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Abstract. We consider the bifurcations of standing wave solutions to the

nonlinear Schrödinger equation (NLS) posed on a quantum graph consisting of
two loops connected by a single edge, the so-called dumbbell, recently studied

in [27]. The authors of that study found the ground state undergoes two bifur-

cations, first a symmetry-breaking, and the second which they call a symmetry-
preserving bifurcation. We clarify the type of the symmetry-preserving bifur-

cation, showing it to be transcritical. We then reduce the question, and show

that the phenomena described in that paper can be reproduced in a simple
discrete self-trapping equation on a combinatorial graph of bowtie shape. This

allows for complete analysis by parameterizing the full solution space. We then
expand the question, and describe the bifurcations of all the standing waves

of this system, which can be classified into three families, and of which there

exists a countably infinite set.

1. Introduction. Linear and nonlinear waves on quantum graphs have recently
gained a lot of attention in mathematical literature as a nontrivial generalization
of well-known systems and because they possess novel mathematical properties not
possible in simpler topology [7, 8]. In physics they may arise in optical systems,
Bose-Einstein condensates, and in the study of large molecules such as carbon nan-
otubes [10, 13, 26, 31]. In the nonlinear regime they lead to bifurcations and, in the
case that one or more edges extends to the point at infinity, to interesting questions
about the existence of minimizers [2, 3, 4, 5, 6, 11, 12, 32, 35].

While there is an infinite variety of graphs, a lot of recent work has gone into
a few simple ones. The tadpole graph consists of a half-line joined to a loop at a
single vertex [33]. The lollipop graph is similar, with the half-line replaced by a
finite line segment [8]. Star graphs consist of a finite number of half lines or line
segments that meet at a single vertex [1].

In a recent paper, Marzuola and Pelinovsky study the bifurcations of stationary
solutions to the cubic nonlinear Schrödinger equation posed on a dumbbell-shaped
quantum graph [27], in which two loops are connected via a line segment. At small
L2 norm, the ground state, i.e. the lowest energy solution with that norm, is constant
in the spatial coordinate. They show that this state undergoes two bifurcations as
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the solution amplitude is increased. The first is a symmetry-breaking or pitchfork
bifurcation and the second they call a “symmetry preserving” bifurcation, producing
a solution localized on the central edge of the graph. At the symmetry-breaking
bifurcation, the asymmetric solution becomes the ground state.

We show that all of these phenomena are present in a simpler system, a discrete
NLS equation on a graph with five vertices. We show that in this simpler system
the “symmetry preserving” bifurcation is actually a transcritical bifurcation, and,
thus, contains a branch of solutions not present in the bifurcation diagram shown
in [27]. This is interesting, because Yang, in Ref. [39], only reported transcritical
bifurcations by constructing an asymmetric potential, whereas the dumbbell graph
is symmetric; see Remark 3.1 for more details. We then show, via a perturbation
calculation, and via numerical computation that the same is true for the problem
on the quantum graph, which demonstrates the existence of the branch not found
in [27]. Further, we perform an extensive numerical study, enumerating all the
branches of solutions that exist in a certain part of parameter/solution space.

1.1. Organization. The paper is organized as follows. The rest of this section
contains a brief introduction to NLS on combinatorial and quantum graphs and a
summary of recent and related results, as well as a brief review of bifurcation theory.
The section closes with a summary of the Marzuola and Pelinovsky’s bifurcation
diagram, explaining why it must be missing something. Section 2 introduces and
completely analyzes a simple combinatorial graph model that reproduces the two
bifurcations seen in [27] for the dumbbell quantum graph. Section 3 returns to the
dumbbell quantum graph. It begins by summarizing some additional background
information, including Yang’s framework for classifying bifurcations in NLS-like
systems. It then describes arguments using perturbation theory and numerical con-
tinuation that show that the symmetry preserving bifurcation is indeed transcritical
and to recover the half-branch of solutions not discussed in [27]. Section 4 describes
a singular limit of the dumbbell graph in which the length of edges e1 and e3 ap-
proaches zero. This demonstrates an interesting feature of the loop-shaped edges.
Section 5 contains a full classification and computational enumeration of all types
of standing waves possible on the dumbbell graph. This is based on the observation
that there are two types of behavior possible at the two vertices, and therefore three
types of standing waves, as the two vertices can both have the first behavior, both
have the second, or be different. After making this classification, we use a combi-
nation of exact solution formulae and numerical continuation to draw bifurcation
diagrams for the three types of solutions. In fact, each of the three families contains
a countably infinite set of branches. Section 6 wraps up and discusses some possible
future directions.

1.2. NLS on combinatorial and metric graphs. The focusing cubic nonlinear
Schrödinger equation (NLS)

i∂tΨ = ∆Ψ + 2 |Ψ|2 Ψ, (1.1)

subject to appropriate boundary conditions or conditions at infinity, is perhaps the
most-studied system in nonlinear waves, arising as an envelope equation in systems
where dispersion is roughly balanced by nonlinearity. It is the simplest PDE with
both these features, and thus is widely used as a model problem. Many variants of
this equation have been studied in order to explore a wide range of phenomena.
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One of the simplest variants is the discrete nonlinear Schrödinger equation (DNLS)
in which the spatial derivative is replaced by a discrete second difference operator

iu̇n = un−1 − 2un + un+1 + |un|2 un. (1.2)

If the total number of sites is small this system is also known as the discrete self
trapping (DST) system, which has a long history [17, 18, 24]. A DST system
describing the evolution of a vector u may be written, more generally, as

iu̇ = Lu +N (u) (1.3)

where L is a symmetric matrix and N (u) is a nonlinearity we take to be local and

cubic, N (u)n = |un|2 un. This system may be interpreted as a Hamiltonian, with
position vector q = u ∈ CN and momentum vector p = iū (such overbars will
denote complex conjugates in the remainder). It is then easy to check that the
Hamiltonian for this system is simply

H = ū>Lu− 1

2

N∑
n=1

|un|4 . (1.4)

The DST system (1.3) is then equivalent to Hamilton’s equations:

iu̇n =
∂H

∂ūn
. (1.5)

NLS may be generalized to graphs in a number of ways. Before doing so, we
first set notation, briefly summarizing that of Berkolaiko [8]. Let Γ = (V, E) be
a combinatorial graph, i.e. a finite collection of vertices V = {vn, n = 1, . . . , N}
connected pairwise by a collection of edges E = {em = (vi, vj), m = 1, . . . ,M}.
The graph is called directed if (vi, vj) is distinguished from (vj , vi). Otherwise it is
undirected.

If Γ has no self-directed edges, i.e. no edges of the form (vi, vi), the incidence
matrix is defined to be the N ×M matrix E in which

Enm =


1 if edge m points to vertex n,

−1 if edge m points from vertex n,

0 otherwise.

Let there be a positive weight wm associated to edge em and let W be a diagonal
matrix with Ωmm = wm > 0. If unstated, then W is assumed to be the identity
matrix. Then the (weighted) Laplacian

∆Γ = −EWE>

is a negative definite matrix, defining a DST system (1.3) with L = −∆Γ. While a
directed graph is necessary for forming E and thus ∆Γ, the matrix ∆Γ is unchanged
if the direction of any edge is interchanged.

A metric graph is a directed graph in which a length `m has been assigned to
each edge em, as well as a coordinate xm with 0 < xm < `m which increases
in the specified direction of the edge. A function f(x) defined on the graph is
simply a collection of functions fm(xm) defined on the individual edges em such
that f(x)|em = fm(xm). A Schrödinger operator L defined on such functions,

L|em = −∂2
xm + Vm(xm), (1.6a)

although we will set the potential along each edge to Vm(xm) = 0. Defining the
function space on which L acts requires a boundary condition at the vertices. The
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graph, operator, and boundary conditions together define a quantum graph, and we
may extend the definition of equation (1.1) to quantum graphs. The most common
boundary condition is the Kirchhoff boundary condition, which states that the
solution is continuous at the vertices, i.e. letting Ψ|em = ψm,

ψm1
(vn) = ψm2

(vn), ∀m1,m2 ∈ Vn, (1.6b)

where Vn is the set of all edges incident on vertex vn, and further, that the total
flux through any vertex is zero, i.e∑

m∈Vn

(−1)
σm∂xmψm(vn) = 0, (1.6c)

where σm = 0 if vn is the initial point on edge em and σm = 1 if it is the final
point. Both ends of an edge that connects a single vertex to itself contribute to this
sum. Observe that for leaf vertices, connected to only a single edge, the Kirchoff
boundary condition reduces to a Neumann condition. The set V may contain a
point at infinity, and special edges called leads that connect the finite points with
the point at infinity. Such an edge must have ` =∞.

The standard norms and function spaces are defined straightforwardly, e.g. the
Lp norms

‖Ψ‖pLp =

M∑
m=1

‖ψm‖pLp ,

and the related Sobolev norms defined similarly. In particular, we define the power
to be

Q(Φ) = ‖Φ‖22 . (1.7)

The L2 inner products is defined by

〈Ψ,Φ〉 =

M∑
m=1

∫ `m

0

ψ∗m(x)φm(x) dx.

Cubic NLS on the quantum graph is thus

i∂tΨ = LΨ + 2 |Ψ|2 Ψ, (1.8)

which is defined on the energy space E(L) consisting of all H1 functions on Γ
satisfying the boundary conditions (1.6b) and (1.6c). This evolution conserves the
energy

E(Ψ) = ‖∂xΨ‖22 − ‖Ψ‖
4
4 .

This paper considers standing wave solutions to the NLS equation of the form
Ψ(x, t) = Φ(x)eiΛt. Assuming Φ to be real valued, these solve

F(Φ,Λ) ≡ LΦ− 2Φ3 − ΛΦ = 0. (1.9)

For all Λ, Φ = 0 is an exact solution. For Λ < 0, there are additional solutions
at

Φ = ±Φconst(Λ) = ±
√
−Λ/2, (1.10)

which we refer to as the constant solutions.
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1.3. Bifurcation theory. As a principal aim of this paper is to distinguish among
different bifurcations that occur in the various families of standing waves, we in-
clude a brief review of the relevant bifurcation theory. The most basic question in
bifurcation theory concerns fixed points of the differential equation

da

dt
= f(a,Λ), (1.11)

which is interpreted as as a one-parameter family of ODE for the evolution of a(t),
parameterized by Λ. If a0 is a fixed point of equation (1.11) when Λ = Λ0 and

∂Λf |(a0,Λ0) 6= 0,

then by the implicit function theorem the fixed-point solution can be continued.
More precisely, there exists a small interval I containing Λ0 and a function a(Λ)
such that a(Λ0) = a0 and f(a(Λ),Λ) = 0 for Λ in I. Values of Λ0 where

∂Λf |(a0,Λ0) = 0

are called bifurcation values. At such points, the implicit function theorem does
not apply, and the existence or uniqueness of nearby solutions is not guaranteed.
The three most commonly-seen bifurcations are the saddle-node, transcritical, and
pitchfork bifurcation, although others exist when the conditions in the theorem
below are violated. In a saddle-node, or fold, bifurcation there exist two branches
of solutions on one side of Λ = Λ0, which merge smoothly at Λ0, and no solutions
on the other; see Fig. 1.1(a). The canonical example is f(a,Λ) = Λ − a2. In a
transcritical bifurcation, two branches cross transversely at Λ0; Fig. 1.1(b). The
canonical example is f(a,Λ) = Λa− a2. At a pitchfork bifurcation, three branches
exist on one side of Λ0, and only one on the other, with the branch single branch
continuing smoothly through the bifurcation, and the other two branches connected
smoothly at Λ0; see Fig. 1.1(c). Pitchfork bifurcations most commonly occur in
systems with symmetry and are then called symmetry-breaking bifurcations. The
solution that exists on both sides of the bifurcation is invariant to the symmetry,
while the two newly-created solutions are not invariant to the symmetry, together
they form a group orbit of that symmetry. The canonical example is f(a,Λ) =
Λa−a3. At the bifurcation point, the stability of the branch of fixed points changes.

While in the basic examples above, the unknown a is scalar, the same bifurca-
tions are found in multidimensional and even infinite-dimensional systems. Yang
has computed conditions under which the different types of bifurcations occur in
the stationary NLS equation [39]. His results, which go through unaltered in the
quantum graph case, are described in detail in Section 3.2. A second theorem by
Yang describes the arrangement of the bifurcation curves for NLS when the fre-
quency Λ is plotted against the power Q, defined in equation (1.7); see Remark 3.2
below for a more complete discussion. The second row of Figure 1.1 illustrates the
conclusions of this theorem.

1.4. Marzuola and Pelinovsky’s results on the dumbbell quantum graph.
Ref. [27] considers stationary solutions to equation (1.9) on a dumbbell-shaped
graph with two vertices and three edges, as displayed in Fig. 1.2. Two of this
graph’s edges are loops that connect the two vertices to themselves, and the third
connects them. The authors make the symmetry assumption `1 = `3 which, without
loss of generality they take to be `1 = `3 = 2π, and let `2 = 2L, parameterized by
−π < x1,3 < π and −L < x2 < L.
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Figure 1.1. The three most common bifurcations, after [39].
(a) Saddle-node, (b) Transcritical, (c) Pitchfork. Top row: co-
ordinate a vs. parameter Λ. Bottom row: power Q vs. Λ.

1e1
v1e2

v2
e3

Figure 1.2. The dumbbell graph with its vertices and edges labeled.

We note that symmetries of the graph play a role in the solutions to a quantum
graph NLS system. The linear and nonlinear Schrödinger equation on the under-
lying dumbbell metric graph have the following three reflection symmetries, which
we state somewhat informally:

R1 : Reverse the direction of edge e1.

R2 : Exchange the labels of edges e1 and e3 and of vertices v1 and
v2 and reverse the direction of edge e2.

R3 : Reverse the direction of edge e3.

(1.12)

Ref. [27] considers the stability of the constant solution (1.10), using its frequency
Λ as a bifurcation parameter. It shows that the constant solution Φ0 undergoes a
pair of bifurcations with decreasing Λ. The first is a symmetry-breaking pitchfork
bifurcation, and occurs at Λ = −Ω2

1/2 where Ω2
1 is the smallest eigenvalue with an

even eigenfunction (see Section 3.1). While the solution Φconst is invariant under
R2, the two newly-created states are not; instead forming a group orbit for that
symmetry. More concretely, two nonlinear eigenfunctions Φleft and Φright emerge,
each asymmetric, but with Φleft = R2(Φright). The second bifurcation, which the
authors call a “symmetry-preserving” bifurcation, takes place at Λ = −ω2

1/2, where
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ω2
1 is the eigenvalue corresponding to the first non-constant even-symmetric eigen-

function. Here they find the emergence of a symmetric solution that is concentrated
along the central edge e2 of the dumbbell as Λ→ −∞.

The above statement is correct but incomplete. “Symmetry-preserving” bifurca-
tion is not one of the generic categories, so the question remains to identify it. A
bifurcation diagram computed in Ref. [27] for L = π (in the notation of [27] it is
L = π/2) is shown in Fig. 1.3, showing the two bifurcations discussed in that paper.
Observe that this diagram is incomplete: the branch labeled “Centered” does not
meet the branch labeled “Constant.”

Arguments given both in Ref. [27] and summarized later in this paper allow
us to calculate in closed form the bifurcation value where the constant state bi-
furcates. The symmetry-breaking bifurcation occurs at −Ω2

1/2 ≈ −0.036 where

Ω1 = 1
π sin−1 (

√
5

3 ), which agrees well with the calculated bifurcation diagram.

The symmetry preserving bifurcation takes place at −ω2
1/2 ≈ −0.268 where ω1 =

1− 1
π sin−1 (

√
5

3 ). This location is shown in the figure to be far from the spot where
the two curves appear to meet.

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0

0.5

1

1.5

2

2.5

3

3.5

4

Λ

Q
0

Centered − Newton Solver

Loop Centered − Newton Solver

Constant

x

x

Figure 1.3. A numerically computed bifurcation diagram from
Ref. [27]. The red × symbols, added by this author, mark the
bifurcation locations predicted by equation (3.3).

The present paper was initially motivated by two questions: to understand what
exactly occurs at the symmetry preserving bifurcation and to determine whether
this effect is novel to the dumbbell quantum graph or if, instead, it occurs in sim-
pler systems. The answers are simple: the symmetry-preserving bifurcation is of
transcritical type, and the same phenomenon can be found in a significantly simpler
system, the bowtie combinatorial graph. It appears that the closed loops in both
the dumbbell and the bowtie contribute to the transcritical nature of the second
bifurcation. In a simpler related problem, the Schrödinger equation on an interval
with Neumann boundary conditions, all the bifurcations are pitchforks. This dis-
tinction is due to a subtle breaking of symmetry by the loops, as we shall discuss.
Moreover, on the lollipop graph, featuring one loop and one straight edge, all of
these bifurcations are transcritical.

Remark 1.1. The central finding of Ref. [27] concerned the ground state and was
subsequently found to be mistaken. The ground state of the quantum graph is
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defined to be the lowest energy state with a given L2 norm, i.e. the solution of

E0 = inf
Φ∈E(L)

{E(Φ) |Q(Φ) = Q0 } . (1.13)

The ground state for the DST system is defined analogously for the DST with the
Hamiltonian (1.4) taking the role of the energy, in particular, it is the solution to

H0 = inf
u∈Rn

{H(u) |Q(u) = Q0 } .

This mistake has since been corrected by its authors online [28]. Upon its creation
in the symmetry-breaking bifurcation, the asymmetric loop-centered state is the
ground state of the system. The analysis of [27] seemed to show, incorrectly, that
for sufficiently large values of L2, the centered solution concentrated on the central
edge of the graph has the lower energy. While this solution is a local constrained
minimizer of the energy in equation (1.13), while the loop-centered solution is the
global minimizer.

2. The bifurcation diagram for DST on the bowtie graph. Here we intro-
duce a simpler combinatorial graph, on which the DST equation (1.3) undergoes the
same sequence of bifurcations described in the previous section, which we consider a
very coarse model of the bowtie quantum graph. The graph consists of five vertices,
joined into a bowtie configuration as in Fig. 2.1.

v
1

v
2

v
3

v
4

v
5

e
1

e
2

e
3

e
4

e
5

e
6

Figure 2.1. The bowtie combinatorial graph.

Setting the weights to one, the negative of the Laplacian matrix is

LΓ =


2 −1 −1 0 0
−1 2 −1 0 0
−1 −1 4 −1 −1
0 0 −1 2 −1
0 0 −1 −1 2

 , (2.1)

with eigenvalues λ1 = 0, λ2 = 5, λ3 = 1, and λ4 = λ5 = 3 (numbered in this strange
order purposely) and associated normalized eigenvectors,

v1 =
1√
5


1
1
1
1
1

 ,v2 =
1√
20


1
1
−4
1
1

 ,v3 =
1

2


−1
−1
0
1
1

 ,v4 =
1√
2


1
−1
0
0
0

 ,v5 =
1√
2


0
0
0
1
−1

 .
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The DST system on this graph is invariant to left multiplication by the three per-
mutations, in cyclic notation:1

R1 = (12), R2 = (14)(25), and R3 = (45).

These symmetries are in exact analog with (1.12) and are labeled analogously. The
vectors in the space S1 = span {v1,v2} are invariant under R1, R2, and R3, while
those in the space S2 = span {v1,v2,v3} are invariant under just R1 and R3. The
vectors in the space S3 = span {v4,v5} are invariant under R2. Put more simply,
on S1, u1 = u2 = u4 = u5, on S2, u1 = u2 and u4 = u5, and on S3, u1 = −u2,
u3 = 0, and u4 = −u5.

Like the the dumbbell quantum graph, the bowtie DST has a constant solution

uconst =
√
−5Ωv1e

iΩt for Ω ≤ 0.

Linearizing about this solution, we find that it undergoes bifurcations at Ω = − 1
2

and Ω = − 5
2 . To understand these bifurcations and the more detailed bifurcation

structure, we turn to parameterization.

2.1. Parameterization of solution branches on S2. In this section, we fol-
low [18] and use simple algebraic methods to enumerate all the relative fixed points
of the discrete bowtie system that lie on the invariant subspace S2, i.e. we look for
stationary solutions of the equation (1.3) with Laplacian matrix given by (2.1) of
the form

u1 = u2 = aeiΩt, u3 = beiΩt, u4 = u5 = ceiΩt; a, b, c,Ω ∈ R.

The reduced system consists of the three equations

a− b− a3 − Ωa = 0; (2.2a)

−2a+ 4b− 2c− b3 − Ωb = 0; (2.2b)

−b+ c− c3 − Ωc = 0. (2.2c)

We will derive several branches of solutions. For later convenience, we will assign
each branch a number. We first derive two simple solutions:

• Branch 1 is the constant state a = b = c, the continuation of the eigenvector
v1, for which Ω = −a2. The squared `2 norm for this solution is just Q = 5a2,
so that Ω = −Q/5.

• Branch 2 satisfies c = −a, b = 0, the continuation of eigenvector v3, with
Ω = 1− a2. This solution has Q = 4a2, so Ω = 1−Q/4.

We parameterize all the remaining solutions as follows. Subtracting equation
(2.2a) from equation (2.2c) yields

(c− a)(a2 + ac+ c2 + Ω− 1) = 0. (2.3)

Letting either factor equal zero yields a solution. Setting the first factor to zero
yields a = c, and the solution lies on the invariant subspace S1. This reduces
system (2.2) to

a− b− a3 − Ωa = 0; (2.4a)

−4a+ 4b− b3 − Ωb = 0. (2.4b)

1Recall that in cyclic notation, each set of indices grouped between parentheses represents
a subset of list elements which undergoes a cyclic permutation. Fixed points, which would be

represented by singleton groups are, by convention, omitted.
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Subtracting the two and factoring yields

(a− b)
(
a2 + ab+ b2 + Ω− 5

)
= 0.

Setting the first factor to zero yields Branch 1 already discussed. Setting the second
factor to zero defines an ellipse when Ω < 5:

3

4
(a+ b)

2
+

1

4
(a− b)2

= 5− Ω.

This can be parameterized straightforwardly as a + b = 2√
3

√
5− Ω cos θ, a − b =

2
√

5− Ω sin θ. Basic trigonometry then yields

a =
2
√

5− Ω√
3

sin
(
θ − π

3

)
; b =

2
√

5− Ω√
3

sin
(
θ +

π

3

)
. (2.5a)

Plugging this back into equation (2.4a) to solve for Ω and simplifying yields

Ω = 5− 3

2
csc 3θ

(
3
√

3 cos θ − 5 sin θ
)
. (2.5b)

The solution satisfies the necessary condition that Ω < 5 for two subintervals of
[0, π], yielding two additional branches:

• Branch 3 Solution (2.5) with 0 < θ < tan−1
(

3
√

3
5

)
yields a branch with

(Ω, Q) → (−∞,∞) as θ → 0+ and (Ω, Q) → (5, 0) as θ → tan−1
(

3
√

3
5

)−
, so

this is the nonlinear continuation of the eigenvector v2.
• Branch 4 Solution (2.5) with π

3 < θ < 2π
3 . The branch diverges as θ ap-

proaches the endpoints of the interval. At θ = π
2 , this yields a = b =

√
−Ω =√

5
2 , i.e. it lies on Branch 1. This is the transcritical bifurcation.

Setting the second factor of equation (2.3) to zero allows us to solve for a and c
in the same manner that we solved for a and b in deriving Branches 3 and 4,

a =
2
√

1− Ω√
3

sin
(
θ − π

3

)
; c =

2
√

1− Ω√
3

sin
(
θ +

π

3

)
. (2.6a)

Substituting these values back into equation (2.2a) or (2.2c) and simplifying yields
a formula for b

b =
−2(1− Ω)

3/2
sin (3θ)

3
√

3
. (2.6b)

Finally, plugging these values into equation (2.2b) yields a quartic equation for Ω.
This quartic equation factors into linear and cubic terms, so that Ω satisfies either

(4µ− 3)Ω− 4µ+ 6 = 0

or

4(4µ− 3)
2
µΩ3 − 24(2µ− 1)(4µ− 3)µΩ2

+ 3(4µ− 3)
(
16µ2 − 4µ+ 3

)
Ω− 64µ3 + 48µ2 − 36µ+ 81 = 0.

Here we have defined µ = sin2 θ, so that µ = 3
4 corresponds to θ = π

3 or θ = 2π
3 .

• Branch 5 corresponds to solutions that make the linear factor zero. This
yields physically meaningful solutions only for π

3 < θ < 2π
3 . At θ = π

2 , the
branch touches Branch 4, and in fact corresponds to a symmetry-breaking
branch for that mode.
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Cardano’s formula yields three solutions that make the cubic term equal zero. One
of these is real for all θ and yields two branches of physically relevant solutions.

• Branch 6 arises from this formula on the interval π
3 < θ < 2π

3 . Along this
branch

lim
θ→π

3
+

(a, b, c) = (0, 0,∞), lim
θ→ 2π

3

−
(a, b, c) = (∞, 0, 0), and (a, b, c)

∣∣
θ=

π
2

=
(1, 1, 1)√

2
.

At θ = π
2 , it bifurcates from Branch 1 in a symmetry-breaking bifurcation.

• Branch 7 arises from this formula on the interval 0 < θ < π
3 . (Ω, Q) →

(−∞,∞) as the endpoints of the interval are approached. It arises in a saddle-
node bifurcation at Ω ≈ −2.7.

The other two roots of the cubic are not physically meaningful, with Ω > 1 or
=(Ω) 6= 0 for all values of θ.

Fig. 2.2 shows all the branches discussed above. We summarize the conclusions
of the parameterization study shown in this figure. Branches 1, 4, and 6 correspond
to the ones discussed in Ref. [27] and are colored as in Fig. 1.3. Branch 1, the
constant solution, begins at the origin and bifurcates in the (symmetry-breaking)
pitchfork bifurcation at Ω = − 1

2 , creating Branch 6. Branch 1 then undergoes a

transcritical bifurcation at Ω = − 5
2 , creating Branch 4 of symmetric solutions. Both

halves of Branch 4 diverge to (−∞,∞) in the (Ω, Q) plane. As Ω → −∞, b → 0
and a = c → +∞. The half branch that extends to the right from the bifurcation
turns around at a fold bifurcation at Ω ≈ −1.94 (this value is the root of a quartic
polynomial).

Branch 5 emerges from a symmetry breaking pitchfork bifurcation of Branch 4.
For large negative Ω, the solution on Branch 5 concentrates at the center point b.
Branch 7, which arises in a saddle-node bifurcation has no analog in Fig. 1.3, but
we find many such branches in our more complete numerical study in Section 5

Branch 5 appears to cross Branch 6 in the (Ω, Q)-projection Ω ≈ −2.97, as the
two branches appear to cross in Fig. 1.3. The statement has no bearing on the
conclusions of Refs. [27, 28]. The asymptotics of the solutions on the quantum
graph for large L2 norm depend on the exponential decay of the standing waves as
a function of the distance from their maxima. The slope of the curve of symmet-
ric solutions is steeper than that of the curve of symmetric solutions because the
symmetric solution concentrates at the single vertex v3 for large Q, whereas the
asymmetric solution concentrates at the two points v1 and v2 for large values of Q.

3. Investigating the two bifurcations on the dumbbell quantum graph.
We now return to the dumbbell quantum graph. We present more general informa-
tion before returning to the particular bifurcation problem.

3.1. Schrödinger spectrum on the dumbbell quantum graph. A first step
is to enumerate all the eigenfunctions and eigenvalues on the dumbbell obtained by
ignoring the nonlinear term in Equation (1.9),

LΦ = λΦ. (3.1)

On each edge, the eigenfunction satisfies φ′′m(xm) − λφm(xm) = 0, and thus the
restriction of each eigenfunction to a single edge is the linear combination of a
sine and a cosine function, and the eigenfunctions are obtained by enforcing the
boundary conditions (1.6b) and (1.6c).
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Figure 2.2. Branches of stationary solutions to the bowtie-shaped
DST system on the subspace S2.

This observation is made systematic using the secular determinant, which is well-
described by Berkolaiko [8]. The nonzero eigenvalues are of the form λ = k2 where
k solves

Σ(k) = det (I− SD(k)) = 0, (3.2)

and the dimension of the square matrices S and D(k) is twice the number of edges.
This equation is derived by assuming that the solution is given as a linear combina-
tion of eikxj and e−ikxj on each edge ej , and enforcing that the vertex conditions
be satisfied. For the dumbbell graph,

S =
1

3


2 −1 0 2 0 0
−1 2 0 2 0 0
2 2 0 −1 0 0
0 0 −1 0 2 2
0 0 2 0 2 −1
0 0 2 0 −1 2


and

D(k) =


eikL 0 0 0 0 0

0 eikL 0 0 0 0
0 0 eikπ 0 0 0
0 0 0 eikπ 0 0
0 0 0 0 eikL 0
0 0 0 0 0 eikL

 .

After some manipulations, equation (3.2) for the dumbbell graph is equivalent to

(sin k(L− π)− 3 sin k(L+ π)) (cos k(L− π)− 3 cos k(L+ π))
(
sin2 kπ

)
= 0. (3.3)

The three factors of equation (3.3) correspond to three families of eigenfunctions:

Even Eigenfunctions: Solutions in this family are nonzero on all three edges
and satisfy R2(Φ) = Φ. The eigenvalues in this family are labeled as ω2

j , j =
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0, 1, . . . in [27]. The linear ground state Φ0 = 1 is a member of this family,
although the secular determinant equation holds only for k 6= 0.

Odd Eigenfunctions: Solutions in this family are nonzero on all three edges
and satisfy R2(Φ) = −Φ. The eigenvalues in this family are labeled as
Ω2
j , j =∈ Z+ in [27].

Loop-localized Eigenfunctions: Solutions in this family have multiplicity two
and can be normalized such that their support lies entirely on one or the other
of the edges e1 and e3 and satisfy R1(Φ) = −Φ and R3(Φ) = −Φ. These so-
lutions are given by Φ(x) = sin (jxm), j ∈ Z+ on the edge em where they are
supported and have eigenvalues j2.

If L is chosen as an integer multiple of π/2, eigenvalues from the loops may coincide
with those of the even and odd eigenfunctions. We will assume no such resonances
exist. Numerical examples, discretized using second-order finite differences, with
ghost-points to implement the boundary conditions, are shown in Fig. 3.1.
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Figure 3.1. The first two members of the even family of eigenfunc-
tions (a-b), odd family (c-d), and loop-localized family (e-f) of the
linear eigenvalue problem (3.1) on the dumbbell graph, computed
numerically, along with the associated eigenvaluess. In subfigure
(f) the analytical value is obviously λ = 4, giving an indication of
the accuracy of this computation.

3.2. Yang’s results on NLS bifurcations. Yang provides a result that classifies
bifurcations in the stationary NLS equation into different types depending on the
vanishing/nonvanishing of a sequence of nondegeneracy conditions [39]. The result
is given by explicitly constructing the formal asymptotic series solutions to a gener-
alized form of the nonlinear Schrödinger equation. The construction goes through
unaltered for the quantum graph problem.

Consider a stationary solution (Φ,Λ) to NLS on a graph (1.9). The associated
linearization operator is

L1 = L − Λ− 6Φ2. (3.4)

As long as this operator is invertible at a particular (Φ0,Λ0), then the implicit
function theorem implies that there exists an open interval I 3 Λ0 on which there
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exists a unique one-parameter family of solutions, i.e. a continuous map ϕ such that
the stationary equation (1.9) is satisfied, i.e.

ϕ : I → H1(Γ) such that ϕ(Λ0) = Φ0 and F(ϕ(Λ),Λ) = 0.

Yang’s results apply to a more general nonlinearity G(Φ, x) = F (|Φ|2 , x)Φ which
here represents the cubic term in equation (1.9) and any terms that would arise
due to a nonzero V (x) in the definition (1.6a). Solutions (Φ0,Λ0) such that the
operator (3.4)

L10 = L1

∣∣
(Φ0,Λ0)

(3.5)

define the bifurcation points and L10 will from here on denote the linearized operator
at a bifurcation point. Assume that L10 has a one-dimensional nullspace with null
eigenfunction Υ. Define

Gj = ∂jΦG
∣∣∣
(Φ0,Λ0)

(3.6)

Then the result depends on the following quantities

Θ1 = 〈Φ0,Υ〉 ; Θ2 =
〈
G2,Υ

3
〉

; Θ3 =
〈
1−G2L−1

10 Φ0,Υ
2
〉

;

Θ4 =
〈
G2

(
L−1

10 Φ0

)2 − 2L−1
10 Φ0,Υ

〉
; Θ5 =

〈
G3,Υ

4
〉
− 3

〈
G2Υ2,L−1

10

(
G2Υ2

)〉
.

(3.7)
While L10 is by assumption not invertible, all the above terms involving L−1

10 are
well-defined where they appear in the theorem below.

Yang’s main result is the following.

Theorem 1 (Yang). Consider a system satisfying the above hypotheses. Then:

1. If Θ1 6= 0 and Θ2 6= 0, then a saddle-node bifurcation occurs at Λ = Λ0. If
Θ1 ·Θ2 > 0, then the two branches exist for Λ ≤ Λ0. If Θ1 ·Θ2 < 0, then the
two branches exist for Λ ≥ Λ0.

2. If Θ1 = 0, Θ2 6= 0, Θ3 6= 0 and Θ2
3 > Θ2 ·Θ4, then a transcritical bifurcation

occurs at Λ = Λ0.
3. If Θ1 = 0, Θ2 = 0, Θ3 6= 0, and Θ5 6= 0, then a pitchfork bifurcation occurs

at Λ = Λ0. If Θ3 · Θ4 > 0, then there are three branches for Λ ≤ Λ0. If
Θ3 ·Θ4 < 0, then there are three branches for Λ ≥ Λ0.

These bifurcations are all essentially one-dimensional. The Lyapunov-Schmidt
theorem, or, alternatively, center manifold theory, essentially allow the bifurcation
problem to be reduced to an equation involving one variable a (due to the one-
dimensional null space of L10) [22]. Following Ref. [19], bifurcations in a one-
dimensional problem depend on a normal form equation with an expansion of the
form

f(a,Λ) ∼ Θ1Λ +
1

2

(
Θ2a

2 + 2Θ3aΛ + Θ4Λ2
)

+
1

6
Θ5a

3 + . . . , (3.8)

with the constants Θj determining the type of the bifurcation.

Remark 3.1. From this, it is apparent that the transcritical bifurcation is more
generic than the pitchfork bifurcation, in that it requires the vanishing of fewer
terms in this expansion. Yang notes that if F (|Φ|2 , x) = F (|Φ|2 ,−x), and if Φ0(x)
is symmetric (even or odd) and Υ has the opposite symmetry, then Θ1 = Θ2 =
0, and pitchfork bifurcations are to be expected [39, Remark 2]. He constructed
transcritical bifurcations in a numerical example by tuning the system to satisfy
Θ1 = 0, but only for potentials without this symmetry [40]. By contrast, the
dumbbell quantum graph is symmetric (see the next section), yet certain symmetric
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solutions undergo transcritical bifurcations. We discuss the conditions giving rise
to transcritical bifurcations further in Section 4.

Further, when a system has such a symmetry, then the pitchfork bifurcation
is a symmetry-breaking bifurcation. That is, the system has a solution Φ that is
invariant under symmetry transformation R(Φ) = Φ, whereas at the bifurcation,
the new pair of solutions arises with Φ1 = R(Φ2) and Φ2 = R(Φ1) instead.

Remark 3.2. A second theorem of Yang is useful for identifying bifurcation types
from a graph of a standing wave’s power Q versus its frequency Λ [39]. It shows
that in a transcritical bifurcation, the two branches of solutions appear tangent to
each other, while in a symmetry-breaking pitchfork bifurcation, the two branches
overlap in the (Λ, Q) plot, and branch out from the point (Λ0, Q0) at a nonzero
angle. See the second row of Fig. 1.1. This has been seen in pitchfork bifurcations
in NLS systems before, e.g. [29, 34].

Remark 3.3. The pitchfork bifurcation is generic in systems possessing certain
symmetries. When those symmetries are broken by a small general perturbation,
the coefficient Θ1 will become nonzero. Thus, a saddle-node bifurcation must occur,
as is shown in Fig. 3.2(a). If the system is such that perturbations leave Θ1 ≡ 0,
but results in nonzero Θ2, then the pitchfork bifurcation splits into a saddle-node
and a transcritical as shown in Fig. 3.2(b), with the two bifurcation points merging
to a pitchfork in the limit Θ2 → 0.

a

(a)

a

(b)

Figure 3.2. A pitchfork bifurcation may split into either (a) one
branch with no bifurcations and one branch with a saddle node (b)
a saddle-node and a transcritical bifurcation.

3.3. Validation by numerical continuation. Ref. [27] finds that the constant-
valued solution (1.10) to system (1.6) undergoes two bifurcations as Λ is decreased
from zero. We numerically compute both branches using pseudo-arclength continu-
ation. We use centered differences to discretize system (1.9), and second-order one-
sided differences to discretize the vertex condition (1.6c) on the dumbbell-shaped
graph depicted in Fig. 1.2. The system is solved using Newton’s method, com-
bined with pseudo-arclength continuation as described in the textbook of Nayfeh
and Balachandran [30]. The code has two advantages over that used in Ref. [27]:
first, it is able to go around fold bifurcations, and second, it detects branching bifur-
cations, both pitchfork and transcritical, and is able to switch branches; following
Govaerts [23]. The nonlinear solver uses a Newton conjugate gradient-based scheme
developed by Yang [38].
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The result of a computation with L = 2 is shown in Fig. 3.3. The symmetry-
breaking bifurcation is exactly as in Fig. 1.3. In addition, this computation captures
several features not present in [27], but visible in the bifurcation diagram for the
bowtie DST model, Fig. 2.2. First, the branch of centered solutions of Fig. 1.3
undergoes a fold bifurcation at Λ ≈ −0.19. The upper branch then meets the
branch of constant solutions at the “symmetry-preserving” bifurcation Fig. 1.3 near
Λ = −ω2

1 ≈ −0.215, in exactly the same manner found for DST on the bowtie
graph. By comparison with Fig. 1.1, it appears that this should be a transcritical
bifurcation, which will be confirmed below. In addition, the branch undergoes a
symmetry-breaking pitchfork bifurcation very close to the saddle-node bifurcation.
Solutions from both the top and bottom halves of the symmetric branch, as well as
the symmetry-broken branch are displayed in Fig. 3.4.

-1 -0.8 -0.6 -0.4 -0.2 0
0

0.5

1

1.5

2

2.5

3

3.5

4

Q

a

b

d

c

Centered
Loop-Centered
Constant
Asymmetric

Figure 3.3. Numerical continuation of the PDE on the quantum
graph. Comparison with Fig. 1.1 indicates that the loop-centered
and constant solutions meet in a transcritical bifurcation. The
computation indicates that the centered solution also undergoes
saddle-node and pitchfork bifurcations.

3.4. Analysis of the bifurcations. Ref. [27] approximates, perturbatively, a
symmetry-broken solution close to the constant-valued solution using, essentially,
the Poincaré-Lindstedt method. We here use Theorem 1 to classify the first bifur-
cation as a pitchfork and the second as transcritical.

Before classifying the individual bifurcations of the constant solution (1.10), we
compute the necessary quantities (3.6) and (3.7) for the application of Theorem 1.
The linearized operator about the constant solution is

L1

∣∣
Φ=
√
−Λ

2

= L+ 2Λ.

Therefore if (γ2, Φ̃) is an eigenpair of L, then along the branch of constant solu-

tions (γ2 + 2Λ, Φ̃) is an eigenpair of L1, and the system undergoes a bifurcation at

(Λ0,Φ0) =
(
−γ2/2, γ/2

)
with null vector Υ = Φ̃.

For this problem, G(Φ) = 2Φ3, in equation (3.6), and at the bifurcation point

G2 = 12Φ̃ = 6γ; G3 = 12.
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Figure 3.4. (a) Large-amplitude centered solution on the half-
branch discovered in Ref. [27]. (b) Large-amplitude two-soliton
solution. (c) Solution arising from symmetry-breaking of centered
state. (d) Solution arising from symmetry-breaking of constant
state. Subplot labels correspond to marked points in Figure 3.3.

The constants in equation (3.7) depend on L−1
10 Φ0. Since L10Φ|Φ=1 = −γ2, we have

L−1
10 Φ̃ =

−1

γ2
· γ

2
=
−1

2γ

and

Θ1 =
γ

2

∫
Γ

Φ̃ dx = 0; Θ2 =
3

2
γ2

∫
Γ

Φ̃3 dx; Θ3 = 4

∫
Γ

Φ̃2 dx > 0;

Θ4 =
28

γ

∫
G

Φ̃ dx = 0; Θ5 = 12

∫
Γ

Φ̃2 dx− 144γ2
〈

Φ̃2,L−1
10 Φ̃2

〉
All of these quantities depends on known functions and quantities, except for Θ5,
which depends on L−1

10 Φ̃2 and is only required at pitchfork bifurcations. In partic-

ular, at the pitchfork bifurcation Φ̃ is an odd function, and thus the null space of
L10 consists entirely of constant multiples of Φ̃, which are also odd. Thus, since Φ̃2

is even, it is orthogonal to the null space of L10 (which is self adjoint), and we can

(non-uniquely) define L−1
10 Φ̃2.

3.4.1. The pitchfork bifurcation. Setting γ = Ω1, where Ω2
1 is the eigenvalue corre-

sponding to the first odd eigenfunction, then a bifurcation occurs at Λ = −Ω2
1/2.

We call this eigenfunction Φodd and normalize it such that
∫

Γ
Φ2

odddx = 1. Then

since Φ3
odd(x) is odd, Θ2 = 0. Since Θ3 is positive and Θ5 will in general be nonzero

(though this would need to be checked numerically), the bifurcation is of pitchfork
type.
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Following [28], the perturbation expansion is given in terms of a generic small
parameter a (compare with expansion (3.8)) by

Φ =
Ω1

2
+ aΦodd + a2Φ2 + a3Φ3 +O(a4);

Λ =
−Ω2

1

2
+ a2β2 + a3β3 +O(a4).

In order to solve for terms at O(a2), we must satisfy a Fredholm condition at O(a3)
but we do not otherwise need the terms at that higher order.

We find

β2 = 9Ω2
1

∫
Γ

Φ2
oddΦ̃2 dx and Φ2 = Φ̃2 −

β2

2Ω1
,

where Φ̃2 is the unique even-symmetric solution to

L10Φ̃2 = Φ2
odd.

This is well-defined since the null space of the self-adjoint operator on the left is
spanned by the odd-symmetric function Φodd and the right-hand side has even
symmetry. Ref. [27] notes that this equation may be solved explicitly, and uses the
exact solution to prove the direction in which the solution branch bends.

3.4.2. The transcritical bifurcation. Setting γ = ω1, where ω2
1 is the eigenvalue

corresponding to the first even eigenfunction, then a bifurcation occurs at Λ =
−ω2

1/2. We call this eigenfunction Φeven and normalize it such that
∫

Γ
Φ2

evendx = 1.

Then since Φ3
even(x) is even, then in general Θ2 6= 0. In this case, following [39],

the perturbation solution is given by

Φ =
ω1

2
+ aΦ1 + a2Φ2 + a3Φ3 +O(a4);

Λ =
−ω2

1

2
+ aβ1 + a2β2 + a3β3 +O(a4).

This leads a sequence of equations:

O(a) : L10Φ1 =
ω1β1

2
;

O(a2) : L10Φ2 =
ω1β2

2
+ β1Φ1 + 3ω1Φ2

1;

O(a3) : L10Φ3 =
ω1β3

2
+ β2Φ1 + β1Φ2 + 6ω1Φ1Φ2 + 2Φ3

1.

At O(a) we find that Φ1 = Φeven + C and β1 = −2ω1C, with C to be determined.
The equation at O(a2) then becomes

L10Φ2 = ω1

(
β2

2 + C2
)

+ ω1

(
4CΦeven + 3Φ2

even

)
.

The constant term is solvable, but the remaining term must be orthogonal to Φeven

for solvability. This then yields a condition

C = −3

4

∫
Γ

Φ3
even dx. (3.9)

Solving the equation at this order yields

Φ2 = − 1
ω1

(
β2

2 + C2
)

+ Φ̃2,
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where Φ̃2 is the unique solution to

L10Φ̃2 = ω1

(
4CΦeven + 3Φ2

even

)
;〈

Φ̃2,Φeven

〉
= 0.

A Fredholm condition at O(a3) then yields

β2 = −4C2 +

∫
Γ

Φ4
even dx+

3ω1

2

∫
Γ

Φ̃2Φ2
even dx.

Remark 3.4. The expansions described in this section are equally valid for every
eigenvalue/eigenfunction pair in the even or odd families. Thus, the constant-valued
solution undergoes a pitchfork bifurcation each time its value crosses a frequency
−ω2

j /2 and a transcritical bifurcation each time it crosses a frequency −Ω2
j/2. We

delay discussion of the bifurcations that involve the loop-localized families of eigen-
functions to Section 5.

Remark 3.5. Fig. 3.3 shows that that a saddle node bifurcation occurs very near
to this transcritical. Remark 3.3 discusses the fact that a pitchfork bifurcation per-
turbed via a perturbation with Θ1 = 0 splits into a saddle-node and a transcritical
bifurcation. In the next section, we discuss a specific sense in which the dumbbell
graph can be thought of as a perturbation of a simpler graph which features only
pitchfork bifurcations.

4. Comparison with simpler quantum graphs. We were able to gain some
insight into the dumbbell graph by considering the simpler problem of the bowtie
combinatorial graph. Here we consider two additional simpler problems, the cubic
Schrödinger problem defined on an interval with Neumann boundary conditions,
and the problem on the lollipop graph, obtained from the graph in Fig. 1.2 by
removing the edge e3 and imposing a Neumann condition at vertex v2.

The former can be thought of as a quantum graph consisting of just one edge and
two vertices. This system, which can be derived as a singular limit of the dumbbell
graph, has a different bifurcation structure. A rigorous approach to quantum graphs
in the limit of vanishing edge length is given by Berkolaiko et al. [9]. In what
follows, we rescale the x coordinates along the edges of the dumbbell graph so that
`1 = `3 = ε and `2 = π. The secular determinant equation (3.3) becomes:(

sin
k(π − ε)

2
− 3 sin

k(ε+ π)

2

)(
cos

k(π − ε)
2

− 3 cos
k(ε+ π)

2

)(
sin2 kε

2

)
= 0

The solutions to these the three factors correspond, respectively in the order pre-
sented, to the even, odd, and loop-localized families of eigenfunctions. For the
loop-localized families, this gives k = 2nπ/ε, a sort of boundary layer, in that
the solution is concentrated into a small region near the boundary of the ε → 0
limiting problem. For the other two branches we may expand the wavenumber
k =

∑∞
j=0 ε

jkj . For the even-symmetric solutions we find k0 = 2n and for the
odd-symmetric, k0 = 2n− 1 and in both cases

k = k0

(
1− 2ε

π
+

4ε2

π2
− 8ε3

π3

)
+ k3

0

ε3

2π
+O(ε4).

Letting the parameterization on the edge e2 be given by 0 < x2 < π, then all the
eigenfunctions are of the form cos kx with k ≈ 2n on the even family and k ≈ (2n−1)
on the odd family.
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Now, we take the singular limit ε→ 0+. The boundary layer solutions disappear,
and the problem on the central edge e2 reduces to the Schrödinger equation on an
interval with Neumann conditions, whose eigenfunctions are simply cosnx. We
examine the sequence of bifurcations undergone by the nonlinear standing wave
with constant spatial profile Φ and frequency Λ = −2Φ2 for this system. This
solution undergoes a sequence of bifurcations at the discrete sequence of frequencies
Λn = −n2/2. Each of these bifurcations is a pitchfork, independently of the parity
of n and in contrast to the dumbbell system, which alternates between pitchfork
and transcritical bifurcations. In terms of Theorem 1, as limε→0+ Θ2 = 0 and the
transcritical becomes a pitchfork.

The difference between the problem on the interval and that on the dumbbell is
that the Neumann problem on the interval has an additional symmetry: namely, the
solution on the interval can be extended to the whole real line under an even periodic
extension. Consider a solution in a neighborhood of the pitchfork bifurcation. In
both the Neumann problem and the dumbbell problem, the solution looks to leading
order like Φ = constant+aΦodd. Reversing the sign of a is equivalent to applying the
symmetry R2 to this solution. This argument fails near the transcritical bifurcation
on the dumbbell: reversing the sign of a is not equivalent to applying a symmetry.
However, in the limit ε = 0, a new symmetry appears, as the evenly extended
eigenfunctions have an odd symmetry about each of their zeros. This symmetry
persists for nonlinear standing waves.

It is not necessary that there be loops appended to the interval. In the family
of graphs pictured in Fig. 4.1, the extra symmetry of the Neumann interval is
also destroyed, and pitchforks involving even eigenfunctions are be converted to
transcriticals. All the calculations presented here and in [27] go through without
alteration.

Figure 4.1. A graph that supports similar bifurcations.

In general, for any compact graph with Kirchhoff conditions at all vertices, the
constant-valued solution will undergo a sequence of transcritical bifurcations, since
the eigenfunctions of the linearized system will be the same as the linear eigenfunc-
tion and all are orthogonal to the constant-valued solution, yielding Θ1 = 0. If,
however, the graph is sufficiently symmetric that it supports odd eigenfunctions,
then these will satisfy Θ2 = 0 and the bifurcations will be symmetry-breaking
pitchforks.

Therefore, we can expect that as ε↘ 0, each of the transcritical bifurcations on
the dumbbell graph becomes increasingly pitchfork-like. In other words, the trans-
critical bifurcation and the saddle-node nearby merge with each other, and Θ2 → 0
at the bifurcation point. While this statement should hold in a neighborhood of the
bifurcations, for large values of |Λ|, the two branches (corresponding to branches
(a) and (b) in Figures 3.3 and 3.4) will contain, respectively, one or two pulses, and
thus diverge from each other. We investigate this possibility by re-computing the
continuation calculation shown in Fig. 3.3 for large values of L in Fig. 4.2, which
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correspond to small values of ε. These show the width of the branch narrows greatly
for large L, and appears more like a pitchfork.
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Figure 4.2. The analogy of Fig. 3.3 with L = 15 and L = 50. As
L is increased, the angle with which the two branches of solution
approach the transcritical bifurcation decreases, making it appear,
locally, more like a pitchfork.

Finally, we note that in the lollipop graph, lacking the symmetry of the dumbbell,
the analysis leading to the pitchfork bifurcation in Section 3.4.1 is not applicable, but
that the analysis in Section 3.4.2 would go through without any changes. Therefore
we see that eliminating both loops leads to only pitchforks, while eliminating only
one leads to only transcriticals. This is an answer to what is special about the
dumbbell structure that allows both behaviors. The bifurcation diagram for the
lollipop graph will become important in Section 5.4 when we discuss standing waves
on the dumbbell that are built from lollipop standing waves.

5. Numerical enumeration of stationary solutions. Given the attention that
we have just paid to just two bifurcations, we should point out that the behavior
of standing waves is significantly more complex. We have already pointed out
that the constant-valued solution undergoes an alternating sequence of pitchfork
and transcritical bifurcations, each time its frequency crosses Λ = −Ω2

j/2 or Λ =

−ω2
j /2. In addition, each of the other linear eigenfunctions can be continued into

the nonlinear regime in a similar manner. In the remainder of this section, we
will enumerate all possible branches of stationary solutions using a combination of
numerical continuation, phase planes, and analytical reasoning.

The restriction of equation (1.9) to any edge ej is just

φ′′j + Λφj + 2 |φj |2 φj = 0. (5.1)

whose phase plane is shown in Fig. 5.1, with trajectories lying along level sets of
the energy

E =
1

2

(
φ′2j + Λφ2

j + φ4
j

)
. (5.2)

For Λ > 0, there is one family of periodic orbits surrounding a single elliptic fixed
point at the origin. For Λ < 0, this fixed point has undergone a symmetry-breaking
bifurcation, becoming hyperbolic and giving rise to two new fixed points. These
are defined by equation (1.10), and define the constant-valued solutions to sys-
tem (1.6). Exact formulas for the periodic orbits are provided in terms of Jacobi
elliptic functions in Appendix A.
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 < 0

' '

 > 0

Figure 5.1. The phase plane of Equation (1.9), whose trajectories
are level sets of the energy given by Equation (5.2).

A similar enumeration of standing waves was carried out for the tadpole graph by
Noja et al. [33], and for more general graphs by Gnutzmann and Waltner [20, 21].
Both groups have approached this by using the formulas for the exact solutions on
the edges, Jacobi elliptic functions on finite edges and the sech function on infinite
edges. Each of these partial solutions depends on undetermined parameters: e.g. the
parameters κ or k, and τ in equations (A.1) and (A.4). These then must be chosen to
satisfy the vertex conditions (1.6b) and (1.6c). Together, these determine a system
of equations. The authors then use normal form perturbation theory to simplify
this system of equations into a more tractable form, finding good agreement.

5.1. Two types of loops. We may classify the different types of stationary solu-
tions by their behavior on the self-connected edge e1 (or equivalently e3). Since the
solution along edge e1 lies along a level set of the energy, continuity condition (1.6b)
requires φ1(−π) = φ1(π) and thus, by the symmetry of the phase planes across the
y-axis in Fig. 5.1

φ′1(π) = ±φ′1(−π). (5.3)

Thus there are two cases. If equation (5.3) is satisfied with a minus sign, then
condition (1.6c) implies that

φ′2(−L) = 2φ′1(π). (5.4)

We will call such a loop incomplete. Note that when L is not a multiple of π/2 both
loops of eigenfunctions from the even and odd families are of this type; compare
Fig. 3.1(a-d). At the vertex φ1 = φ2, by the continuity condition (1.6b). There-
fore when e1 is an incomplete loop, any jump in the energy (5.2) at the vertex is

determined by the 1
2 (φ′j)

2
term and equation (5.4) implies E(e1) < E(e2).

If Equation (5.3) is satisfied with the plus sign, then

φ′2(−L) = 0 (5.5)

and the solution on the self-connected edge must consist of an integer number of
periods of a closed orbit. We will call such a loop complete. The nonzero loop
of loop-localized eigenfunctions are of this type; see Fig. 3.1(e-f). Note that self-
directed edges on which the solution is identically zero can be considered both
complete and incomplete. Since φ′1(π) may be nonzero, condition (5.5) implies that
when e2 is a complete loop, then E(e1) ≥ E(e2).

Therefore, there are three possible types of stationary solution. On the first,
both loops are incomplete, on the second, both loops are complete, and the third
contains one complete and one incomplete loop.
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5.2. Two incomplete loops. We can search for these stationary solutions with
two incomplete loops using the following shooting argument. All such stationary

solutions must satisfy
dφj
dxj

∣∣∣
xj=0

= 0, j = 1, 3. Now define f(q,Λ, L) = φ′3(0) found

by solving the following three consecutive initial value problems for equation (1.9):

1. Solve for φ1(x) from x1 = 0 to x1 = π with initial condition φ1(0) = q,
φ′1(0) = 0.

2. Solve for φ2(x) from x2 = −L to x2 = L with initial condition φ2(−L) =
φ1(π), φ′2(−L) = 2φ′1(π).

3. Solve for φ3(x) from x3 = −π to x3 = 0 with initial condition φ3(−π) = φ2(L),
φ′3(−π) = 1

2φ
′
2(L).

Then solutions of f(q,Λ, L) = 0 correspond to solutions of (1.9) on Γ with the
appropriate vertex conditions. This definition is closely related to the map defined
by Pelinovsky and Schneider over one cell of an infinite periodic graph [35]. We
may then continue these solutions as a function of Λ to follow the branches and find
bifurcations.

To follow this procedure, we first fix Λ = −1 and L = 2 and compute f(q,Λ, L)
over an appropriate interval, which is shown in Fig. 5.2. By standard arguments
about continuous dependence on initial conditions, f is a continuous function of
q and we can guarantee finding all such solutions by resolving this graph ade-
quately. We then use MATCONT, a MATLAB continuation package, to trace
these branches, varying Λ and holding L fixed [14, 15]. This is summarized in
an incomplete but complex bifurcation diagram in Fig. 5.3, which follows all the
solutions to f(q,−1, 2) = 0 with 0 < q < 1.3.

0 0.2 0.4 0.6 0.8 1 1.2

q

-1.5

-1

-0.5

0

0.5

1

f(
q,

-1
,2

)

Figure 5.2. The shooting function described in the text whose
zeros correspond to nonlinear standing waves on the graph Γ.

First, we find the previously mentioned branches arising alternately in pitchfork
and transcritical bifurcations from the constant state. We also note that all other
even-symmetric branches undergo symmetry breaking as well, as was previously
seen in Fig. 3.3. This black curve is the centered branch found in Ref. [27]. Many
additional families bifurcate into existence in saddle-node bifurcations. Some of
these are plotted twice in Fig. 5.3(b), as they correspond to asymmetric solutions
and their value at the center of either loop may be used as the input parameter q
in the shooting function.
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Figure 5.3. Two views of a partial bifurcation diagram with
L = 2. (a) Plotting Q the squared L2 norm of the standing wave
solutions. (b) Plotting the value q used in the shooting function.
Colors of branches are consistent between the two panels and with
Fig. 3.3.

An alternative to a numerical shooting method is to use the fact that the solution
on each edge is given by a cnoidal or dnoidal function, see Appendix A, or by a
hyperbolic secant and use the boundary conditions (1.6b) and (1.6c), together with
the complete loop assumption to derive nonlinear equations for the parameters in
these solutions. This is the approach taken in reference [33].

5.3. Two complete loops. Solutions of this type can be completely described
analytically, including the values at Λ for which they bifurcate. Doing so, however,
is somewhat unwieldy, as there are many cases to consider. The restriction to each
loop must be an integer number of periodic orbits of Equation (1.9), and on the
restriction to central edge must be an integer number of half-period orbits, with
φ′2(±L) = 0. One such solution is shown in Fig. 5.4.

In Appendix A, it is shown that when Λ > 0, equation (5.1) has periodic orbits of
period T < Tmax

cn given by (A.2), and that for Λ < 0 it has cnoidal periodic orbits of
all periods outside the separatrix, while inside the separatrix, it has dnoidal periodic
orbits with period T > Tmin

dn given by (A.5).
We can classify all such solutions with a triple (n1,m, n3) as follows

• If ni = 0 or m = 0 then the solution vanishes on the indicated edge.

• We use the label ni = Λ or m = Λ if the φ = ±
√
−Λ
2 on the indicated edge.

This can occur only for Λ < 0.
• ni > 0 if the solution contains exactly ni periods of the cn function on loop i

and ni < 0 if the solution contains exactly |ni| periods of the dn function on
loop i. The former can only occur for Λ < n2

i and the latter for Λ < −n2
i /2.

• m > 0 if the edge e2 contains exactly m half-periods of the cn function and and
m < 0 if the central edge contains exactly |m| half-periods of the dn function.
The former can occur only for Λ < m2Λ∗ and the latter for Λ < −m2Λ∗/2,

where Λ∗ =
(
π

2L

)2
. Here we have used the bounds on the periods of cnoidal

and dnoidal periods (A.3) and (A.6).

Therefore, the trivial solution (0, 0, 0) exists for all Λ, and the other solutions
emerge as Λ is decreased. We present a minimal list, and omit additional solutions
obtained from group orbits of these solutions under (1.12).



NLS BIFURCATIONS ON THE DUMBBELL METRIC GRAPH 2227

-4

-3

-2

-1

0

1

2

3

4

x
1
=

x
2
=L

x
3
=-

x
2
=-L

x
1
=- x

3
=

(a)

-4 -2 0 2 4

-15

-10

-5

0

5

10

15

'

(b)

4

2

0

(c)

-5

1

0

-2

5

0

-1 -4

Figure 5.4. Three views of a typical solution with two complete loops.

• At Λ = n2
1, the solutions (n1, 0, n1) and (n1, 0, 0) bifurcate from (0, 0, 0). Si-

multaneously, for all n3 > n1, the solution (n1, 0, n3) bifurcates from (0, 0, n3).
• At Λ = m2Λ∗, the solution (n1,m, n3) bifurcates from (n1, 0, n3) if m <

2Ln1,3/π.
• At Λ = 0, the solution (Λ,Λ,Λ) bifurcates from (0, 0, 0). Simultaneously

(n1,Λ, n3) bifurcates from (n1, 0, n3) for all n1,3 ≥ 0.
• At Λ = −m2Λ∗/2, solutions of the form (n1,− |m| , n3) bifurcate from those of

the form (n1,Λ, n3). Note that if m < 0 is odd and n1 6= n3 then (n1,m, n3)
and (n3,m, n1) are not related by symmetry.

• At Λ = −n2
1/2, solutions (− |n1| ,Λ,− |n1|) and (− |n1| ,Λ,Λ) bifurcate from

(Λ,Λ,Λ). Simultaneously (− |n1| ,Λ, n3) bifurcates from (Λ,Λ, n3) for all n3 >
− |n1|.

All the resulting branches are displayed in Fig. 5.5. Solutions at the five indicated
points on this bifurcation diagram are displayed in Fig. 5.6.

5.4. One incomplete and one complete loop. Solutions of this type have two
parts. Assume that the incomplete loop lies on edge e1, then at vertex v2, we
have φ′2(L) = 0. Therefore the solution on the lollipop-shaped subgraph formed
by excluding e3 is a nonlinear standing wave with Neumann boundary condition
at vertex v2. We may find all such solutions by the same combination of shooting
argument and numerical continuation described in Section 5.2. For a given value of
Λ, this may be extended to a standing wave on the dumbbell graph if there exists a
cnoidal solution of the form (A.1) with T = 2π/n and |φ2(L)| ≤ α, or if there exists

a dnoidal solution of the form (A.4) with T = 2π/n and
√

1− k2a ≤ |φ2(L)| < a.
Fig. 5.7(a) shows, superimposed, the results of two computations. The solid

curves show the solutions of the problem on the lollipop subgraph with Neumann
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Figure 5.5. Bifurcation diagram for solutions with two complete
loops. Plotted are solutions with |nj | ≤ 2 and |m| ≤ 2. Color
indicates type of solution on the edge e2. The dashed line shows
the nonzero constant solution Φ =

√
−Λ/2.
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Figure 5.6. The standing waves at the six marked points in the bi-
furcation diagram of Fig. 5.5. (a) (0, 0, 2), (b) (1, 0, 2), (c) (1, 1, 2),
(d) (1,Λ, 2), (e) (1,−1, 2), (f) (2,−1, 1). Note from (e) and (f)
that reversing n1 and n3 is not equivalent to a symmetry operation
since a half-period of the dn-function has no symmetries. As Λ
decreases, (b) bifurcates from (a), and then (c), (d), and (e-f)
bifurcate from (b) in that order.

condition at vertex v2. We have plotted φ2(v2) as a function of Λ. Also plotted are
the maximum value of the cnoidal solutions quantized on the loop, for n = 1, 2 and
the minimum and maximum values of the dnoidal solutions quantized on the loop
for n = 1, 2. Solutions on the lollipop can be extended to the dumbbell if |φ2(v2)|
is below the maximum of the cnoidal function or between the minimum and the
maximum of the dnoidal function. In addition to the bifurcations of the lollipop
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solutions, saddle-node bifurcations occur where the lollipop solution curves cross
the curves of complete loop solutions.

A bifurcation diagram for these solutions on the dumbbell is shown in Fig. 5.7(b).
Note that none of the solutions bifurcate from Q = 0. Points where the curve
appears to end are actually saddle-node bifurcations corresponding to the crossings
described in the previous paragraph.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1
0
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15

20

25

Q

Figure 5.7. (a) Solid curves: Partial bifurcation diagram on
the lollipop subgraph. Dashed curves (red) indicate the maxi-
mum values of the quantized cnoidal solutions and the dash-dot
curves (green) the maximum and minimum values of the quan-
tized conoidal solutions on edge e3, with the regions between them
shaded, alternately, for clarity. The marked points at intersections
between the two families of curves indicate saddle node bifurcations
of solutions with cnoidal or dnoidal solutions on the edge e3. (b)
Partial bifurcation diagram on the dumbbell graph.

6. Conclusion. To this author, reference [27] raised the question of whether the
bifurcation scenario seen for NLS on the dumbbell graph is fundamentally different
from that seen in other simpler systems. The far simpler bowtie DST system pos-
sesses the bifurcation structure identical to what they found, indicating that the
phenomenon does not depend on the system being a quantum graph, but suggesting
that the topology of the graph is important. This is confirmed by explicit compari-
son with the analogous problem posed on a line segment. The self-connected edges
can be thought of as providing a singular perturbation to this simpler system, one
which breaks the symmetry of half the families of solutions and thereby transforms
pitchfork bifurcations into transcriticals. By contrast, the lollipop graph has less
symmetry than the dumbbell and thus only transcriticals.

In the opposite direction, conceptually, we have shown how to enumerate the
complete set of standing waves for this system, revealing a tremendous amount of
complexity. Nonetheless, we have only been able to understand this much because
of the relative simplicity of the dumbbell graph. In particular, the loop structure
only permits two types of behavior at the vertices, and from this we are able to
classify the solutions into three types. Further, the shooting methods described
above depend strongly on the simple arrangement of the three edges. On a graph
with many branches, or cycles, such shooting methods would be untenable.
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We have not discussed stability of these standing waves as was done in [33], other
than for the constant valued solution. Of special interest would be the stability of
the solutions of the type (n1, 0, n3) discussed in Section 5.2. Because the phase of
the solution is ill-defined on the edge e2, the components on the other two edges can
each be multiplied by an arbitrary phase. We may ask whether the stability depends
on this phase. Beyond this, we can easily construct solutions which vanish on e2

and for which the solutions on the other two edges oscillate at different frequencies.
Determining the stability of these solutions involves analyzing a genuinely time-
dependent problem requiring Floquet theory.

Finally, In addition, recent work by Kirr has made progress toward analysis
that identifies all the coherent states of a given nonlinear wave system using global
bifurcation theory and perturbations from the large-amplitude limit [25]. It would
be of interest to see if such an approach could be useful in studying the Λ → −∞
limit of the standing wave problem.
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Appendix A. Jacobi elliptic function solutions. This section provides formu-
las for exact solutions to Equation (1.9), it makes use of basic facts about elliptic
integrals and Jacobi elliptic functions that can be found, for example, in Chapters 19
and 22 of the NIST Digital Library of Mathematical Functions [16].

For Λ > 0, the exact solutions are given by cnoidal functions,

Φ = α cn (βx− τ, κ), (A.1)

where

0 ≤ κ < 1√
2
, α2 =

κ2Λ

1− 2κ2
, and β2 =

Λ2

1− 2κ2
.

This has period

Tcn = 4K(κ)

√
1− 2κ2

Λ
, (A.2)

where K(κ) is the complete elliptic integral of the first kind, defined by

K(κ) =

∫ π
2

0

1√
1− κ2 sin2 θ

dθ.

As κ→ 0+, the solution trajectories shrink to a point at the origin and

T → Tmax
cn =

2π√
Λ
, (A.3)

the period of the linearized solution in a neighborhood of the origin. As κ→ 1√
2

−
,

T → 0,

and the diameter of the trajectory diverges.
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For Λ < 0, there are two types of periodic orbits. The first lie outside the
separatrices shown in Fig. 5.1 and are given by the same formulas as above, only for
1√
2
< κ < 1. As κ → 1−, these orbits approach the separatrices and their period

diverges. As κ → 1√
2

+
, the diameter of these orbits diverge, and their period

approaches zero.
The other types of solution trajectories lie inside one or the other of the separa-

trices,
Φ = ±a dn (bx− τ, k), (A.4)

with

0 ≤ k < 1, and a = b =

√
Λ

k2 − 2
and period

Tdn = 2K(k)

√
k2 − 2

Λ
. (A.5)

As k → 0+, these periodic orbits shrink toward the nonzero fixed points and

T → Tmin
dn =

π
√

2√
−Λ

. (A.6)

As k → 1−, these orbits approach the separatrices and their periods diverge.
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