but panel (d), where ε = 0.1. The sections lie on the energy levels (a) H = 0.2246,
(b) H = 0.23, (c) H = 0.3, and (d) H = 0.23. The value of H restricts the allowable values of ρ1, which is
easily seen in all panels but (c).

to (4.2), and the accessible region contains the interior and a small portion of the exterior
to the pendulum separatrix. There is a thin region of chaotic dynamics, in blue, containing
the separatrix, and several families of period-n points, surrounded by quasi-periodics, can be
seen, most notably a period-4 orbit and a period-6 orbit. As H is increased in the next two
panels, the stochastic layer grows, until in panel (c) when the underlying pendulum dynamics
is difficult to discern. More interesting in that panel is the bowtie-shaped region, plotted in
red, containing the fixed point (π, 0). What appears to be a curve having nonzero thickness
is actually a narrow band of chaotic trajectories. This point corresponds to a periodic orbit
surrounding �xX. As H is increased, this periodic orbit undergoes a pitchfork bifurcation, and
for energies above this bifurcation value, the periodic orbits are unstable. The critical value
of H at which this instability arises could be found numerically by computing the Floquet
multipliers of this family of periodic orbits. Finally, panel (d), which lies on the same energy
level as (b), but with a smaller anisotropy ε, has smaller stochastic zones and more regular
dynamics, as is to be expected.

5.3. Bifurcations in the discrete map approximation. The separatrix map (4.8) approx-
imates the ODE dynamics in a neighborhood of the separatrix visible in Figure 7, although
it is based on a different method of reduction. Using the same values of B and ε, we include
a partial bifurcation diagram for the map (4.8) in Figure 8, computed using the MATLAB
continuation package MATCONT [5]. It shows five branches of fixed points, which are real-
valued following (4.9). The most salient feature of this diagram is the separatrix curve S givenD
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Figure 8. A partial bifurcation diagram for map (4.8). It shows the separatrix curve S (light blue),
fixed point branches (black line), type-1 period-two points (green dash-dot line, real parts only), type-2 period-
two points (red dashed line), saddle node bifurcations (yellow triangles), type-1 period-doubling points (green
squares), and type-2 period-doubling points (red circles).

by H = X2 + 1
4 , plotted with a light blue line. The fixed points form two countable families

of branches that accumulate along S from both sides. In addition, there are more solution
branches lying outside the curve S that cannot be considered physical because they sit too far
from the separatrix to justify the assumption (4.1) under which the map was derived. Points
inside the parabola correspond to orbits of system (4.3) lying outside the pendulum separatrix
and points outside the parabola to orbits inside the separatrix.

We also plot some of the branches of period-two orbits described in section 4.4. The type-
1 periodic orbits are complex-valued but arise in period-doubling bifurcations of real-valued
fixed points. The type-2 fixed points are real and bifurcate wherever a branch of fixed points
crosses the axis X = 0. The form of the exact period-two points shows that there are no
orbits that move from the inside of the separatrix to the outside. All period-two and period-
one orbits remain either on the outside, with the angle θ2 changing monotonically, or on the
inside, with the solutions remaining in an area near the stable equilibrium �xX.

5.4. Systematic enumeration of ODE periodic orbits. The reasoning from [11] can be
used to show that the separatrix map is closely connected with the Poincaré section of sys-
tem (2.5) when θ1 = π mod 2π. The real fixed point �xX corresponds to a periodic solutionD
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-
-

Figure 9. The value of θ2(T ) − π when the solution to system (2.5) is on the Poincaré section θ1 = π.
As described in the text, zeros of this function determine symmetric periodic orbits of the system. Top: Initial
condition ρ2(0) = ρ−2 . Bottom: Initial condition ρ2(0) = ρ+2 . This curve is defined for −ρ1∗ < ρ1 < ρ∗1 but is
symmetric about ρ1 = 0 and has no zeros on the interval (0, 0.014).

for which θ2 = π along this section. This leads us to the following strategy. We fix the Hamil-
tonian H = H∗ of (2.5). At this value of H∗, the action ρ1 can take values on a finite interval
[−ρ∗1, ρ∗1]. This interval is empty for H∗ below some critical value. We numerically sweep
through values of ρ1, following solutions of system (2.5) with initial conditions θ1 = θ2 = π
and ρ2 chosen to make H = H∗. For each ρ1 ∈ (−ρ∗1, ρ∗1), there exist two such values of ρ2.
Call them ρ+2 and ρ−2 , and assume that ρ1 < ρ−2 < ρ+2 . We run the ODE simulation until
θ1 = π mod 2π. If, at this point, θ2 = π, then the numerical solution represents one half
of a periodic orbit. In the (xj, yj) coordinates, these solutions have y1(0) = y2(0) = 0 and
x1(0) · x2(0) < 0.

We present the results of this experiment beginning in Figure 9, which shows the output
value of θ2. The top panel shows the results with ρ2(0) = ρ+2 , and the bottom panel has
ρ2(0) = ρ−2 . These curves oscillate infinitely often as ρ1 approaches ρ+c ≈ 0.0233 in the upper
panel and ρ−c ≈ 0.0249 in the lower. The energy level H∗ has been chosen large enough such
that the branch crosses the critical curve S in the bifurcation diagram. Thus, it has infinitely
many real fixed points and two types of periodic orbits: rotations, which lie to the right of ρc,
and librations, which lie to the left of ρc.

Figure 10 shows periodic orbits with initial condition ρ−2 . Panels A–D show librations, and
panels E–H show rotations. Plotted on these same axes are the places where the numerical
solution intersects the Poincaré section. As we move from solution to solution with ρ1 → ρ−c ,D
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�

�

�

Figure 10. Periodic orbits of system (2.5) with H∗ = 0.228 and the larger value of ρ2 chosen as the initial
condition. Note the ρ1-interval on which this is defined is about [−0.029, 0.029], but the curve is symmetric about
zero and has no roots between ρ1 = 0 and the intersections marked “A” (see Figure 9). The points depicted
by the black empty circles and crosses correspond to the two pairs of vortex dipole steady state solutions of
equation (2.3).

the number of intersections with the θ2 increases by one at each step, and similarly as ρ1 → ρ+c .
The period of the orbit and the number of intersections diverge in this limit. In simulations
where ρ1 is chosen closer to ρc (not shown), the trajectories spend more and more time close
to the unstable fixed points.

In panels A, C, E, and G, the number of points of intersection is even, while in the other
four, the number of intersections is odd. In the librations with an even number of intersections
(A and G), the two vortices execute orbits that are identical up to a 180◦ rotation and a 180◦

phase shift. These orbits correspond to fixed points (4.9) of the map (4.8). Periodic orbits
with odd numbers correspond to real period-two points of the same map. For these orbits,
the trajectories of the two vortices differ substantially.

Figure 11. The solutions with initial condition ρ+2 . Only those that intersect the Poincaré section an even
number of times are shown.

Figure 11 shows the same picture for initial conditions with initial condition ρ+2 . All
the comments about the previous figure apply here. We have not plotted the solutions with
an odd number of intersections, which include panels similar to those shown in the previ-
ous figure, up to interchanging the vortices or reflecting the figures across the y-axis. In
particular, 10B↔11B, 10D↔11D, 10F↔11E, and 10H↔11G.D
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Of interest is how the picture changes as the energy surface H = H∗ is varied. As
H∗ is decreased, the value ρc moves toward the right endpoint of the interval at ρ∗. To
the right of ρc are the rotational periodic orbits, and these get pushed out of the allowable
interval starting with those that have a small number of Poincaré intersections. Eventually, the
accumulation point ρc exits, too, eliminating all the rotational motions. Then, the librations
with large numbers of Poincaré intersections disappear, followed by those with small numbers
of intersections. So, for example, when H = 0.223, only the solutions corresponding to A, B,
and C in Figure 9 remain.

Conversely, by increasing H, additional rotational orbits bifurcate in from the right end-
point. In fact, some libratory orbits bifurcate from ρ1 = 0. Figure 12 shows four additional
periodic orbits that exist for H = 0.3 but not for H = 0.228, which is plotted above. One of
these has two Poincaré intersections, two more have three, and a fourth has four. The last
one is included for comparison with the PDE simulations of the next section.

�

�

�

�

��

Figure 12. Periodic vortex paths corresponding with Hamiltonian H = 0.3, with fewer Poincaré sections
than seen in previous figure.

6. Numerical solutions to the GP equation. In this section we corroborate the results
obtained from the reduced system of ODEs (2.1) for the original GP equation (1.1), show-
casing in this way that the relevant periodic orbits identified by the map approach, albeit
of considerable complexity, are especially relevant for observation in experimentally accessi-
ble BEC settings. The parameter B = 0.22 used in the previous sections was earlier used
to theoretically mirror the experimental dynamics of an isotropic BEC containing approxi-
mately 500,000 87Rb atoms trapped in the radial and axial directions with trap frequencies
(ωr, ωz)/(2π) = (35.8, 101.2)Hz [39]. These values for the physical parameters translate into
a GP equation (1.1) with the effective quasi-two-dimensional (isotropic) potential

(6.1) V (x, y) =
1

2

(
ωr

ωz

)2

r2 =
1

2
Ω2(x2 + y2)

with an effective trap strength of Ω = ωr/ωz = 0.3538 and an adimensional chemical potential
μ = 16.69 so that the stationary state solution, v(x, y), for (1.1) can be written as u(x, y, t) =
v(x, y)e−iμt. We introduce the anisotropy in the potential by replacing the potential in (6.1)
by

(6.2) V (x, y) =
1

2
Ω2
[
x2 + (1 + ε)y2

]
,

where the anisotropy parameter ε corresponds to (a) ε = 0 for the isotropic case and (b)
ε = 0.2 for the anisotropic case studied in the previous sections.D
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Figure 13. Steady state dipole configurations. The top row depicts (a) density, (b) phase, and (c) fluid
velocity for a vortex dipole seeded, using the approximate solution (6.3), at the steady state position (2.3) on
an isotropic BEC. Similarly, the bottom row depicts the actual steady state solution for the stationary vortex
dipole using a Newton-type fixed point iteration method. The fluid velocity corresponds to the gradient of the
phase.

To numerically investigate the dynamics of vortex dipoles in the GP equation (1.1) we first
find the steady state solution, namely, the ground (vortex-free) state of the system, v(x, y),
by substituting u(x, y, t) = v(x, y)e−iμt into (1.1) and solving the ensuing time-independent
problem with a Newton-type fixed point iterative method. Once the steady state is found,
we need to seed the vortex dipole into this ground state. To do so, we first extract the
vortex profile by solving the homogeneous (V = 0) problem (1.1) in radial coordinates (r, θ)
for a vortex solution of charge S = 1 centered at the origin: u(r, θ, t) = f(r)e−iμteiSθ. The
ensuing boundary value problem with boundary values f(r = 0) = 0 and f(r = ∞) =

√
μ

is numerically solved using the standard boundary value problem solver bvp4c in MATLAB.
Now, equipped with the numerically exact radial profile f(r), we proceed to imprint a vortex
of charge S = ±1 at any desired location r0 = (x0, y0) within the BEC by multiplying the
steady solution v(x, y) found above by a normalized vortex profile:

(6.3) u0(x, y) = v(x, y)× f(r− r0)√
μ

× e−iSθ0 ,

where θ0 is the polar angle of any point (x, y) within the BEC measured from the center of the
vortex (x0, y0). This initial condition provides a vortex configuration that is very close to the
exact profile. Our approximation relies on the assumption that the background profile for theD
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Figure 14. (a) Orbits generated by the full GP dynamics of a vortex dipole seeded in the BEC using (6.3).
The orbits are similar to those obtained using the ODE reduction as in Figure 2a. However, notice the spurious
“wiggles” present in all GP dynamics. (b) Corresponding orbits after subtracting the linear momenta of the
initial configuration (6.3). Note that the wiggles are no longer present.

steady state varies slowly over the vortex core size. In this manner, our approximation using
the homogeneous background yields a close approximation to the actual vortex profile that
sheds very little radiation when numerically integrated. It is worth mentioning at this stage
that the typical vortex width for the GP numerics (and the associated laboratory experiment
described in [39]) is small (≈ 1/30th) compared to the width of the BEC cloud (see, for
example, the two vortices in the left panels of Figure 13).

The top row of panels in Figure 13 shows, respectively, from left to right, the density,
phase, and fluid velocity associated with a vortex dipole initiated, using the above method, at
the steady state positions (2.3) on an isotropic (ε = 0) BEC. Seeding the GP numerics using
the approximate solution (6.3) has an unexpected spurious effect, as can be observed from the
extracted vortex orbits depicted in Figure 14(a). The figure shows, contrary to the smooth
orbits from the effective ODE dynamics depicted in Figure 2, spurious up-down “wiggles.”
Close inspection of these wiggles reveals that they originate from an undesired perturbation of
the sloshing (back-and-forth) mode of the steady state background. This can be confirmed by
comparing the seeded solution using (6.3) to the true steady state when the dipole is placed at
the fixed point (2.3). The bottom panels of Figure 13 depict, respectively, the density, phase,
and fluid velocity of the true steady state dipole found through a Newton-type fixed point
iteration method. It is interesting to compare our approximate seeded solution (top panels)
to the numerical exact solution (bottom panels). In fact, the density and fluid velocity seem
quite close for both cases. However, it is evident that the phase distribution is indeed different.
To elucidate the effects of the discrepancy between these two configurations, we depict their
differences in Figure 15. The panels correspond to the difference between (a) the phases and
(b) the fluid velocities. As is clear from this figure, the phase difference between the two cases
shows a clear vertical gradient (see Figure 15(a)) that, in turn, is reflected in a vertical fluidD
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Figure 15. Difference between the steady state dipole vortex configuration seeded using (6.3) (see top row
of panels of Figure 13) and the numerically exact solution (see bottom row of panels of Figure 13). Panels (a)
and (b) depict, respectively, the difference between the phases and the fluid velocities.

velocity (see Figure 15(b)). This upward fluid velocity is then responsible for perturbing the
sloshing (up-down) mode of the background cloud, resulting in the spurious wiggles present
in the orbits depicted in Figure 14(a).

Having detected the origin of the spurious wiggles when naively using the seed given by
(6.3), we proceed to remove the effects of the undesired perturbation of the sloshing mode. A
possible way to eliminate the sloshing from the dynamics is to use initial conditions in which
the projection of the ground state onto the sloshing mode is subtracted. This would require
us to obtain the eigenfunctions of the linearized steady state (ground state) configuration.
Instead, we opt here to use a simpler and more direct method. We simply compute the linear
momenta, in both x and y, of the seeded initial vortex configuration and imprint the opposite
momenta into the initial configuration to cancel any possible sloshing. Thus, after obtaining
the desired combination of seeded vortices using (6.3), we compute the linear momenta,

Pz = i

∫∫ (
u0
dū0
dz

− ū0
du0
dz

)
dx dy,

where z needs to be replaced by x or y for the respective horizontal and vertical linear mo-
menta. Then, the “distilled” initial configuration is obtained by adding the corresponding
opposite momenta to cancel any residual linear momenta that may be responsible for the
appearance of the sloshing mode, i.e.,

uini = u0 × eikxx × eikyy,

where the “kicks” kx and ky are chosen so that the new linear momenta of uini are zero. The
advantage of using this method is that, in principle, it works for any vortex configuration with
any number of vortices. In Figure 14(b) we depict the corresponding orbits after removal of
the spurious sloshing mode. As is clear from the figure, the spurious wiggles are no longer
present since we are no longer perturbing the sloshing mode. From now on we use the above
subtraction of the sloshing mode for all the seeding of our initial vortex dipole configurations
in the GP model.D
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Figure 16. Periodic orbits of the full GP model (1.1) with an anisotropic potential (6.2) with ε = 0.2. The
initial conditions were found by using the initial conditions corresponding to the periodic orbits of the reduced
ODE system (2.1) as seeds for a local search in initial condition space (see text for details). The different panels
are labeled using the same notation as the respective panels in Figure 10 and the top panel of Figure 9, namely,
for an energy of H = 0.228.

We now proceed to find the periodic orbits on the full GP model (1.1) corresponding to the
ODE orbits described in the previous section. It is important to mention that since the ODE
reduction for a vortex dipole is an approximation of the corresponding full GP dynamics,
initial conditions yielding periodic orbits for the ODE model do not exactly correspond to
initial conditions yielding periodic orbits of the full GP model. However, since the ODE
reduction provides a reasonable approximation, we use the initial conditions corresponding to
periodic orbits for the ODE as starting seeds for a local (in initial condition space) search of
the full GP periodic orbits. The local search for initial conditions (x1, y1, x2, y2) corresponding
to periodic orbits is carried by setting y1 = y2 = 0 and performing a local two-dimensional
parameter sweep in (x1, x2) space around the corresponding ODE initial condition. In this
manner, using a 10 × 10 grid in (x1, x2) space with a width of 0.01, we are able to find
approximate periodic orbits for the full GP model. In some instances, a second parameter
sweep on a new 10 × 10 grid with spacing 0.001, centered about the most promising initial
condition of the previous grid, was used to refine the initial condition for better convergence
to the periodic orbit. The resulting periodic orbits of the full GP model are depicted in
Figures 16–18. The depicted orbits correspond, respectively, to most of the ODE periodic
orbits depicted in Figures 10–12, including both librations (such as C and D) and rotations
(such as E–H). As is clear from the figures, the periodic orbits of the reduced ODE model,
found with the Poincaré sections described in the previous section, have equivalent orbits in
the original GP model. It is remarkable that such a reduction is able to capture these types
of complex periodic orbits, revealing their numerous twists which are in turn associated, as
indicated in the previous section, to their number of intersections with the Poincaré section.

Finally, to highlight the correspondence between the full GP dynamics and the reducedD
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Figure 17. Same as in Figure 17 for the respective panels of Figure 11 and the bottom panel of Figure 9.
Namely, for an energy of H = 0.228.
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Figure 18. Same as in Figure 18 for the respective panels of Figure 12. Namely, for an energy of H = 0.3.
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Figure 19. Same as in Figure 6 but for the full GP model (1.1). Same layout and notation as in Figure 6.

ODE model, we searched for initial conditions, using the seeding and the local search method
explained above, that reproduce the chaotic behavior observed near the unstable guiding-D
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center fixed point displaying a pendulum separatrix-type behavior (see Figure 6). An example
of this behavior for the full GP model is depicted in Figure 19 using the same layout as in
Figure 6. As the figure shows, there is a striking similarity between the reduced ODE dynamics
and the original PDE model, including the chaotic switching between left and right rotations,
the relation between the sign of ρ1 and the rotational direction of θ1, and the overall proximity
of the (ρ1, θ1) plane to the corresponding pendulum separatrix.

7. Discussion. While previous studies have chiefly focused on the fixed point type orbits
of a vortex dipole (and their linear stability) in an anisotropic trap, we have used techniques
of Hamiltonian mechanics to explore, in a detailed way, the dynamics of such an anisotropic
system. Arguably, this is one of the simplest vortex systems where the lack of integrability
can be seen to be responsible for complex and chaotic dynamics in addition to periodic and
quasi-periodic orbits. In the process, we have discovered and enumerated a large number of
families of periodic orbits and regions of chaotic dynamics.

This approach should be useful in uncovering the dynamics of many related systems. A
straightforward example would be to change the sign of one of the vortices to make them
corotating. This has been considered for the case of an isotropic trap in [19, 39, 60]. The
isotropic case shows more interesting dynamics than what was shown in section 3 of the
present case, including pitchfork bifurcations leading to asymmetric time-dependent motions
(although these are critically seeded by the radial dependence of the precession frequency
not considered herein). How such dynamics interacts with an imposed anisotropy would be
an interesting follow-up question. While this theme has already been touched upon in the
physics community [32, 33], it still lacks a systematic characterization based on the techniques
presented above.

The isotropic examples of the corotating [39] and of the counterrotating [34] dipoles have
been experimentally explored. Yet, it should be especially interesting to look for the behavior
found here in similar laboratory experiments. This may not be easy. The imaging procedure
used in the experiments causes the atom number to decrease over time (as a small fraction is
transferred to a different hyperfine state in order to be imaged). Consequently, a more real-
istic model of the motion may include dissipation which, in turn, has a nontrivial impact on
the dynamics, leading individual vortices to a spiraling out (rather than rotational) motion;
see, e.g., the recent discussion of [59] and references therein. Additionally, many of the phe-
nomena described require a long time series, and the time series obtainable in the laboratory
experiments may be too short to observe them.

The related system consisting of three vortices and an isotropic trap, either with all three
corotating or else with one vortex of opposite sign, is known from numerical experiments to
exhibit chaotic dynamics [4], and an attempt has been made to understand these systems
using finite-dimensional reductions and index-based tools that enable the quantification of
the potential chaoticity of the orbits [20, 23]. For systems with more vortices, the reductions
carried out here may be less helpful as the number of dimensions in the reduced system may
still be too large to say very much about. In addition, such systems may lack the small
parameter necessary to apply perturbation methods. Here, the energy-momentum bifurcation
diagram, as applied in [51], may be a useful tool, as might symmetry-based methods [1, 35,
36, 37].D
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In general, there exists a wide body of literature in nonlinear waves looking at special
solutions, such as periodic orbits and solitary waves, and examining their stability. Much of
this work makes the implicit assumption that only stable solutions are experimentally im-
portant, since unstable solutions would be unobservable in practice. This is contrary to the
lessons from finite-dimensional dynamical systems that unstable solutions are important be-
cause their stable and unstable manifolds separate regions of phase space and provide skeletons
that organize the dynamics, as we have also seen in this paper. There is a more recent trend
recognizing this fact and exploring related phenomena in nonlinear wave systems (see, e.g.,
[12, 15, 30, 43]), and there exist many problems which might be further understood using
such an approach. However, again an emerging crucial step will be the ability to overcome
the limitation of very low-dimensional systems; e.g., in the realm of vortices, it is especially
relevant to build a progressive understanding of small or intermediate clusters of (3 or 4 and
up to 11 or so [39]) vortices and even of larger clusters in the form of vortex lattices [47],
which are of particular experimental interest.
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