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We address the problem of reshaping light in the Schrödinger optics regime from the perspective of the optimal con-
trol theory. In technological applications, Schrödinger optics is often used to model a slowly varying amplitude of a
para-axially propagating electric field where the square of the waveguide’s index of refraction is treated as the poten-
tial. The objective of the optimal control problem is to find the controlling potential which, together with the con-
straining Schrödinger dynamics, optimally reshapes the intensity distribution of Schrödinger eigenfunctions from
one end of the waveguide to the other. This work considers reshaping problems found in work by Kunkel and Leger,
and addresses computational needs by adopting tools from the quantum control literature. The success of the opti-
mal control approach is demonstrated numerically. ©2022Optica PublishingGroup

https://doi.org/10.1364/JOSAA.450257

1. INTRODUCTION

Humans have been reshaping light for thousands of years, and
it remains an active research area to this day, from the ancient
Assyrians’ introduction of primitive lenses circa 750 BCE [1] to
designs based on the sophisticated techniques of optimal trans-
port [2]. Requiring a laser beam to have a specified irradiance
distribution has diverse and broad applications that include
laser/material processing, laser/material interaction studies,
fiber injection systems, optical data image processing, and
lithography [3]. Geometric optics is the simplest physical setting
in which to study beam reshaping, and one that is often chosen.
However, in the presence of diffractive effects, the wave nature
of light must be accounted for, as is often the case in nanoscale
optical technologies.

In designing gradient index (GRIN) waveguides and free-
form optical systems, mathematical representations that afford
computational tractability are critical. These representations
must be employed due to the large number of design parameters
that arise from a discretization of the continuous optical system.
One design approach, called wavefront matching (WFM) [4,5]
avoids this large number of parameters by using a multilens
approach. Another approach, such as in [6,7] uses polynomial
representations of the GRIN waveguide. Yet another approach,
first used in this context by Kunkel and Leger [8,9], is called
the phase retrieval method [10]. The common thread in these
approaches is that some computational reduction is made; yet,
they are all viable means to numerically construct GRIN optical
waveguides that reshape laser beams in the presence of diffrac-
tion into light with a desired intensity distribution. An example
of the type of reshaping problem that arises in applications is
shown in Fig. 1.

A disadvantage of these previous methodologies is that gener-
alizing them to either higher spatial dimensions or generalizing
the dynamical constraints, such as including nonlinear effects,
may be difficult. Indeed, despite achieving great success, Kunkel
and Leger show several necessary adjustments must be made to
adapt their previous methodology in two spatial dimensions [8]
to the case of three [9]. On the other hand, optimal control the-
ory, an extension of the calculus of variations [11,12], provides a
more general alternative method.

The chief advantage of using optimal control theory is in
its abstract framework, which easily handles entire classes of
optimization problems at once, independent of its dimension
or class of constraints. We use this control framework to solve
optimization problems constrained by a one spatial dimensional
linear equation to more easily showcase the method. We leave
the straightforward extensions of the program developed here
in handling either nonlinear constraints or a higher spatial
dimensional setting as a subject for future study.

In this work, we pose an optimal control problem with an
objective functional, first used in the context of high-fidelity
quantum fluid manipulations by Hohenester et al . [13], con-
strained by the following standard model for paraxial light
beam propagation. Consider an electromagnetic field propagat-
ing transversely through a linear waveguide, i.e., a waveguide
through which the electrical field responds linearly to the polari-
zation of the propagation media. Asssume the propagating
field is time-harmonic, has negligible magnetic field compo-
nents, and satisfies the hypothesis of the paraxial approximation;
namely, that the direction of propagation does not deviate signfi-
ciantly from the axial direction defined by the waveguide. Then,
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Fig. 1. Example of light reshaping in which three pulses of light are combined into one using the optimal control theory. More detail about the
construction of the GRIN component, which combines these pulses, is provided throughout the paper.

one can show that Schrödinger’s equation, in dimensionless
form,

iψz =−
1

2
1ψ + V (x , z)ψ, (1)

arises as a slowly varying amplitude approximation to the
variable-coefficient Helmholtz equation [14].

Here, z is the axis of propagation, x is the transverse direc-
tion, 1 is the Laplacian in the transverse direction, V (x , z)
is proportional to the square of a spatially varying refractive
index, and the wavefunctionψ(x , z) is interpreted as a spatially
varying complex electric amplitude. We assume the propaga-
tion media is lossless; hence, the potential V is a real function
of the waveguide coordinates. The paraxial approximation is
often studied because the numerical solution of Schrödinger’s
equation is significantly cheaper computationally, and easier
to understand analytically, than the full numerical solution of
either Helmholtz’s or Maxwell’s equations.

In posing the design problem, we must also make reductions,
such as the works previously cited. We use the simplifying
assumption that the potential can be written in the form
V (x , z)= V (x , u(z), v(z)), where V (x , u, v) is a two-
parameter family of potentials. Thus, the design of a reshaping
potential V (x , z) is reduced to a search for 1D optimal con-
trols. For ease of notation, we describe the method for the
one-parameter family V (x , u(z)) and describe the necessary
adjustments in numerical applications.

The light reshaping problem in this paper therefore is: Find
the optimal control u(z) that best transforms the intensity dis-
tribution of an initial Schrödinger state ϕ0(x ) into the intensity
distribution of the desired stateϕd (x ) satisfying

−
1

2
1ϕ0(x )+ V (x , u(0))ϕ0(x )= λ0ϕ0(x ), (2a)

−
1

2
1ϕd (x )+ V (x , u(l))ϕd (x )= λlϕd (x ), (2b)

i.e., the initial and desired states are eigenfunctions, of the time-
independent Schrödinger operator P =− 1

21+ V (x , u(z)), at
z= 0 and at the end of a specified propagation length l , respec-
tively. Thus, we formulate the problem of designing an optimal
coupler between two waveguides with different transverse
profiles and their eigenpairs (ϕ0, λ0) and (ϕd , λl ).

A. Structure of the Paper

In Section 2, we precisely state the eigenfunction reshaping
problem considered throughout this work. The problem is
similar to quantum optimal control problems previously
considered in the literature, e.g., [13,15,16]. We discuss, in
detail, our assumptions about the control problem, and pro-
vide the optimality conditions given by the Euler–Lagrange
equations [11].

In Section 3, we provide an overview of the numerical meth-
ods used to solve the control problem posed in Section 2. The
procedure is a combination of a global, nonconvex method
followed by a local, iterative method. In the context of numeri-
cal optimal control, this approach is called a hybrid method
[17]. Hybrid optimization methods, when used appropriately,
can overcome nonconvexity, yet still remain computationally
efficient.

Doria et al. [18] and Caneva et al. [19] were the first to use the
type of nonconvex method we use in this work. This method
reduces the dimensionality of the control problem so that stand-
ard global search routines based on stochastic optimization can
be used. Since stochastic methods come at the cost of slow con-
vergence near local minima [20], local methods are then used to
accelerate convergence toward the nearest minimum. The local
method we use, by von Winckel and Borzi [21], is a gradient
descent called GRAPE, which ensures that controls remain in
the admissible search spaces used throughout this work.

In Section 4, we address many of the practical and computa-
tional aspects arising from the specific beam reshaping problems
of interest. We use reductions that greatly simplify the compu-
tational complexity of the problem, and greatly aid in efficiently
searching the space of reshaping potentials. The success of these
reductions, together with the methods detailed in Section 3, is
demonstrated numerically on the three reshaping problems, one
of which is shown in Fig. 1.

B. Notation and Conventions

We make use of various function spaces when stating the opti-
mal control problem. For example, general Banach spaces are
denoted by B. The Lebesgue space denoted by L p(�), where
� is a measurable set, is the equivalence class of measurable
functions that agree almost everywhere, such that the norm
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‖ f ‖Lp (�) :=

(∫
�

| f |p dµ

) 1
p

(3)

is finite. Similarly, the Sobolev space Hk(�) is the space of k
times weakly differentiable functions f , with respect to x ∈�,
whose norm

‖ f ‖Hk (�) :=

 k∑
j=0

∥∥∂ j
x f
∥∥2

L2(�)

 1
2

(4)

is finite. The space of essentially bounded functions L∞(�) is
the space where

‖ f ‖L∞(�) := ess sup
x∈�
| f (x )|<∞. (5)

Homogeneous Sobolev spaces, denoted by Ḣk(�), are the
spaces of functions such that ‖∂k

x f ‖L2(�) is finite. A traceless
Sobolev space, denoted Hk

0 (�), is the space of functions in
Hk(�) that vanish on the boundary ∂�. The space of k times
continuously differentiable functions is denoted C k(�), and
the space of essentially bounded C k(�) functions is denoted by

C k
b (�) :=C k(�)∩ L∞(�). (6)

The notation B1(�1;B2(�2)) is understood as the space
of functions f such that ‖ f (�1, ·)‖B2(�2) ∈B1(�1). Spaces
where each element is compactly supported on� are denoted by
Bc (�). Lastly, the notation † denotes Hermitian conjugation.

2. OPTIMAL CONTROL FRAMEWORK

The salient elements of the problem structure we consider are
from the work of Hohenester et al . [13], which uses the objective
functional

J =
1

2

(
‖ ϕd (·) ‖

4
L2(Rn)

−
∣∣〈ϕd (·), ψ(·, l)〉L2(Rn)

∣∣2)
+
γ

2

∫ l

0
|∂zu|2dz, (7)

whereγ > 0 and z ∈ (0, l) is the axial coordinate, with l > 0.
The objective functional J involves the infidelity

J infidelity =
1

2

(
‖ ϕd (·) ‖

4
L2(Rn)

−
∣∣〈ϕd (·), ψ(·, l)〉L2(Rn)

∣∣2),
(8)

which penalizes misalignments of the computed function
ψ(x , l) with respect to the desired state ϕd (x ). In the language
of optimal control theory [12,22], the infidelity is called a
terminal cost. This objective functional disregards the physi-
cally unimportant global phase difference between the desired
and computed states, a significant advantage over the typical
least-squares approach.

The second contribution to the objective, the running
cost over [0, l ], is a regularization of the control function
u(z). This penalizes the use of control functions with large
Ḣ([0, l ]) norms, and is well-known in the literature as a type
of Tikhonov regularization [23]. The introduction of this regu-
larization conditions the optimal control problem. Indeed,

Hintermuller et al . prove the control framework of Hohenester
et al . is well-posed with the introduction of a Tikhonov regulari-
zation; i.e., there exists a control u ∈ H1([0, l ]) that minimizes
the objective J [24].

The optimal control problem we consider in this paper is

inf
u∈U

J , (9)

which is subject to Schrödinger’s Eq. (1) with the initial
and desired states ϕ0 and ϕd satisfying Eq. (2). The search
for optimal controls is performed over the admissible class
U = {u ∈ H1([0, l ]):u(0)= u0, u(l)= ul }. We assume the
eigenfunctionsϕd andϕ0 are both in the space H1(Rn). We also
assume that the eigenfunctions ϕ0 and ϕd have unit intensity,
i.e., ‖ ϕ0‖L2(Rn) =‖ ϕd‖L2(Rn) = 1, so that the infimum of
the infidelity in Eq. (8) is 0. Lastly, we assume the potential
V (x , u(z)) is in the space C 0

b ([0, l ]; H1(Rn)) for every u ∈ U .
Note that with the above assumptions in place, the regu-

larity of the wavefunction ψ solving Eq. (1) is known [25]:
ψ ∈C 1([0, l ]; H1(Rn)). Moreover, the control problem with
objective functional in Eq. (7) is well-posed for sufficiently large
γ > 0 [24].

By using the method of Lagrange multipliers, we write the
optimal control problem in Eq. (9) in unconstrained form as

min
u∈U

J =min
u∈U

∫ l

0
L(ψ, ∂zψ, ∂

2
xψ, ψ

†, p†, u, ∂zu)dz, (10)

where the Lagrange density is given by

L= Re

{〈
p, i∂zψ +

1

2
1ψ − V (x , z)ψ

〉
− 〈ϕd , ψ〉〈∂zψ, ϕd 〉

}
+
γ

2
|∂zu|2,

(11)

with inner products understood in the sense of L2(Rn), and
where p is a Lagrange multiplier. It is straightforward to show,
using standard arguments from the calculus of variations
[11,26], that the optimality conditions of Eq. (10) are given by

2i∂zψ =−
1

2
1ψ + V (x , z)ψ, ψ(x , 0)= ϕ0(x ), (12a)

i∂z p =−
1

2
1p + V (x , z)p, i p(x , l)= 〈ϕd , ψ(x , l)〉L2(Rn )ϕd ,

(12b)

γ ∂2
z u =−Re〈p, ∂u Vψ〉L2(Rn), u(0)= u0, u(l)= ul .

(12c)
Equation (12b) is the adjoint equation of Eq. (12a) and governs
the axial evolution of the Lagrange, or costate, multiplier p
backward from its terminal condition at z= l . The similarity
of Eqs. (12a) and (12b) is due to the self-adjoint nature of the
Schrödinger operator P =− 1

21+ V (x , z). Equation (12c)
governs the optimal control u and, together with the boundary
conditions defined through the admissible classU , is a boundary
value problem on [0, l ].

Equations (12a) and (12b) are both solved via a second-order
Fourier split-step method, where the z-dependence of the
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potential is handled by the midpoint method. We also note that
Eq. (12c) will not be solved numerically, but will instead be rein-
terpreted in the context of the optimization method discussed in
Section 3.B.

Consider the so-called reduced objective functional

J : U→R, u 7→J [u] := J [ψ(u), u] . (13)

Let u∗ denote an optimal control, and define ψ∗ :=ψ(u∗),
p∗ := p(u). Since the optimal control problem in Eq. (9) is
well-posed, then for every u ∈ U ,

J [u] ≥J [u∗] =min
u∈U

J ; (14)

i.e., the minimum is attained by the optimal control u∗. In addi-
tion, at the minimum, the optimal triple (ψ∗, p∗, u∗) satisfies
Eq. (12). For this reason, pursuing numerical approximations
of Eq. (12) and the optimality condition in Eq. (14) when
searching for the optimal control u∗ is meaningful.

3. NUMERICAL OPTIMIZATION METHODS

To solve Eq. (9), we use a hybrid optimization method; a com-
bination of a global, nonconvex method followed by a local,
iterative method. The methodology we use in this paper is sim-
ilar to one used by Sørensen et al . [17], and allows for the use
of a global search routine based on stochastic optimization to
overcome nonconvexity. Nonconvex objective functions may, of
course, possess many local minima, and a global method seeks to
efficiently search for a near-optimal one. By then feeding results
from the global method into the local one, convergence near the
local minimum is accelerated. We previously used this meth-
odology in [27], and more specific details about the numerical
optimization is provided there.

A. Global Method: Chopped Random
Basis/Differential Evolution

The first step in the hybrid method is to use a Galerkin method,
which reduces the complexity of the optimal control problem so
that standard nonconvex nonlinear programming (NLP) tech-
niques can be applied. This step relies on choosing controls from
the span of an appropriately chosen finite set of basis functions
so that the optimization is performed over a relatively small set of
unknown coefficients. The choice of basis is such that controls
remain in the appropriate admissible space U in the context of
the control problem in Eq. (9).

We choose to use the representation

ur (z)=P(z; u0, ul , l)+
N−1∑
j=0

ε jϕ j (z; l), z ∈ [0, l ], (15)

where P is a fixed function satisfying the boundary conditions
of Eq. (12c), ϕ j (z) is a basis function with vanishing boundary
conditions, and the coefficients ε j are parameters to be opti-
mized over. It is clear that if the polynomial P and the basis
functions ϕ j are chosen well enough, then the control ansatz
in Eq. (15) reliably simplifies the optimal control problem.
An effective Galerkin approximation must be constructed the
set of basis functions N simultaneously large enough to define

an accurate approximation, yet small enough so that the over-
all procedure remains computationally inexpensive. In this
work, we use 15 basis functions. This reduces the optimization
problem to a small-scale NLP problem that can be solved using
standard techniques.

To solve the resulting NLP problem, we use differential evo-
lution (DE) [28]. DE is a stochastic optimization method used
to search for candidate solutions to nonconvex optimization
problems. The idea behind DE is a so-called genetic algorithm
that draws inspiration from evolutionary genetics. DE searches
the space of candidate solutions by initializing a population set
of vectors, known as agents, within some chosen region of the
search space. These vectors are then randomly mutated into a
new population set, or generation.

The mutation operates via two mechanisms: a weighted com-
bination and a “crossover” that randomly exchanges “traits,” or
elements, between agents. The method requires three parame-
ters; the weight F , the crossover parameter RC , and the size of
the population Npop. Throughout this work, we find that the
parameters F = 0.8, RC = 0.9, Npop = 40 work well.

DE ensures that the objective functional J decreases mono-
tonically with each generation. As each iteration “evolves” into
the next, inferior vectors “inherit” optimal traits from superior
vectors via mutations. DE only allows mutations that are more
optimal with respect to J to pass to the next generation. After
a sufficient number of iterations, the best vector in the final
generation is chosen as the candidate solution most likely to be
globally optimal with respect to an objective functional.

Genetic algorithms, which require very few assumptions
about the objective functional, are part of a wider class of
optimization methods called metaheuristics. Although meta-
heuristics are useful for nonconvex optimization problems, they
do not guarantee the global optimality of candidate solutions.
Since the algorithm is stopped after a finite number of itera-
tions, different random realizations return different candidate
optimizers. For this reason, we use DE to search for candidate
solutions and use these candidates to generate initial controls,
through the representation in Eq. (15), for a method that
guarantees local optimality up to some threshold.

B. Local Method: Projected Gradient Descent

We use a line search strategy from von Winckel and Borzi called
GRAPE [29]. The GRAPE method is an appropriate generaliza-
tion of the well-known gradient descent method from Rn to an
appropriate affine function space that automatically preserves
the boundary conditions of the admissible classU mentioned in
the context of an optimal control problem (9). This method has
been frequently applied in the quantum control literature; see,
for example, [13,15,17].

To describe the GRAPE method, recall the reduced, uncon-
strained form of the optimal control problem given by Eqs. (10)
and (13). The method of gradient descent, in this context, is
given by following iteration

uk+1 = uk − αk∇uL|u=uk , (16)

where the linear operator ∇u is the gradient, or Fréchet
derivative, of the Lagrangian L with respect to the control u.



Research Article Vol. 39, No. 5 / May 2022 / Journal of the Optical Society of America A 911

The stepsize αk is chosen adaptively via the Armijo–Goldstein
condition [20].

Recall that the definition of a Fréchet derivative depends on
the choice of function space in which it is to be understood.
If the Fréchet derivative is understood in the sense of L2([0, l ]),
then it can be identified with the functional derivative of the
objectiveJ , which in this case can be shown to be

δuJ =−γ ∂2
z u − Re〈p, ∂u Vψ〉L2(Rn). (17)

This coincides with the Euler–Lagrange equation δuJ = 0
given by Eq. (12c). If this choice is made, however, the incre-
ment αk∇uL|u=uk would not in general satisfy the boundary
conditions on the control uk , and the updated control uk+1

would leave the admissible set U . This problem is avoided by
using a different function space X defining the operator∇u .

To this end, consider an arbitrary displacement
v ∈C∞c ([0, l ]) and an arbitrary ε > 0. We know Taylor’s
theorem holds; i.e., the series

J [u + εv] =J [u] + ε〈∇uL(u), v〉X +O(ε2) (18)

holds term-by-term independently of the choice of the Hilbert
space X for sufficiently regular functionals J . The GRAPE
method chooses the function space Ḣ1

0 ([0, l ]) for X . By equat-
ing the directional, or Gateaux, derivatives with respect to
L2([0, l ]) and with respect to Ḣ1

0 ([0, l ]), we see that

〈∇uL, v〉L2([0,l ]) = 〈δuJ , v〉L2([0,l ]) = 〈∇uL, v〉Ḣ1
0 ([0,l ])

:=

∫ l

0
∂z∇uL∂zvdz=−

〈
∂2

z∇uL, v
〉
L2([0,l ]), (19)

where an integration by parts is used once along with the bound-
ary conditions on v.

Since this holds for all displacements v ∈C∞c ([0, l ]), we con-
clude, by the fundamental lemma of the calculus of variations
[11], the strong form of Eq. (19),

−∂2
z∇uL= δuJ , ∇uL(0)=∇uL(l)= 0, (20)

also holds. This renders an admissible gradient whose homo-
geneous Dirichlet conditions are induced by choosing
increments specifically from the traceless space Ḣ1

0 ([0, l ]).
To solve the boundary value problem in Eq. (20) for the control
gradient∇uL, we use Chebyshev collocation [30].

4. BEAM RESHAPING PROBLEMS

A. Beam Reshaping with the Pöschl–Teller Potential

To demonstrate the beam reshaping problem in Eq. (9) and its
numerical solution in a simple setting, we consider the initial
and terminal eigenfunctions for which V (x , 0) and V (x , l) can
be computed in closed form. It is well-known that the so-called
Pöschl–Teller potential,

V (x )=−
s (s + 1)

2
sech2(x ),

s ∈N, gives Legendre functions as eigenfunctions for the time-
independent Schrödinger equation [31]. As a test, we consider
the problem of reshaping the ground state eigenfunction for

s = 1 to the ground state corresponding to s = 4. We find that
parametrizing the potential V (x ) with a “depth” control u(z)
and a “width” control v(z) to be sufficient in our search for an
optimal, axially varying Pöschl–Teller potential. More precisely,
we assume the following form of the potential

V (x , u(z), v(z))=−
u(z)

2
sech2(v(z)x ), (21)

where the initial and terminal eigenfunctions are given by

ϕ0(x )=−
1
√

2
sech(x ), ϕd (x )=−

3

2
√

3
sech2(x ), (22)

and the appropriate control boundary conditions are

u(0)= 2, u(l)= 20, (23a)

v(0)= 1, v(l)= 1. (23b)

This assumption on V (x , z) slightly changes the optimality
condition in Eq. (12c) such that

2γ ∂2
z u =−Re〈p, V0ψ〉L2(Rn), u(0)= u0, u(l)= ul ,

(24a)

γ ∂2
z v =−Re〈p, Vlψ〉L2(Rn), v(0)= v0, v(l)= vl (24b)

are now the appropriate Euler–Lagrange equations for the con-
trols u and v, while the state and costate Eqs. (12a) and (12b)
remain unchanged.

For this test problem, we choose the following domain and
discretization parameters: l = 3, l × 27 discretization points
in z, and x ∈ [−4π, 4π ] with 211 discretization points. To
test the GRAPE method, the indirect optimization strategy
of Subsection 3.B, we use linear controls u, v satisfying the
boundary conditions in Eqs. (23a) and (23b) as an initial
guess, as well as a small Tikhonov regularization parameter of
γ = 10−6. We show, in Fig. 2, that the beam reshaping has only
marginally improved. Although we see that the gradient descent
has converged, we conclude that the use of a global optimization
method is generally necessary.

We now turn to the CRAB/DE method of Subsection 3.A.
We use 70 iterations of DE and a sine series together with the
admissible linear polynomial required by Eq. (15), i.e.,

wr (z)=
15∑
j=1

rw
j 2

sin

(
jπz
l

)
+ (wl −w0)

z
l
+w0, (25)

wherew stands for either u or v. The amplitudes rw are random
variables drawn uniformly from [−1, 1]. We choose the coeffi-
cients A j =

rw
j 2 to decay quadratically because the Fourier series

of an absolutely continuous functions exhibits the same type of
decay [30]. In this way, along with the relative smallness of the
Tikhonov parameter, the search space for the optimal controls
u and v is not severely restricted, yet candidate controls remain
technologically feasible throughout each generation of DE.

We see that the CRAB method essentially solves the Pöschl–
Teller beam reshaping problem on its own without assistance of
a further gradient descent. Although not shown, an application
of a gradient descent method does not improve the result to
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(a) (b)

(c) (d)

Fig. 2. Result of using the optimization methods in Sections 3.A and 3.B to reshape Pöschl–Teller eigenfunctions defined by Eq. (22). (a) Intensity
profiles for the initial and desired eigenfunctions, a profile corresponding to linear controls, and profiles corresponding to the controls shown in (b),
which are computed about linear controls via GRAPE and CRAB. (c) Local convergence of the descent method and the infidelity of optimal members
from each iteration of differential evolution. (d) Potential V (x , u(z), v(z)), cf. Eq. (21), resulting from the CRAB method.

machine precision. For this reason, we conclude the CRAB
result, also shown in Fig. 2, is a local minimum and extremely
competitive among the many global minimizers that may
exist for this optimal control problem. Although the CRAB
method is extremely successful on its own for this problem, later
reshaping problems will benefit from a refinement through the
GRAPE method.

We note that the CRAB method comes at the cost of being
much more computationally expensive than GRAPE. For
this problem, DE requires 40× 70= 2800 solves of the
Schrödinger Eq. (12a) while GRAPE requires, on average, two
orders of magnitudes fewer solves of Eqs. (12a) and (12b). Still,
on a standard 2.6 GHz 6-Core MacBook Pro, the CRAB/DE
methodology for the reshaping problems in this paper only takes
a few minutes.

We have one final comment about the stability of the optimal
potential found via the CRAB method: The optimal potential
is fairly sensitive to small changes in its defining amplitudes.
Indeed, by randomly changing each coefficient within 1% of
their relative values, this leads to a 5% average increase in the
infidelity over 1000 simulations, while a 5% change in the
amplitudes leads to an average increase of 20% in the infidelity.
Since the two other reshaping problems considered later on
in this paper are defined on larger domains, we suspect that
the resulting optimal potentials will be even more sensitive to
random perturbations. We do not confirm this, and instead

conclude from this simple stability study that if the physical
construction of the GRIN optical elements shown through out
this paper are carried out they should be done so with extreme
precision.

B. Top Hat Problem

We now show how to solve two beam reshaping problems
similiar to those considered by Kunkel and Leger [8], with a
transverse dimension n = 1, but by using the optimal control
problem in Eq. (9). In the first problem, we transform the
Pöschl–Teller eigenfunction, when s = 1, into the “top hat”
mode

ϕtophat = Ae−a xm
, (26)

where A is a normalization coefficient. For sake of computa-
tional demonstration, we choose a = 10−3 and m = 8. The
terminal potential Vl (x ), which has ϕtophat as its ground state
mode, is computed via the least squares problem

min
Vl (x )∈H1

b (R)
J = min

Vl (x )∈H1
b (R)

1

2

∥∥ϕtophat(x )− ϕd (x ; Vl (x ))
∥∥2

L2(R)

(27)
subject to

−
1

2
∂2

xϕd (x )+ Vl (x )ϕ(x )= λlϕd (x ). (28)
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Fig. 3. Top hat potential Vl (x ) that solves the inverse scattering
problem in Eq. (27) with a top hat eigenfunction (26). The computed
eigenfunctionϕd (x ) is in solid red.

We show the resulting top hat potential Vl (x ) and eigen-
function ϕd (x ) from this procedure in Fig. 3. The computed
eigenfunction ϕd (x ) is then used as a proxy for the true desired
eigenfunction ϕtophat for the objective in Eq. (7) of the optimal
control problem.

With Vl (x ) computed, we address the corresponding beam-
reshaping problem. We reduce the search space of possible
potentials by assuming they take the following form:

V (x , u(z), v(z))= u(z)V0(x )+ v(z)Vl (x ), (29)

where u(l)= v(0)= 0 and u(0)= v(l)= 1. We show the
results of the optimal control problem using the hybrid method
shown in Section 3 in Fig. 4. We fix x ∈ [−5π, 5π ], z ∈ [0, 7],
and use all other conventions consistent throughout previous
sections.

C. Beam Addition Problem

Kunkel and Leger [8] also consider the problem of merging sev-
eral pulses into one; cf. Fig. 1. To this end, we use an initial con-
figuration of three seperated Pöschl–Teller potentials, each with
s = 1, i.e.,

V0(x )=−
(
sech2(x − a)+ sech2(x + a)+ sech2(x )

)
,

(30)

ϕ0(x )=−
1
√

6
(sech(x − a)+ sech(x + a)+ sech(x )),

(31)

(a) (b)

(c) (d)

Fig. 4. Numerical solution of the top hat problem. (a) Intensity profiles for the initial, desired, and final computed wavefunctions. (b) Axial evo-
lution of the wavefunction intensity. (c) Computed controls u(z) and v(z) resulting from the hybrid method. (d) Optimal potential resulting from
(c) and the assumed form in Eq. (29).
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Fig. 5. (a) Schrödinger intensity distribution |ψ |2 on a logarithmic scale. (b) Two stages of the computed optimal potential V (x , z), shown sepa-
rately because their ranges differ widely.

where the spacing parameter a > 0. Although ϕ0(x ) is not
exactly an eigenfunction of V0(x ), it approximates an eigen-
function with improving accuracy as a is increased; we use
a = 10.

We emulate Kunkel and Leger’s strategy of partitioning
the optimal control problem into two stages. In the context of
this problem, we first perform an optimization on the interval
[0,30], where we use V0(x ) as an initial potential and use the
top hat potential of Fig. 3 as the terminal potential. We then
perform an optimization on the interval [30,70], where the
terminal data, i.e., the terminal potential and resulting termi-
nal wavefunction, is used as initial data and the now terminal
potential is given by a single Pöschl–Teller potential with s = 3.
Both stages of the optimization are performed using the hybrid
method on potentials of the form in Eq. (29) with appropriate
boundary conditions, to ensure the continuity of potentials
across z= 30, and with the parameters γ and rw the same as
they were in Section 4.B.

We further refine our results by relaxing the restriction of the
search space from the assumed form in Eq. (29) via a gradient
descent on a wider space; that is, we perform a full 2D gradient
descent on the potential V (x , z) resulting from the two-stage
optimization. To compute the gradient in this case requires a
solution of the Dirichlet problem

∇
2
x ,z∇VJ =−δVJ , (32a)

∇VJ |∂� = 0, (32b)

where the inhomogeneity is given by

−δVJ = γ∇2
x ,zV + Re〈p, ψ〉L2(R), (33)

and where ∇2
x ,z is the Laplacian operator over x and z,

and ∂� is the boundary of the computational domain
[−15π, 15π ] × [0, 70]. This is the GRAPE method discussed
in Subsection 3.B, in the space Ḣ1

0 (�).
Note that the source term in Eq. (33) in the Poisson Eq. (32a)

arises from Eq. (12c) and involves the computation of the
Laplacian∇2

x ,z, which itself arises from the proper modification
of the Tikhonov regularization in the objective in Eq. (7); i.e.,

Fig. 6. Initial, desired, and final computed intensity profiles corre-
sponding to Fig. 5.

the cost now also runs over the spatial dimension and penalizes
large spatial derivatives of the reshaping potential V . We find
this penalization is, on average, two orders of magnitude larger
than penalizations that only run over the axial direction z, so we
decrease the Tikhonov parameter toγ = 10−8.

We show, in Figs. 5 and 6, the final result of the GRAPE
method in Ḣ1

0 (�), after inputting the optimal controls com-
puted through the two-stage hybrid optimization strategy.
Although the GRAPE refinement is only about 5% more opti-
mal, with respect to the infidelity in Eq. (9) over the controls
computed by CRAB, numerical convergence to the nearest local
minimum on this wider space of potentials is guaranteed.

5. CONCLUSION AND FUTURE WORK

We have successfully applied the optimal control theory to
the design of GRIN fibers that reshape a beam of light into a
desired shape. To thoroughly, yet efficiently, search the space
of possible designs, we use a combination of a Galerkin reduc-
tion of the control, a projected gradient descent method,
product separability of the reshaping potentials of the form
V (x , u(z), v(z)), a partitioning of the control into stages, and
finally gradient descents on a wider space to reshaping potentials
of the full form V (x , z).
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This methodology provides a systematic approach to the
design process, but, of course, leaves further room for explo-
ration. Moreover, the examples in this paper are proofs of
concept in that we have only applied the methods to waveguides
with a single transverse dimension, whereas the phase retrieval
method has now been applied to waveguides with two transverse
directions [9]. Future work may include extending the methods
of this paper to higher dimensions. Fortunately, this extension is
straightforward by virtue of the optimal control framework.
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