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Abstract

We provide an optimal control framework for efficiently coupling light in a bare fiber
into Bragg gratings with an appreciable Kerr nonlinearity. The light-grating interaction
excites gap solitons, a type of localized nonlinear coherent state which propagates with
a central frequency in the forbidden band gap, resulting in a dramatically slower group
velocity. Due to the nature of the band gap, a substantial amount of light is back-
reflected by the grating’s strong reflective properties. We optimize, via a projected
gradient descent method, the transmission efficiency of previously designed nonuniform
grating structures in order to couple more slow light into the grating. We further
explore the space of possible grating designs, using genetic algorithms, along with a
previously unexplored design parameter: the grating chirp. Through these methods,
we find structures which couple a greater fraction of light into the grating with the
added bonus of creating slower pulses.

1 Experimental and Technological Context

Dramatic slowing of light has been observed in a wide variety of experimental settings over
the past two decades. This phenomenon offers enticing technological applications includ-
ing efficient optical switches, sensitive interferometry, and optical quantum memory [9].
Of the several experimental platforms which can generate slow light, fiber Bragg gratings
(FBGs) offer the considerable advantage of having structural properties which can be tai-
lored specifically to the characteristics of an incoming light source. Already, modern optical
communications systems use FBGs as notch filters and as components in optical add-drop
multiplexers [3]. Optical fibers transmit information as coherent pulses of light that must be
manipulated or redirected as they travel. Therefore, technology that can significantly slow
down, or even halt, light is highly desirable.

An FBG is an optical element whose index of refraction varies periodically, see Figure 1.
The grating enables the strong dispersion of light over a short distance due to a resonance
between the grating’s period Λ and electromagnetic wavelengths near the Bragg wavelength
λB = 2Λ. In so-called chirped gratings, discussed in further detail in Section 2.1 and shown
in Figure 1, the period Λ is spatially varying.

The effect of an FBG is to strongly couple forward and backward propagating waves near
the resonant wavelength. This creates a photonic bandgap, i.e., an interval of frequencies at
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Figure 1: Top: Schematic showing an index of refraction n(z) that periodically varies between
a reference index n0 = 1 to n0 + ∆n = 2. Bottom: Schematic of a chirped grating.

which low-amplitude light is reflected and unable to propagate. This bandgap is centered at
the Bragg angular frequency ωB = πc

n̄Λ
, where c is the speed of light in vacuum.

In materials with an appreciable Kerr nonlinearity, i.e., materials whose index of refrac-
tion responds proportionally to the electric field intensity [17], high intensity light shifts the
Bragg frequency. For positive nonlinearities, the refractive index increases with intensity,
thereby shifting the bandgap downward. Therefore, at the edges of a high intensity region of
light, the light is continuously Bragg reflected into the high intensity region which propagates
through the grating seemingly unimpeded. Systems, such as these, which exhibit coherent
structures arising from a balance between nonlinear effects and dispersion typically support
solitary waves.

Indeed, Aceves and Wabnitz constructed a two-parameter class of solitary wave solu-
tions [1], often called Bragg solitons to distinguish them from the classical notion of a soli-
ton [18]. These waves solve evolution equations derived from Maxwell’s equations using
coupled-mode theory, which we briefly discuss in Section 2, and can travel with a speed any-
where from the speed of light in the medium down to zero. The existence of Bragg solitons
demonstrates the possibility of slow light in an FBG. While Bragg solitons can in theory
propagate at slow speeds, it is difficult to initialize such waves experimentally: to create a
Bragg soliton, one must input light at a frequency inside the bandgap, and such frequencies
are strongly reflected. Neglecting nonlinear effects, the FBG essentially acts as a band-stop
filter, reflecting wavelengths whose frequency is within the bandgap.

To overcome this, Mok, et al. [16], use a two-pronged strategy to couple light into an FBG.
First, they use an apodized grating, i.e., the grating strength is ramped up gradually from
zero. Secondly, they input so-called out-gap solitons, wave packets with a mean frequency
outside of the bandgap. As a result of the apodization, the light coupled into the grating
has its frequency gradually shifted into the bandgap. Although this experiment is the first
of its type and generated a pulse with a group velocity 16% that of light in glass, this pulse
contained only about 20-30% of the the input energy, while the remaining light was reflected,
rendering the setup highly inefficient.

In order to address this inefficiency, Rosenthal and Horowitz [20], designed a two-segment
apodization function that allowed the creation of a pulse that retains about 68% of the
incident energy and with a speed roughly 3.2% of light speed. Despite this remarkable
improvement in efficiency, the authors provide limited mathematical detail about the process
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behind discovering such a design. This leaves room for quantitative investigations into the
efficiency of generating slow light using FBGs.

In this article, we improve on the method of Rosenthal and Horowitz by mathematically
formulating an appropriate optimal control problem whose objective is to design an apodiza-
tion profile that maximizes the coupling of light into the FBG. By including, an addition,
a spatially varying chirp profile in the optimizaiton problem, we achieve a higher coupling
efficiency of 82.6% transmission, while further reducing the pulse speed to about 0.5% the
speed of light in glass.

This work is organized as follows: in Section 2, we provide the physical model and give
precise details of past numerical experiments we aim to improve upon. We attempt to gain
intuition behind the experiment by fitting the numerical data to the Aceves and Wabnitz
waveform. In Section 3, we formulate the optimal control problem which seeks to maximize
the energy transmitted into the fiber while treating the grating structure as the control. We
provide the necessary optimality conditions for the control problem, design grating structures
using numerical methods discussed in Appendix A, and present numerical results in Section 4,
wrapping up in Section 5.

2 The Physical and Numerical Model

2.1 Brief Overview of Coupled-Mode Theory

The evolution of an electric field propagating in an optical fiber can be effectively modeled
by the one dimensional nonlinear wave equation

∂2
τ

(
n2(z, E2)E

)
= ∂2

zE, (1)

in dimensionless units where the speed of light c = 1, and where z denotes the axial direction
of propagation. In the context of Figure 1, we choose the reference index of refraction n0 = 1.
Let ε be a small contrast of the index of refraction n so that it can be modeled, following [11],
as

n = 1 + ε
(
ν(εz) cos(2kBz + 2Φ(εz)) + |E|2

)
. (2)

Here the coefficient ν describes the strength of the grating and Φ′ describes the chirp, i.e., the
local modulation of the grating’s wavelength. The final term describes a Kerr nonlinearity
with small Kerr coefficient ε.

Using the method of multiple scales with the ansatz,

E =
√
ε
(
u(εz, ετ)ei(kB(z−τ)+Φ) + v(εz, ετ)e−i(kB(z+τ)+Φ)

)
+O

(
ε

3
2

)
(3)

and letting x = εz, t = ετ, denote the slow variables, the following system of hyperbolic
equations, known as the nonlinear coupled-mode equations (NLCME),

i∂tu+ i∂xu+ κ(x)v + η(x)u+
(
|u| 2 + 2|v| 2

)
u = 0,

i∂tv − i∂xv + κ(x)u+ η(x)v +
(
2|u| 2 + |v| 2

)
v = 0.

(4)

arise as solvability conditions on the forward and backward slowly varying envelopes u(x, t)
and v(x, t), respectively [11]. The coefficient κ(x) is proportional to the local strength ν(x)
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of the grating while η(x) is proportional to the local chirp Φ′(x). We refer to regions where
κ(x) and η(x) vanish as the bare fiber to indicate the absence of the grating.

For low-amplitude light, the NLCME reduce to a set of linear coupled-mode equations

i∂tu+ i∂xu+ κ(x)v + η(x)u = 0,

i∂tv − i∂xv + κ(x)u+ η(x)v = 0.
(5)

When κ and η are constant, this system has a dispersion relation given by

Ω(Q) = η ±
√
Q2 + κ2. (6)

Introducing a chirp η(x) into the grating shifts the center of the bandgap, i.e., the set of

frequencies Ω ∈
(
η −

√
Q2 + κ2, η +

√
Q2 + κ2

)
which, for fixed κ and η, do not satisfy the

the dispersion relation for any wavenumber Q. We show an example of dispersion relation (6)
in Figure 2.

Figure 2: The dispersion relation (6) of the linear coupled-mode equations’ (5) both with
and without a chirp, demonstrating how the chirp shifts the bandgap.

In the case of a uniform grating, that is, where κ ≡ κ0 and η ≡ 0, the NLCME admit
a two-parameter family of translationally invariant solitary wave solutions, called Bragg
solitons [1],

uB =

√
κ0(1 + c)

3− c2

(
1− c2

)1/4
W (X)exp (iφ(X)− iT cos θ) ,

vB = −
√
κ0(1− c)

3− c2

(
1− c2

)1/4
W ∗(X)exp (iφ(X)− iT cos θ) ,

(7)

where

X = κ0

(
1− c2

)−1/2
(x− ct) ,

T = κ0

(
1− c2

)−1/2
(t− cx) ,

φ(X) =
4c

3− c2
arctan

(
tanh (X sin θ) tan

θ

2

)
,

W (X) = sin θ sech

(
X sin θ − iθ

2

)
,

(8)
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with free parameters 0 ≤ θ ≤ π and −1 < c < 1. The dependence of the Bragg soliton on
the parameters is quite complicated, but we can make a few observations. The parameter c
describes the velocity of the pulse, appears in a Lorentz contraction, and, through the factors
(1± c)1/2, controls the relative amplitude of the forward and backward envelopes. Note that
for stationary Bragg solitons, i.e., when c = 0, the frequency of the stationary oscillation is
given by κ0 cos θ so as θ is increased from 0 to π, the frequency of the standing wave moves
from the right edge of the band gap to the left edge, while always remaining inside the gap.

The constant coefficient NLCME possess two conserved quantities, an energy

E =

∫ ∞
−∞

(
|u| 2 + |v| 2

)
dx :=

∫ ∞
−∞
Edx, (9)

and a momentum

P = i

∫ ∞
−∞

(
u∂xu

† + v∂xv
†) dx :=

∫ ∞
−∞
Pdx, (10)

where † denotes complex conjugation. Allowing the coefficients to vary in space breaks the
translation invariance, so that conservation of momentum fails to hold, yet energy conser-
vation remains. Because of this fact, we make use of the energy (9) in posing an optimal
control problem in Section 3.

2.2 The Numerical Setting

Using the physical modell discussed in Subsection 2.1, we now provide the numerical setting
of the Rosenthal and Horowitz experiment. In describing numerics and displaying results,
we use SI units and a nondimensionalization of Equations (1) and (4) consistent with work
in [20]. Let κ(x) be the grating profile that grows from κ = 0 for x ≤ 0 to a value κ0

for x ≥ a > 0. The pulse is launched with a fixed profile from a point x = xinput < 0 in
the bare fiber and has a momentum directed toward the apodization interval 0 ≤ x ≤ a.
The Rosenthal and Horowitz experiment does not include a chirp η(x), so we set η ≡ 0 in
this section and postpone discussions of η’s role until we define the relevant optimal control
problem in Section 3.

The existence of the solitary wave (7) demonstrates that slow light in FBGs is theo-
retically possible. Mok, et al., use a raised-cosine apodization profil to significantly reduce
the speed of an incoming pulse, while propagating only about 20% of the incident energy
past the apodization region into the constant-amplitude portion of the grating. Rosenthal
and Horowitz significantly improve on this energy transmission to about 66%, by using two-
segment apodization profiles of the form

κ(x) =

{
ζκ0
2

(
1− cos πx

L1

)
0 < x ≤ L1

ζκ0 + κ0
L2

(1− ζ)(x− L1) L1 < x < a = L1 + L2.
(11)

The Mok, et al., design is simply the case ζ = 1, and we provide a graph of the apodization
profile (11), with ζ = 0.995 in Figure 3.

The main numerical experiment in [20] takes the form of a signaling problem, i.e., the
solution is initialized by a time-dependent boundary condition at the “input” endpoint. Th
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Figure 3: The Rosenthal and Horowitz apodization function (11), with ζ = 0.995, κ0 =
2mm−1, and L1 = L2 = 1.5cm.

e signaling data is given by the profile

u(xinput, t) = Asech

(
t− φ
σ

)
e−iΩt, v(x, 0) = 0, (12)

where xinput denotes the left-most endpoint of the spatial domain. It propagates through an
initial segment of fiber with no grating with an oscillatory frequency outside the band gap of
the dispersion relation (6) caused by the grating of amplitude κ0. The intention of the exper-
iment is for an out-gap soliton of the form (12) to interact with the apodization (11), and,
through the coupled-mode dynamics (4), transform into a in-gap soliton of the form (7).

Figure 4 shows our reproduction of both Mok’s and Rosenthals numerical experiments.
It demonstrates the vast improvement in energy transmission that results from the choice
ζ = 0.995, instead of ζ = 1, in the apodization function (11). The choices of the remaining
apodization parameters, in SI units, are L1 = 1.5cm, L2 = 1.5cm, κ0 = 2mm−1, while the
signalling data parameters are A = 16.4W, σ = 96.4ps, φ = 4ns, and Ω = 0.398GHz.

We use a second order in time operator splitting method, detailed in Subsection A, to
solve Equation (4) with a spatial discretization of 4000 points and temporal discretization
of 12000 points. We solve Equation (4) out to 6 ns, set xinput = −20 cm, and set the right
endpoint to 16 cm. The numerical method and majority of these parameters will remain
consistent throughout this chapter, unless otherwise noted.

To justify the remarkable performance of the two-segment apodization function, Rosen-
thal and Horowitz appeal to ideas from soliton perturbation theory. They argue that the
second segment of the apodization function adiabatically shifts the high-intensity waveform,
initially at x = L1, into the band gap, and, as a result, minimizes back-reflection. We be-
lieve the nature of this argument to be ad hoc, and that the efficiency of the Rosenthal and
Horowitz apodization requires further investigation.

To interpret the result shown in Figure 4(b), we fit spatial solitary waves of the form (7) to
the numerical simulation data at specific times and display results in Figure 5. In these fits,
we see somewhat convincing evidence the excited waveforms are Bragg solitons, especially
in the power density.
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(a) (b)

Figure 4: Numerical simulations of Equation (4) with the apodization design (11) consistent
with the parameters detailed in the text. Dashed lines provided to help visualize the regions
in space over which the two segment apodization varies, cf. (11) and Figure 3. Panel (a)
corresponds to the original Mok, et al., design, i.e., ζ = 1, while Panel (b) has ζ = 0.995.

(a) (b)

Figure 5: A least-squares fit of a Bragg soliton of the form (7) to the solution of the Rosen-
thal experiment at the instant the pulse exits the grating at t = 4.8 ns, as shown in Figure 4.
(a) The real and imaginary components of the coupled-modes u and v. (b) The parame-
ters defining the Bragg solitonin Equation (7), showing a near constant value in the phase
parameter θ and a slow speed parameter c. The goodness-of-fit over time is also shown.
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To demonstrate the potential advantages of using optimal control to further improve
transmission efficiency, we first perform a simple optimization over the parameters in the
family of apodization profiles given by Equation (11). In particular, we define a parameter
ξ ∈ (0, 1),

L1 = 3(1− ξ) cm, L2 = 3ξ cm, (13)

and optimize the profile over the parameters (xi, ζ), so that the parameters are (ξ, ζ)RH =
(0.5, 0.995) in Figure 4. A simple minimization finds the optimal parameters (ξ, ζ)∗ =
(0.567, .99244), which yield an improved transmission near 68%. We interpret this result as
an indication that optimal control theory should be able to further improve the transmission
efficiency.

3 Optimal Control Formulation

3.1 Objective

We now precisely formulate an optimal control problem whose objective is to find the grating
structures that maximize the transmission of light into the constant grating portion of the
optical fiber. To this end, we make use of the following local conservation law

∂tE + ∂xFE = 0, (14)

where FE is the local energy flux. Note that this conservation law is the differential form of
energy conservation, where the energy is given by Equation (9).

We treat the grating functions κ(x) and η(x) as the control functions, and assume that
the apodization region is of fixed width a > 0, consistent with the Rosenthal and Horowitz
apodization function (11). In addition, we use the conventions consistent with those of Fig-
ure 3, including the signalling data (12), length of the spatial domain, duration of simulation
time, and number of discretization points. The admissible class C of grating functions we
search over is the space of absolutely continuous functions such that

κ(x) =

{
0 x ≤ 0,

κ0 a ≤ x,
and η(x) =

{
0 x ≤ 0,

0 a ≤ x.
(15)

Now, the optimal control problem we seek to solve is

min
(κ,η)∈C

J = min
(κ,η)∈C

{
−
∫ T

0

FE(u, v; a)dt+
γ

2

∫ a

0

(
(∂xκ)2 + (∂xη)2) dx} , (16)

subject to the differential equation constraint (4).
Although the first term in the objective J is a cost that runs over time, the following

simple calculation demonstrates that this term can alternatively be written as∫ T

0

FE(u, v; a)dt =

∫ T

0

∫ a

∞
∂xFEdtdx =

∫ ∞
a

∫ T

0

∂tEdtdx =

∫ ∞
a

E(x, T )dx, (17)

by the fundamental theorem of calculus, Fubini’s theorem, and conservation law (14). In
this sense, the term which promotes a greater energy flux into the constant grating portion
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can be written as a running cost of terminal energy in space. The second term in objective
J is called a Tikhonoff regularization and is taken over space. Such a regularization term is
used extensively in studies of ill-conditioned optimal control and inverse problems [12, 24].
Its effect is to penalize rapid variations in the grating which would be infeasible to design,
in practice.

3.2 Necessary Optimality Conditions

In order to solve Problem (16), we use a line search discussed in Appendix A.2. Part of
the method involves the computation of the gradient which depends on a suitably defined
criteria for optimality.

To this end, let H(x− a) denote Heaviside’s function, and rewrite the energy flux term
in objective (16), assuming the flux vanishes at infinity and is zero initially, as

−∂tFE
∣∣
x=a

=

∫ ∞
−∞

H(x− a)

∫ T

0

∂tEdtdx

=

∫ ∞
−∞

H(x− a)

∫ T

0

(
u†∂tu+ u∂tu

† + v†∂tv + v∂tv
†) dtdx, (18)

by using the fundamental theorem of calculus along with conservation laws (9) and (14).
Define the Lagrangian by

L = Re
〈
λ, i∂tu+ i∂xu+ κ(x)v + η(x)u+

(
|u| 2 + 2|v| 2

)
u
〉
L2([0,T ])

+ Re
〈
µ, i∂tv − i∂xv + κ(x)u+ η(x)v +

(
2|u| 2 + |v| 2

)
v
〉
L2([0,T ])

+H(x− a)

∫ T

0

(
u†∂tu+ u∂tu

† + v†∂tv + v∂tv
†) dt,

(19)

where λ and µ are Lagrange multipliers. The objective in optimal control problem (16) can
now be written in the form

J =

∫
R

Re
{
L
(
u, v, ∂tu, ∂tu

†∂tv, ∂tv
†, ∂xu, ∂xv, κ, η, λ

†, µ†
)}
dx (20)

so that the optimization problem is now unconstrained while enforcing that u and v solve
NLCME (4). Using typical arguments from the classical calculus of variations [10], we find
the desired optimality conditions by taking the appropriate functional derivatives. Setting
functional derivatives with respect to the state variables to zero gives

δJ
δu

+
δJ
δu†

= 0,
δJ
δv

+
δJ
δv†

= 0. (21)

These conditions imply the following equations

i∂tλ+ i∂xλ+
(
η + 2E + u†2

)
λ+

(
κ+ 4v†Re{u}

)
µ = 0, (22a)

i∂tµ− i∂xµ+
(
η + 2E + v†2

)
µ+

(
κ+ 4u†Re{v}

)
λ = 0. (22b)
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An integration by parts yields boundary terms which must also be set to zero:

(∂∂tuL+ ∂∂tu†L)

∣∣∣∣
t=T

= 0, (∂∂tvL+ ∂∂tv†L)

∣∣∣∣
t=T

= 0, (23)

directly implying that

λ(x, T ) = 2iH(x− a) Re {u(x, T )} , (24a)

µ(x, T ) = 2iH(x− a) Re {v(x, T )} . (24b)

Since variations of the states u and v need not vanish at t = T, equations (24) must be
satisfied. Indeed, these conditions determine what is in essence an initial condition for the
equations (22) which can then be solved backwards in time.

Next, setting functional derivatives with respect to the control variables to zero gives

δκJ =

∫ T

0

Re
{
λ†v + µ†u

}
dt− γ∂2

xκ = 0, (25a)

δηJ =

∫ T

0

Re
{
λ†u+ µ†v

}
dt− γ∂2

xη = 0. (25b)

Equations (25), together with the boundary conditions implied by the admissible class C,
gives two-point boundary value problems over the domain [0, a]. Lastly, the vanishing of
functional derivatives with respect to the costate variables λ† and µ† returns the state equa-
tions (4), i.e., the NLCME.

We use a second order in time operator splitting method to solve the state equations (4)
and to solve costate equations (22) backward from their terminal condition (24). The details
of the method, which itself is an improvement on the splitting method used in [19], are given
in [2]. Equations (25) are used in the computation of control gradients as required by the
computational optimization method in Section A.2.

3.3 Numerical Optimization Strategy

In order to solve Problem (16), we use a hybrid optimization method; a combination of a
global, non-convex method followed by a local, iterative method. The methodology we use
in this paper is similar to one used by Sørensen, et al. [21], and allows for the use of a global
search routine based on stochastic optimization to overcome non-convexity. Non-convex
objective functions may, of course, possess many local minima, and a global method seeks
to efficiently search for a near-optimal one. By then feeding results from the global method
into the local one, convergence near the local minimum is accelerated.

The first step in the global search is to use a Chopped Random Basis (CRAB) method [6,
7] which efficiently reduces the numerical optimization problem to a nonlinear programming
problem (NLP). This NLP is then solved via a genetic algorithm called Differential Evolution
(DE) [22]. Implementation details of this method are given in Appendix A.1. The next step
is to refine the result of CRAB/DE using a projected gradient descent due to von Winckel
and Borzi [4]. We give details of von Winckel’s and Borzi’s method in Appendix A.2.
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4 Optimization Results

We now present the results of using the previously discussed hybrid numerical optimization
strategy on optimal control problem (16). In most of the results presented, we slightly
change the optimization problem. We keep the raised-cosine portion of the profile fixed on
[0, L2] and only optimize the second section of the profile on [L2, L2]. This is based on our
initial experiments that found optimization over the first segment made less difference. In
all simulations, we find the Tikhonoff parameter γ on the order of 10−6 to be satisfactory.
All other conventions regarding numerical simulations are consistent with those used so
far throughout this work. In our first experiment, we do not allow a chirp (fixing η =
0). Our hybrid method finds an apodization function which couples 74.1% of the incident
light into the grating. This is shown in Figure 6. Because of the stochastic nature of the
method, running the simulation again would find a different profile, but we found that if the
parameters of the search were held fixed, the resulting efficiency was fairly stable.

(a) (b)

Figure 6: The result of using the hybrid method to find more efficient apodization functions
κ which are nearby the (ξ, ζ)∗ apodization. 74.1% of the incident light is now coupled into
the grating.

Next, we include a chirp on the interval (L1, L2), and show the computed optimizer in
Figure 7: it couples 77.7% of the incident light. From the optimal apodization functions,
shown in Figures 6–7, we observe that the nearby efficient apodization functions have a
somewhat large negative gradient to the right of the optimization boundary point x0. This
hints at how more of the total apodization region should be allocated toward the shallow,
adiabatic portion of the grating.

For this reason, we slightly relax the design constraint of a three centimeter apodization
region, extend the width of the optimization domain to [1.19, 3.4] cm, and perform the
search again. The extension to the left is motivated by the above-mentioned observation
on the nearby optimal apodization functions, and the extension to the right is ad hoc.
We extend the domain so that the entire grating structure is still reasonably within some
technological constraint, i.e., within a margin of 15% the total size of the Rosenthal and
Horowitz apodization region, and, moreover, maximize performance. We show, in Figure 8,
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grating functions which now successfully couple 82.6% of the incident light. We also find
that the resulting in-gap soliton has a group velocity with a magnitude 0.53% that of light
speed. We emphasize this unintended, yet fortuitous improvement in the slowdown of the
coupled light against the result of the original (ξ, ζ)RH apodization visually in Figure 9.

(a) (b)

Figure 7: The result of including a chirp in the search for efficient grating functions near the
(ξ, ζ)∗ apodization. 77.7% of the incident light is now coupled into the grating.

(a) (b)

Figure 8: The result of relaxing the optimization domain to be slightly wider, i.e., x0 =
1.19 cm and a = 3.4 cm. The FBG couples 82.6% of the light with a group velocity 0.53%
the speed of light.

The final result we show, in Figure 10, performs a search on the entire optimization
domain [0, 3] cm. After several hours of computation time, the best grating structure found
is 81.4% efficient. Moreover, this is found by looking for apodization profiles near the design
shown in Figure 7. We believe this result clearly shows the value of Rosenthal and Horowitz’s
intuition in their design choices, since, without making reference to their design, the best
grating structure found by our methods, including a chirp, is about 68% efficient.
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(a) (b)

Figure 9: A long time simulation consistent with the results of Figure 8 emphasizing the
dramatic reduction in the group velocity of the solitary wave. (a) The locally optimal grating
structure shown in Figure 7, (b) The (ξ, ζ)RH apodization from Figure 3.

(a) (b)

Figure 10: A result of using the hybrid method optimizing over the entire domain x ∈
[0, 3]cm. The coupling efficiency of the grating is about 81.4%. The notation κ∗ and η∗
denote the designs shown in Figure 7.
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5 Concluding Remarks

In this work, we formulate a simple and physically motivated optimal control problem aimed
at efficiently coupling light into an FBG. By employing standard numerical optimization
methods, widely used for example in the quantum control literature [7,13,21], we demonstrate
the viability of optimal control theory in the design of FBGs which act as efficient compressors
and pulse-delayers. We optimize previously reported designs, and provide guidance on how
to explore the space of possible designs. In addition, the methodology used here can be
applied, with suitable modifications, to other problems constrained by dispersive equations.

By considering the chirp of the grating as part of the design, we see an improvement
in both the transmission of the light and the effectiveness of the grating as a pulse-delayer.
Moreover, we find the globally optimal apodization functions for this problem are most likely
ones which have features similar to the Rosenthal and Horowitz design. We also observe that
in cases where we see significant gains in the transmission of light into the fiber, we find this
comes at the cost of decoherence through two possible mechanisms: radiation buildup and
solitary wave fissioning.

Evidence of radiation buildup is seen in the contrast between the tails of the power
densities shown in Figures 5. Further evidence exists through the temporal power spectra
at spatial points well beyond the apodization region in Figure 8 and the associated Bragg
soliton fits in Figure 11. We find that the grating structure is only 78.1% effective in terms of
coherent energy since 94.5% of the total transmitted belongs to the Bragg soliton rendering
this result to be less impressive. Some decoherence may be due to solitary wave fissioning,
although we do not observe clear evidence of that here. Even if evidence of the onset of
fissioning is unconvincing, its presence is certainly possible and well-understood. Fissioning,
as a culpable mechanism of decoherence, has been well-studied over the past few decades.
Indeed, numerical studies by Mak and Malomed [14] demonstrate the possibilities of Bragg
soliton splitting, albeit in a slightly different experimental context. Theoretical insight into
this mechanism is based on the inverse scattering formalism and the mechanism has been
accounted for in nearly-integrable versions of the Korteweg-deVries equation in work due to
Zabusky and Tappert [23] and the Benjamin-Ono equation in work due to Choi [8].

We believe our numerical results, in particular those of Figure 8, serve as an impetus for
investigating the coupled-mode dynamics more thoroughly using soliton-specific methods.
We leave this investigation as subject for future work.
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A Numerical Optimization Methods

A.1 The Global Method

In the first step of the hybrid method, we represent the apodization profile using a Galerkin
approximation. This results in a so-called Chopped Random Basis (CRAB) method which
reduces the complexity of the optimal control problem so that standard non-convex nonlinear
programming (NLP) techniques can be applied. It relies on choosing controls from the span
of an appropriately chosen finite set of basis functions so that the optimization is performed
over a relatively small set of unknown coefficients. The basis is chosen so that controls
remain in the appropriate admissible space C in the context of the control problem (16).

A common representation in the CRAB method is of the form

βr(x) = P(x; β(x0), β(a), x0, a) +
N−1∑
j=0

εjϕj(x;x0, a), x ∈ [x0, a]. (26)

Here, β denotes either grating function κ or η, P is a fixed function satisfying the boundary
conditions of the admissible class (15), each ϕj(x) is a basis function with vanishing boundary
conditions, and the coefficients εj are parameters to be optimized over. It is clear that if the
polynomial P and the basis functions ϕj are chosen well enough, then control ansatz (26)
reliably simplifies the optimal control problem.

More specifically, the CRAB ansatz we use throughout this work is

κr(x) = (κ0 − κRH(x0))
15∑
j=1

rκ
j2

sin

(
jπ
x− x0

a− x0

)
+ (κ0 − κRH(x0))

x− x0

a− x0

+ κ(x0), (27a)

ηr(x) =
κ0

100

15∑
j=1

rη
j2

sin

(
jπ
x− x0

a− x0

)
, (27b)

on the optimization domain x ∈ [x0, a], where rκ and rη are random variables drawn uni-
formly from [−1, 1], κRH is a Rosenthal and Horowitz apodization (11) with free parameters
(ξ, ζ), and κ0 = 2mm−1, consistent with the constant grating portion of κRH. From expe-
rience with the numerical optimization, we find that chirp functions which are about two
orders of magnitude smaller than κ0 perform well; this is why we include the factor of 100 in
the CRAB ansatz for η. A modest number of 15 basis functions has proven adequate here.

To solve the resulting NLP problem, we use differential evolution (DE) [22]. DE is a
stochastic optimization method used to search for candidate solutions to non-convex opti-
mization problems. DE is a so-called genetic algorithm that draws inspiration from evolu-
tionary genetics. DE searches the space of candidate solutions by initializing a population set
of vectors, known as agents, within some chosen region of the search space. These vectors are
then randomly mutated into a new population set, or generation. The mutation operates via
two mechanisms: a weighted combination, with parameter pweight ∈ (0, 2), and a “crossover,”
with parameter pcross which randomly exchanges “traits”, or elements, between agents. We
find a population size of 50 agents, a weight pweight = 0.8, and crossover pcross = 0.9 to be
effective.
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DE ensures that the objective functional J decreases monotonically with each genera-
tion. As each iteration “evolves” into the next, inferior vectors “inherit” optimal traits from
superior vectors via mutations. DE only allows mutations which are more optimal with
respect to J to pass to the next generation. After a sufficient number of iterations, the best
vector in the final generation is chosen as the candidate solution most likely to be globally
optimal with respect to an objective functional. We find 30 iterations to be sufficient in this
regard.

Genetic algorithms, which require very few assumptions about the objective functional,
are part of a wider class of optimization methods called metaheuristics. Although meta-
heuristics are useful for non-convex optimization problems, they do not make guarantees
about the global optimality of candidate solutions. Since the algorithm is stopped after a
finite number of iterations, different random realizations return different candidate optimiz-
ers. For this reason, we use DE to search for candidate solutions and use these candidates
in order to generate initial controls, through the CRAB representation (26), for an iterative
method which guarantees local optimality up to some threshold. We note that in practice,
the best of five or so realizations through the CRAB/DE method is sufficient before moving
on to the refinement stage.

A.2 The Local Method

We use a line search strategy due to von Winckel and Borzi [26]. The von Winckel and
Borzi (vWB) method is an appropriate generalization of the well-known gradient descent
method from Rn to an appropriate affine function space which automatically preserves the
boundary conditions of the admissible class C mentioned in the context of optimal control
problem (16). This method has been frequently applied in the quantum control literature;
see for example [13,15,21].

For ease of notation, we describe the vWB method for optimizing the apodization function
κ, since its extension to η is trivial. Recall the optimal control problem we want to solve
is, in unconstrained form, given by Equation (20). The method of gradient descent, in this
context, is given by following iteration

κk+1 = κk − αk∇κL
∣∣
κ=κk

, (28)

where the linear operator ∇κ is the gradient, or Fréchet derivative, of the Lagrangian L
with respect to the control u. The stepsize αk is chosen adaptively via the Armijo-Goldstein
condition [5].

Recall that the definition of a Fréchet derivative depends on the choice of function space
in which it is to be understood. If the Fréchet derivative is understood in the sense of
L2([x0, a]), then it can be identified with the functional derivative of the objective J , which
in this case can be shown to be

δκJ =

∫ T

0

Re
{
λ†v + µ†u

}
dt− γ∂2

xκ. (29)

Note that this coincides with the Euler-Lagrange equation δκJ = 0 given by Equation (25).
If this choice is made, however, the increment αk∇κL

∣∣
κ=κk

would not in general satisfy
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the boundary conditions on the control κk, and the updated control κk+1 would leave the
admissible set C. This problem is avoided by using a different function space X to define
the operator ∇κ.

To this end, consider an arbitrary displacement ν ∈ C∞c ([x0, a]) and an arbitrary ε > 0.
We know Taylor’s theorem holds, i.e., the series

J [κ+ εν] = J [κ] + ε 〈∇uL(u), ν〉X +O(ε2) (30)

holds term-by-term independently of the choice of the Hilbert space X for sufficiently regular
functionals J . The vWB method chooses the homogeneous and traceless Sobolev space
Ḣ1

0 ([x0, a]) for X. By equating the directional, or Gateaux, derivatives with respect to
L2([x0, a]) and with respect to Ḣ1

0 ([x0, a]), we see that

〈∇κL, ν〉L2([x0,a]) = 〈δκJ , ν〉L2([x0,a])

= 〈∇κL, ν〉Ḣ1
0 ([x0,a]) :=

∫ a

x0

∂x∇uL∂xνdx = −
〈
∂2
x∇κL, ν

〉
L2([x0,a])

,
(31)

where an integration by parts is used once along with the boundary conditions on ν.
Since this holds for all displacements ν ∈ C∞c ([x0, a]), we conclude, by the fundamental

lemma of the calculus of variations [10], the strong form of Equation (31)

− ∂2
x∇κL = δκJ , ∇κL(x0) = ∇κL(a) = 0, (32)

also holds. This renders an admissible gradient whose homogeneous Dirichlet conditions are
induced by choosing increments specifically from the traceless space Ḣ1

0 ([x0, a]). In order
to solve the boundary value problem (32) for the control gradient ∇κL, we use Chebyshev
collocation [25].
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