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Abstract. We consider the existence of spatially localized traveling wave solutions of the mass-in-mass lattice. Under an anti-
resonance condition first discovered by Kevrekidis, Stefanov and Xu, we prove that such solutions exist in two distinguished
limits; the first where the mass of the internal resonator is small and the second where the internal spring is very stiff.
We then numerically simulate the solutions, and these simulations indicate that the anti-resonant traveling waves are very
weakly unstable.
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1. Introduction

1.1. The traveling wave problem in mass-in-mass lattices

We study the existence of solitary waves in mass-in-mass (MiM) lattices. An MiM lattice consists of
an infinite chain of particles, called beads or shells, each coupled to its two nearest neighbors, and also
coupled to an additional internal resonator particle. See Fig. 1 for a sketch of the particular MiM model
that we will consider.

MiM lattices belong to a broad class of artificially constructed materials called granular metamaterials,
which are prized in experimental settings for their simple structure and highly tunable properties; one
can vary the masses of the beads and/or the resonators and adjust both the spring forces governing
the beads’ nearest neighbor interaction as well as the bead–resonator coupling, thereby allowing a range
of interaction strengths from the near linear to the highly nonlinear [36]. Physically constructed MiM
lattices have served in a diverse array of experiments, such as constructing sensors for bone elasticity [47]
and ultrasonic scans [38], determining of the setting time for cement [37], modeling switches and logic
gates [33], and modeling vibration absorption in composite materials [5,17].

The MiM lattices in this paper have the following form. All of the beads are identical and are nor-
malized to have mass 1. We index the beads by integers j ∈ Z. The springs connecting the beads are
also identical, and all have the same potential V ∈ C1(R); we will add some further hypotheses on V
later. Likewise, the resonators are identical and have mass μ > 0. The bead-resonator spring is linear and
exerts the force κr when stretched a distance r; here κ > 0 is fixed. If we denote by Uj the position of
the center of mass of the jth bead and uj the position of the center of mass of the jth bead’s resonator,
then Newton’s second law requires Uj and uj to satisfy the following system:

Üj = V ′(Uj+1 − Uj) − V ′(Uj − Uj−1) + κ(uj − Uj); (1.1a)

μüj = κ(Uj − uj). (1.1b)
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(A) A snippet of the MiM lattice
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(B) A close-up of one bead-resonator pair

Fig. 1. The mass-in-mass lattice

Remark 1.1. Without loss of generality, we may assume V ′(0) = 0, for if not we can put V (r) = V ′(0)r+
W (r) with W (r) implicitly defined. Making this change in (1.1) simply replaces each V with W and we
have W ′(0) = 0.

We work, as is typical in lattice models, in the relative displacement coordinates

Rj := Uj+1 − Uj and rj := uj − Uj .

Then we make the following traveling wave ansatz:

Rj(t) = ρ1(j − ct + 1/2) and rj(t) = ρ2(j − ct). (1.2)

Here ρ1 = ρ1(x) and ρ2 = ρ2(x) are the traveling wave profiles and c ∈ R is the wave speed. The shift
by 1/2 in ρ1 induces a convenient symmetry we exploit at a later point. In any case, ρ1 and ρ2 satisfy

c2ρ′′
1 − δ2V ′(ρ1) − κδρ2 = 0 (1.3a)

c2μρ′′
2 + κ(1 + μ)ρ2 + μδV ′(ρ1) = 0. (1.3b)

Here δ is the linear difference operator

δf(x) := f(x + 1/2) − f(x − 1/2). (1.4)

1.2. Distinguished material limits

We will look for solitary traveling wave solutions to (1.3). That is, we seek solutions ρ1 and ρ2 that
vanish exponentially fast at infinity in the sense that cosh(·)bρj ∈ Hs(R) for some b > 0. We find that
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such solitary traveling waves exist for special choices of the wave speed c, the resonator mass μ, and the
bead-resonator spring constant κ, corresponding to two different “material limits” in the lattice, which
we now describe.

1.2.1. Small resonator limit. We fix the traveling wave speed c and the bead-resonator spring constant
κ and send μ → 0. At μ = 0, we have removed the resonator entirely and reduced the MiM lattice to a
monatomic Fermi–Pasta–Ulam–Tsingou (FPUT) lattice [8,14] with nearest neighbor interaction potential
given by V .

This is naturally reflected in the traveling wave equations. Set μ = 0 in (1.3b) to see that ρ2 = 0 is a
solution, and then the first Eq. (1.3a) reads simply

c2ρ′′
1 − δ2V ′(ρ1) = 0. (1.5)

This is the governing equation for traveling wave solutions of monatomic FPUT. There are a host of
different sorts of solutions to this equation, depending, in particular, on how the potential V is chosen.
We are especially interested in solitary wave solutions like those developed by Friesecke and Wattis in
[16] and Friesecke and Pego in [15]; see Sect. 2 for further comments on the lattices in these papers. Do
these solitary waves persist for small μ > 0?

1.2.2. Stiff internal spring limit. We again fix the traveling wave speed but now also fix the resonator
mass μ and send κ → ∞. A system with completely stiff internal springs corresponds to putting “κ = ∞”
in (1.3). As in the previous special case, this should reduce the problem to a standard FPUT lattice
wherein the mass of the particles is the sum of that of the outer shells and inner resonators, which is
1 + μ.

To see this at the level of (1.3), put ρ3 = κρ2 so that (1.3) become

c2ρ′′
1 − δ2V ′(ρ1) − δρ3 = 0 (1.6a)

c2μκ−1ρ′′
3 + (1 + μ)ρ3 + μδV ′(ρ1) = 0. (1.6b)

Then letting κ = ∞, we see that (1.6b) implies that

ρ3 = − μ

1 + μ
δV ′(ρ1).

Substituting this into (1.6a) then gets us

c2ρ′′
1 − δ2V ′(ρ1) +

(
μ

1 + μ

)
δ2V ′(ρ1) = 0

or rather, after some easy algebra,

(1 + μ)c2ρ′′
1 − δ2V ′(ρ1) = 0.

This is, again, is the governing equation for traveling wave solutions of the monatomic FPUT lattice,
though now the mass of the particles is, as expected, 1 + μ. Do solutions of these equations persist when
κ is merely huge?

1.3. Existing results on MiM traveling waves

Our motivation for studying MiM lattices, and in particular the incarnation of the lattice discussed in
Sect. 1.1, comes from a variety of recent results on MiM traveling waves, which we now summarize briefly.
We first observe that the majority of these results use a Hertzian potential to govern the nearest neighbor
interaction V of the beads. That is, for r ∈ R set

[r]+ :=

{
r, r ≥ 0
0, r < 0
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and, for some ε0 ≥ 0 and p > 1, take the potential V to satisfy

V ′(r) = [ε0 + r]p+. (1.7)

The case ε0 > 0 corresponds to a “precompressed” lattice.
There are a number of results on solitary waves in monatomic FPUT lattices with Hertzian nearest

neighbor interactions. The traveling wave equation for these lattices is just (1.5) with V given by (1.7).
In the absence of precompression (ε0 = 0), English and Pego [9] prove that all traveling wave solutions
to this problem that vanish at infinity do so doubly exponentially fast; the existence of such traveling
wave solutions is a straightforward consequence of the solitary wave theory of Friesecke and Wattis [16].
Stefanov and Kevrekidis have considered both the Hertzian monatomic lattice without precompression
[39] and with precompression [40]. In each case, they show that the solitary waves are non-decreasing on
(−∞, 0) and non-increasing on (0,∞); in the latter paper allowing precompression, they obtain supersonic
solitary waves, depending on the constants ε0 and p from (1.7).

The situation for mass-in-mass lattices with Hertzian nearest neighbor interactions between the beads
is somewhat different. An ample body of numerical evidence [30–32,45,46] indicates that the generic trav-
eling wave solution for a Hertzian mass-in-mass lattice (i.e., the solutions to (1.3) with V satisfying (1.7)
for some ε0 and p) is not a solitary wave but a nanopteron. The nanopteron traveling wave profile does
not vanish at infinity like the solitary wave but instead asymptotically approaches a small-amplitude,
high-frequency periodic oscillation [6].

The existence of nanopterons in a different lattice model, the diatomic FPUT lattice, has recently
been confirmed under a variety of different material limits. The diatomic FPUT lattice consists of an
infinite chain of particles of alternating masses connected by identical springs whose potential V , after
normalization, satisfies

V ′(r) = r + r2. (1.8)

Faver and Wright [13] found nanopteron traveling waves in the KdV-long wave limit, and Hoffman and
Wright [23] constructed them for the small mass limit; Faver [11] has also constructed nanopterons for
the related long wave limit for FPUT lattices with alternating springs and constant masses. Faver and
Hupkes [12] found a related breed of “generalized” or “nonlocal” solitary waves, called micropterons, in
diatomic FPUT lattices in the equal mass limit. All of these FPUT articles rely on an ansatz initially
proposed by Beale [3] for a capillary-gravity water wave problem; later, Amick and Toland [1] adapted
Beale’s ansatz for a singularly perturbed KdV-type ODE, and recently Johnson and Wright [29] applied it
to a singularly perturbed Whitham equation. We note that nanopteron traveling waves are not limited to
FPUT lattices with only nearest neighbor interaction. Iooss and Kirchgässner [25] combine the techniques
of spatial dynamics, center manifold theory, normal form analysis, and oscillatory integral analysis due to
Lombardi [34] to find nanopterons in a monatomic lattice with linear nearest neighbor interactions and a
nonlinear on-site potential, while Venney and Zimmer [44] use related methods to construct nanopterons
in a monatomic lattice with nonlinear nearest and next-to-nearest neighbor interactions. Jayaprakash,
Vakakis and Starosvetsky [28] study the so-called the 1:N dimer lattice, which is formed by alternating
“heavy” beads with a succession of N ≥ 1 “light” beads (thus the 1:1 lattice is diatomic); here, the particle
interaction is Hertzian without precompression, and they obtain, for special values of their material
parameters, solitary waves, and more generally “near-solitary” waves with oscillatory tails.

Our work here is most closely related to [31] by Kevrekidis, Stefanov and Xu. In that paper, the
authors pursue not the intriguing numerical evidence that they present for nanopterons in Hertzian MiM
lattices but rather give a rigorous construction of solitary waves for special “antiresonance” values of the
wave speed c and resonator mass μ. (They elect to normalize κ = 1). That is, given a wave speed c, they
find a countable number of mass values for which the uncompressed Hertzian MiM lattice bears genuine
solitary waves. In the next section, we re-derive this antiresonance condition.
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1.4. The Kevrekidis–Stefanov–Xu antiresonance condition revisited

Recall that we are interested in solutions of the traveling wave system (1.3) which are spatially localized
in the sense that they tend to zero as |x| → ∞. We note that (1.3b) is nothing more than the equation
of a driven simple harmonic oscillator with “natural frequency”

ωc,μ,κ :=

√
κ(1 + μ)

c2μ
. (1.9)

So, if we specify zero initial conditions at x = −∞, variation of parameters implies

ρ2(x) = − 1
c2ωc,μ,κ

x∫
−∞

sin(ωc,μ,κ(x − y))δV ′(ρ1)(y)dy. (1.10)

We rewrite this as

ρ2(x) = − 1
c2ωc,μ,κ

�
⎛
⎝eiωc,μ,κx

x∫
−∞

e−iωc,μ,κyδV ′(ρ1)(y)dy

⎞
⎠ . (1.11)

If we are to have ρ2(x) → 0 as x → ∞, we must have
∞∫

−∞
e−iωc,μ,κyδV ′(ρ1)(y)dy = 0.

Thus, necessarily,

̂δV ′(ρ1)(ωc,μ,κ) = 0. (1.12)

This says the driver of the simple harmonic oscillator has no spectral content at the natural frequency;
as such (1.12) represents an “antiresonance condition.”

Meeting (1.12) seems like a tall order since, in advance, we do not know ρ1. But notice that δ, defined
in (1.4), is a Fourier multiplier operator with symbol 2i sin(ξ/2). Thus (1.12) reads

sin (ωc,μ,κ/2) ̂V ′(ρ1)(ωc,μ,κ) = 0 (1.13)

and we see that (1.13) is satisfied, no matter what ρ1 may be, if

ωc,μ,κ =

√
κ(1 + μ)

c2μ
= 2nπ, n ∈ N. (1.14)

This simple algebraic relation among c, μ and κ turns out to be equivalent to the antiresonance condition
in [31] (recalling that κ = 1 in that paper).

1.5. The antiresonance-nanopteron connection

Motivated by the successful FPUT small mass limit of Hoffman and Wright [23] and the numerical evi-
dence for Hertzian MiM nanopterons discussed above, Faver studies the small resonator limit in FPUT-
MiM lattices in the forthcoming paper [10]. These are MiM lattices in which the nearest neighbor inter-
action of the beads is given by (1.8), which itself is a special case of the potentials that we consider in
this paper. In this limit, as in Sect. 1.2.1, the wave speed c and the bead-resonator spring constant κ
are fixed, and the resonator mass μ is sent to 0. One can view the FPUT potential (1.8) as, roughly, the
Taylor expansion of the Hertzian potential with precompression, i.e., taking ε0 > 0 in (1.7).
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Using Beale’s nanopteron ansatz and methods similar to those in [23], one can construct nanopteron
traveling waves in FPUT-MiM lattices in the limit as μ → 0 for all but a “small” number of resonator
masses μ. More precisely, one has solutions to (1.3) of the form

ρ1,μ = ς1,μ + aμφ1,μ and ρ2,μ = ς2,μ + aμφ2,μ, (1.15)

where ςj,μ is exponentially localized, aμ ∈ R and φj,μ is periodic, with ρ1 = aμφ1,μ and ρ2 = aμφ2,μ

also solving (1.3). However, this nanopteron program breaks down at the countable number of μ satisfy-
ing (1.14), and so no information about the existence of nanopterons at those μ can be gleaned from it.
Our paper in part complements Faver’s work by showing that at these μ there are genuine solitary waves.

An intriguing question for future consideration is, for μ small and not satisfying (1.14), whether or not
aμ from (1.15) is zero. If aμ = 0, then ρ1,μ and ρ2,μ are genuine MiM solitary waves. In other words, are
solitary waves limited to the antiresonance case, or can they be byproducts of the nanopteron method,
too?

2. Main results

We show that if the antiresonance condition (1.14) is met, then, yes, the solitary waves obtained in
the distinguished limits described in Sect. 1.2 persist. To state these results precisely, we need a few
definitions. We will largely work in the spaces

Hs
b :=

{
f ∈ Hs : cosh(·)bf ∈ Hs

}
.

These are Banach spaces with norm

‖f‖s,b := ‖ cosh(·)bf‖Hs

and they consist of functions which “decay like e−b|x| as |x| → ∞.” We will also make use of the following
subspaces of Hs

b :

Es
b := Hs

b ∩ {even functions} , Es
b,0 := Es

b ∩
⎧⎨
⎩f :

∫
R

f(x)dx = 0

⎫⎬
⎭ ,

and

Os
b := Hs

b ∩ {odd functions} .

We also need “a solution to perturb from,” and so we make the following definition.

Definition 2.1. We say c is a “V -admissible wave speed” if there exist β > 0 and a nonzero function
σ ∈ E2

β for which the following hold.

(i) c2σ′′ − δ2V ′(σ) = 0.
(ii) The operator

Hf := c2f ′′ − δ2V ′′(σ)f (2.1)

is a homeomorphism from E2
β onto E0

β,0.

Moreover if V is smooth (C∞), then so is σ, and H is a homeomorphism from Es+2
β to Es

β,0 for all s ≥ 0.

Our first result concerns the “small internal resonator limit.”

Theorem 2.2. Assume that V (r) is C5, V ′(0) = 0 and c 	= 0 is a V -admissible wave speed. Fix κ > 0 and
suppose that

μ = μn :=
κ

4π2c2n2 − κ
, n ∈ N (2.2)
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so that (1.14) is satisfied. Then there exist C > 0 and N ∈ N such that n ≥ N implies the existence of
unique functions ρ1, ρ2 ∈ H2

β with the following properties:
(i) ρ1 and ρ2 solve (1.3).
(ii) ρ1 is even and ρ2 is odd.
(iii) ‖σ − ρ1‖2,β ≤ C/n2 and ‖ρ2‖2,β ≤ C/n.
Moreover, if V is smooth (C∞) then so are ρ1 and ρ2, and the estimates in (iii) improve to ‖σ −ρ1‖s,β +
‖ρ2‖s,β ≤ C/n2 for any s ≥ 0.

The second result concerns the “stiff internal spring limit.”

Theorem 2.3. Fix μ > 0. Assume that V (r) is C5, V ′(0) = 0 and c 	= 0 is a (1 + μ)−1V -admissible wave
speed. Suppose that

κ = κn :=
4π2c2n2μ

1 + μ
, n ∈ N (2.3)

so that (1.14) is satisfied. Then there exist C > 0 and N ∈ N such that n ≥ N implies the existence of
unique functions ρ1, ρ2 ∈ H2

β with the following properties:
(i) ρ1 and ρ2 solve (1.3).
(ii) ρ1 is even and ρ2 is odd.
(iii) ‖σ − ρ1‖2,β + ‖ρ2‖2,β ≤ C/n.

Moreover, if V is smooth (C∞) then so are ρ1 and ρ2, and the estimate in (iii) improves to ‖σ −ρ1‖s,β +
‖ρ2‖s,β ≤ C/n2 for any s ≥ 0.

Remark 2.4. Given that our work is closely related to that of [31], we make a brief comparison of our
results with those in that paper. First of all, their result is specialized to the Hertzian potential (1.7) with
no precompression, a situation to which our theorems do not apply. Second, their method is variational
and works for any antiresonant values of their parameters, not just those with n large enough. Third,
they do not address the stiff internal spring limit, as their internal spring has fixed value throughout.
Fourth, they obtain the doubly exponential decay rate (as in [9]) of their profile functions as well as the
positivity of the same. We do not expect the first to hold for the non-degenerate potentials of the sort we
are interested in here. As for positivity, we do not obtain it either, though our simulations indicate that
ρ1 is positive. Lastly, for readers interested in making precise comparisons between their work and ours,
we note that our choice of variables are slightly different than the variables used in [31]. Our variable ρ1
(which descends from the relative displacement between hosting shells Rj) corresponds, up to very minor
changes, to their profile variable Φ. However our ρ2 is not analogous to their other variable Ψ. For us
ρ2 descends from the relative displacement between the shell and its host, rj , whereas their variable Ψ
comes from the relative displacement between adjacent internal resonators (what they call yj and in our
variables would be uj−1 − uj). Following through the algebra gives the following relations:

Φ(s) = −ρ1(s − 1/2) and Ψ(s) = ρ2(s − 1) − ρ2(s) − ρ1(s − 1/2).

Before moving on to the proofs, we note that there are a number of choices for c and V where it known
that c is a V -admissible wave speed.

(i) Friesecke and Wattis [16] prove the existence of solitary waves for potentials V ∈ C2 that are
“superquadratic” in the sense that V (r)/r2 is strictly increasing on either (0,∞) or (−∞, 0). The
wave speeds c are “supersonic” in the sense that c2 > V ′′(0). Examples of such superquadratic
potentials for which their method applies include the following.

• The “cubic” FPUT potential

V (r) =
1
2
ar2 +

1
6
br3, a > 0, b 	= 0, (2.4)

which, along with the “quartic” potential below, was part of the original FPUT study [14].
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• The “quartic” FPUT potential

V (r) =
1
2
r2 +

1
4
br4, b > 0.

• The Toda potential V (r) = ab−1(e−br − br − 1), ab > 0 (see also [42,43]).
• The Lennard–Jones potential V (r) = a((r + d)−6 + r−6)2, a, d > 0.
• The Hertzian potential (1.7) with precompression:

V (r) =

{
(r + ε0)p, (r + ε0)p ≥ 0
0, (r + ε0)p < 0,

where ε0 > 0 and p > 2.
(ii) Friesecke and Pego [15] find solitary waves in the “near-sonic/KdV limit” for potentials V ∈ C4

satisfying V (0) = V ′(0) = 0, V ′′(0) > 0 and V ′′′(0) 	= 0. Their solitary waves have speeds c satisfying
c2 larger than, but close to, V ′′(0). All of the potentials mentioned above from the Friesecke–Wattis
results, except the quartic potential, fall into this category. (The Hertzian potential does not vanish
at r = 0, but one can modify it with Remark 1.1; see [7] for a Taylor expansion of this potential in
the “weakly nonlinear regime” of r ≈ 0). Hoffman and Wright [23] and Faver and Hupkes [12] prove
the invertibility of H from (2.1) under slightly different sets of assumptions for the cubic FPUT
potential. We remark that Iooss [24] adapts the spatial dynamics and center manifold theory of
[25] to determine all small bounded traveling wave solutions to the monatomic FPUT lattice for
potentials V ∈ C4, including but not limited to solitary waves.

(iii) Herrmann and Matthies [20–22] study the model potential

V (r) =
1

m(m + 1)

(
1

(1 − r)m
− mr − 1

)
, m > 1,

in the “high-energy limit,” for arbitrarily large wave speeds. In particular, the invertibility of H for
this potential is discussed in [21]. See also the additional convex potentials described in Section 4.4
of [19].

3. The proofs of Theorems 2.2 and 2.3

3.1. Reduction to a single equation

The first step in the proofs is to use the antiresonance condition (1.14) to develop a useful formula for
ρ2 in terms of ρ1, thereby reducing the problem to a single equation for ρ1. We saw in (1.11) one such
formula, but it will be more convenient to work on the Fourier side and express the formula in terms of
Fourier multipliers.

We assume c, μ and κ satisfy (1.14) and apply the Fourier transform to the second traveling wave
Eq. (1.3b) to get (−c2μξ2 + κ(1 + μ)

)
ρ̂2(ξ) + 2iμ sin(ξ/2) ̂V ′(ρ1)(ξ) = 0. (3.1)

Isolating ρ2 gives

ρ2 = Σc,μ,κV ′(ρ1) (3.2)

where the operator Σc,μ,κ is the Fourier multiplier operator with symbol

Σ̃c,μ,κ(ξ) :=
2iμ sin(ξ/2)

c2μξ2 − κ(1 + μ)
. (3.3)

Condition (1.14) implies that the singularities in the multiplier due to the zeroes of the denominator are
removable; in fact, demanding that these singularities are removable is another path to determining (1.14).
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Remark 3.1. Standard results about the Fourier transforms of sinc and convolutions can be used to show
that the formula (3.2) coincides with (1.11).

We put the expression for ρ2 from (3.2) into the first traveling wave Eq. (1.3a), to get

c2ρ′′
1 − (

δ2 + κδΣc,μ,κ

)
V ′(ρ1) = 0. (3.4)

Kevrekidis, Stefanov and Xu also reduce their solitary wave problem in [31] to a single equation for ρ1 by
using Fourier methods. But afterward their methods and ours diverge: They use a variational approach
to solve for ρ1, whereas we will construct it with a perturbation argument. (We note that they set up
a similar Fourier argument in [46] for an MiM lattice whose bead interaction is governed by a Hertzian
potential with precompression, unlike that in [31]).

Note that sin(ξ/2)Σ̃c,μ,κ is quadratic in ξ for ξ ∼ 0, as is the multiplier for δ2. This motivates
“regularizing” (3.4) by applying ∂−2

x (interpreted as a Fourier multiplier with symbol −1/ξ2) to it to get:

c2ρ1 − (
∂−2

x δ2 + Γc,μ,κ

)
V ′(ρ1) = 0. (3.5)

Here Γc,μ,κ := κ∂−2
x δΣc,μ,κ is a Fourier multiplier with symbol

Γ̃c,μ,κ(ξ) =
4κμ sin2(ξ/2)

ξ2(c2μξ2 − κ(1 + μ))
=

4κ

c2
sin2(ξ/2)

ξ2(ξ2 − ω2
c,μ,κ)

. (3.6)

Likewise the multiplier for ∂−2
x δ2 is sinc2(ξ/2). Equation (3.5) is the main version of the system we will

be working to solve.

3.2. Estimates on Σc,μ,κ and Γc,μ,κ .

A routine partial fractions expansion shows that
1

ξ2(ξ2 − ω2)
= − 1

ω2ξ2
+

1
2ω3(ξ − ω)

− 1
2ω3(ξ + ω)

.

Thus we have

Γ̃c,μ,κ(ξ) =
4κ

c2

(
− sin2 (ξ/2)

ω2
c,μ,κξ2

+
sin2 (ξ/2)

2ω3
c,μ,κ(ξ − ωc,μ,κ)

− sin2 (ξ/2)
2ω3

c,μ,κ(ξ + ωc,μ,κ)

)
.

If we assume the antiresonance condition (1.14), then the addition of angles formula tells us that
sin (ξ/2) = sin ((ξ − ωc,μ,κ)/2) cos (ωc,μ,κ/2) . Using this in the last expression gives, after some algebra:

Γ̃c,μ,κ(ξ) = − κ

c2ω2
c,μ,κ

sinc2 (ξ/2) + Ψ̃c,μ,κ(ξ)

where

Ψ̃c,μ,κ(ξ) :=
κ

c2ω3
c,μ,κ

sin (ξ/2) cos (ωc,μ,κ/2) [sinc ((ξ − ωc,μ,κ)/2) − sinc ((ξ + ωc,μ,κ)/2)] .

Therefore (1.14) implies

Γc,μ,κ = − κ

c2ω2
c,μ,κ

∂−2
x δ2 + Ψc,μ,κ (3.7)

where Ψc,μ,κ is a Fourier multiplier with symbol Ψ̃c,μ,κ(ξ).
A very similar line of reasoning shows that (1.14) implies

Σ̃c,μ,κ(ξ) =
i

2c2ωc,μ,κ
cos(ωc,μ,κ/2) [sinc ((ξ − ωc,μ,κ)/2) − sinc ((ξ + ωc,μ,κ)/2)] . (3.8)

With (3.7) and (3.8) in hand, we can call on the following result (see [2], for instance) for quantitative
estimates:
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Lemma 3.2. Let M be a Fourier multiplier operator and assume that its symbol M̃(z) is analytic in the
set {|�(z)| ≤ b}. Then

‖M‖Hs
b →Hs−r

b
≤ C sup

ξ∈R

∣∣∣(1 + |ξ|)−rM̃(ξ ± ib)
∣∣∣ .

The constant C > 0 depends only on r, not on M or b or s.

The sinc and sin functions are entire and are also bounded in horizontal strips of the complex plane,
i.e., sup|�(z)|≤b (| sin(z)| + | sinc(z)|) ≤ Cb for some Cb > 0. Moreover, the mulitpliers for Γc,μ,κ and Ψc,μ,κ

are even in ξ and as such map even functions to even functions. The multiplier for Σc,μ,κ is odd and thus
flips parity. Therefore we can conclude from (3.7) and (3.8):

Lemma 3.3. For all b > 0 there exists a constant Cb > 0 such that if c, μ and κ are positive and
meet (1.14), then

‖Σc,μ,κ‖Es
b →Os

b
≤ Cb

c2ωc,μ,κ
, ‖Γc,μ,κ‖Es

b →Es
b

≤ Cbκ

c2ω2
c,μ,κ

and ‖Ψc,μ,κ‖Es
b →Es

b
≤ Cbκ

c2ω3
c,μ,κ

.

We need a few more technical estimates. For ω ∈ R let Sω be the Fourier multiplier with symbol
S̃ω(ξ) := sinc((ξ − ω)/2). Note that these are constituent elements of ∂−2

x δ2, Σc,μ,κ and Ψc,μ,κ. We have:

Lemma 3.4. For all b ≥ 0 there exists Cb > 0 such that, for all s ≥ 0,

‖Sω‖Hs
b →Hs−1

b
≤ Cb/(1 + |ω|) and ‖Sω‖Hs

b →Hs+1
b

≤ Cb(1 + |ω|).
Proof. The multiplier for Sω is entire and from Lemma 3.2 we know that

‖Sω‖Hs
b →Hs±1

b
≤ C sup

ξ∈R

∣∣(1 + |ξ|)±1 sinc((ξ + ib − ω)/2)
∣∣ .

Elementary considerations show that there is a constant Cb > 0 for which

| sinc((ξ + ib − ω)/2)| ≤ Cb(1 + (ξ − ω)2)−1/2

holds for all ξ ∈ R. Similarly (1 + |ξ|)−1 ≤ C(1 + ξ2)−1/2 for all ξ ∈ R. Then methods from differential
calculus show that maxξ∈R(1 + (ξ − ω)2)−1/2(1 + ξ2)−1/2 ≤ C/(1 + |ω|). This gives the first estimate in
the lemma.

As for the other estimate, we know that (1+ |ξ|) ≤ C(1+ξ2)1/2 for all ξ ∈ R. And differential calculus
again tells us that maxξ∈R(1 + (ξ − ω)2)−1/2(1 + ξ2)1/2 ≤ C(1 + |ω|). This completes the proof. �

Lemma 3.4 immediately implies:

Lemma 3.5. For all b > 0, there exists a constant Cb > 0 such that if c, μ and κ are positive and
meet (1.14), then

‖Σc,μ,κ‖Es
b →Os−1

b
≤ Cb

c2ω2
c,μ,κ

and ‖Ψc,μ,κ‖Es
b →Es−1

b
≤ Cbκ

c2ω4
c,μ,κ

. (3.9)

Likewise

‖Σc,μ,κ‖Es
b →Os+1

b
≤ Cb

c2
and ‖Ψc,μ,κ‖Es

b →Es+1
b

≤ Cbκ

c2ω2
c,μ,κ

. (3.10)

Lemma 3.5 imputes a sort of “Jeckyll and Hyde” identity to the operators. The estimates in (3.9)
tell us that these operators are small when ωc,μ,κ is large, but that this smallness comes at a cost in
regularity. The estimates in (3.10) tell us that these operators are smoothing, but in this case they are
not (as) small.
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3.3. A perturbation lemma

Note that (3.5) is a perturbation of c2ρ1 − ∂−2
x δ2V ′(ρ1) = 0. It is an easy exercise to show the following.

Lemma 3.6. If c is a V -admissible wave speed, then:
(i) c2σ − ∂−2

x δ2V ′(σ) = 0 and
(ii) the operator

Lf := c2f − ∂−2
x δ2V ′′(σ)f (3.11)

is a homeomorphism from E2
β to itself.

Moreover if V is smooth (C∞) then so is σ and L is a homeomorphism from Es
β to itself for all s ≥ 0.

Since we now know from Lemma 3.3 how big Γc,μ,κ is in (3.5), we will use the following result to find
solutions.

Lemma 3.7. Assume that V (r) is C5 and that c is a V -admissible wave speed. Then there are positive
constants α and τ so that for each linear operator B : E2

β → E2
β with ‖B‖E2

β→E2
β

≤ τ , there is a unique
function ρ ∈ E2

β for which

c2ρ − (∂−2
x δ2 + B)V ′(ρ) = 0 and ‖σ − ρ‖2,β ≤ α‖B‖E2

β→E2
β
.

Proof. Let ρ = σ + η and substitute this into c2ρ − (∂2−
x δ2 + B)V ′(ρ) = 0. Recalling the definition of L

from (3.11), one finds that η solves

Lη = ∂−2
x δ2 (V ′(σ + η) − V ′(σ) − V ′′(σ)η) + BV ′(σ + η).

Since V ′(0) = 0, we have V ′(f) ∈ E2
β for any f ∈ E2

β (see Lemma 3.8 below). The operators ∂−2
x δ2 and

B both map E2
β into itself and so we can invert L to get

η = L−1
(
∂−2

x δ2 (V ′(σ + η) − V ′(σ) − V ′′(σ)η)
)

+ L−1BV ′(σ + η) =: R(η).

We now show that R is a contraction on an appropriate closed ball in E2
β . We first use the boundedness

of L−1, ∂−2
x δ2 and B to get

‖R(η)‖2,β ≤ C‖V ′(σ + η) − V ′(σ) − V ′′(σ)η‖2,β + C‖B‖E2
β→E2

β
‖V ′(σ + η)‖2,β (3.12)

and

‖R(η) − R(γ)‖2,β

≤ C‖ (V ′(σ + η) − V ′(σ) − V ′′(σ)η) − (V ′(σ + γ) − V ′(σ) − V ′′(σ)γ) ‖2,β

+C‖B‖E2
β→E2

β
‖V ′(σ + η) − V ′(σ + γ)‖2,β . (3.13)

Next we need the following substitution operator estimates, which can be deduced from Propositions
B.3 and B.6 in [11].

Lemma 3.8. Fix b ≥ 0, P > 0 and s ≥ 1.
(i) Suppose that F : R → R is Cs+1 and F (0) = 0. Then F (f) ∈ Es

b and there is C > 0 such that if
‖f‖s,b ≤ P , then ‖F (f)‖s,b ≤ C‖f‖s,b.

(ii) Suppose that F : R → R is Cs+2. For f, g ∈ Es
b let Lf (g) := F (f+g)−F (f) and Qf (g) := F (f+g)−

F (f)−F ′(f)g. Then there exists C > 0 such that for all f, g1, g2 ∈ Hs
b with ‖f‖s,b, ‖g1‖s,b, ‖g2‖s,b ≤

P we have

‖Lf (g1) − Lf (g2))‖s,b ≤ C‖g1 − g2‖s,b

and

‖Qf (g) − Qf (g2)‖s,b ≤ C (‖g1‖s,b + ‖g2‖s,b) ‖g1 − g2‖s,b.
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Since we have assumed that V is C5 and V ′(0) = 0, we can apply these estimates in Lemma 3.8 to
the right hand sides of (3.12) and (3.13) to get

‖R(η)‖2,β ≤ 1
2
α
(
‖η‖22,β + ‖B‖E2

β→E2
β

)
(3.14)

and

‖R(η) − R(γ)‖2,β ≤ 1
2
α
(
‖η‖2,β + ‖γ‖2,β + ‖B‖E2

β→E2
β

)
‖η − γ‖2,β , (3.15)

for some α > 0 so long as η, γ ∈ E2
β with ‖η‖2,β , ‖γ‖2,β ≤ 1.

Next, define

τ := min
{

1
α

,
1
α2

,
1

2α2 + α

}
.

Assume ‖B‖E2
β→E2

β
≤ τ and η, γ ∈ E2

β with ‖η‖2,β , ‖γ‖2,β ≤ α‖B‖E2
β→E2

β
. Thus (3.14) implies

‖R(η)‖2,β ≤ 1
2
α
(
α2‖B‖E2

β→E2
β

+ 1
)

‖B‖E2
β→E2

β
≤ α‖B‖E2

β→E2
β

and (3.15) implies

‖R(η) − R(γ)‖2,β ≤ 1
2
(
2α2 + α

) ‖B‖E2
β→E2

β
‖η − γ‖2,β ≤ 1

2
‖η − γ‖2,β .

That is, R is a contraction on the ball of radius α‖B‖E2
β→E2

β
centered at the origin in E2

β , and so Banach’s
fixed point theorem provides us with the solution of our equation. �

3.4. The final steps for the proof of Theorem 2.2

Suppose that c 	= 0 is V -admissible and take σ and β as in Definition 2.1. Fix κ > 0. Take μ = μn as
in the statement of Theorem 2.2 so that (1.14) is satisfied. Thus we have ωc,μn,κ = 2nπ for n ∈ N. Let
Bn := Γc,μn,κ. Lemma 3.3 then implies that

‖Bn‖Es
β→Es

β
≤ Cβκ/c2ω2

c,μn,κ ≤ C/n2.

And so for n sufficiently large, ‖Bn‖Es
β→Es

β
falls below the threshold τ from Lemma 3.7 and that result

conjures up ρ1 ∈ E2
β for which c2ρ1 − (∂−2

x δ2 + Bn)V ′(ρ1) = 0 and

‖σ − ρ1‖2,β ≤ α‖Bn‖Es
β→Es

β
≤ C/n2. (3.16)

Next put ρ2 = Σc,μn,κV ′(ρ1) as in (3.2). From Lemma 3.3, we know that

‖Σc,μn,κ‖E2
β→O2

β
≤ C/ωc,μn,κ ≤ C/n.

Since ρ1 is even, so is V ′(ρ1) and we have ρ2 ∈ O2
β with ‖ρ2‖2,β ≤ C‖V ′(ρ1)‖2,β/n. Then we use the

substitution operator estimates in Lemma 3.8 to get ‖V ′(ρ1)‖2,β ≤ C‖ρ1‖2,β ≤ C. Therefore ‖ρ2‖2,β ≤
C/n. Unraveling the steps which lead from (1.3) to (3.2) and (3.5) shows that ρ1 and ρ2 solve (1.3) and
we have conclusions (i), (ii) and (iii) of Theorem 2.2.

Now we prove the amplification of the result when V is smooth; the main additional piece of infor-
mation here is that σ is smooth. The first step is to prove the stronger estimate for ‖ρ2‖2,β . Since ρ2
satisfies (3.2), we have

ρ2 = Σc,μn,κV ′(σ) + Σc,μn,κ [V ′(ρ1) − V ′(σ)] . (3.17)

Taking the H2
β norm of both sides gives:

‖ρ2‖2,β ≤ ‖Σc,μn,κV ′(σ)‖2,β + ‖Σc,μn,κ [V ′(ρ1) − V ′(σ)] ‖2,β .
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On the first term, we use the estimate (3.9) for Σc,μ,κ in Lemma 3.5 to get

‖Σc,μn,κV ′(σ)‖2,β ≤ Cω−2
c,μn,κ‖V ′(σ)‖3,β ≤ C/n2.

Note that it was essential here that σ be smooth. As for the second term, the estimate for Σc,μ,κ in
Lemma 3.3 gives

‖Σc,μn,κ [V ′(ρ1) − V ′(σ)] ‖2,β ≤ Cω−1
c,μn,κ‖V ′(ρ1) − V ′(σ)‖2,β ≤ C‖V ′(ρ1) − V ′(σ)‖2,β/n.

Substitution operator estimates from Lemma 3.8, together with (3.16), give us

‖V ′(ρ1) − V ′(σ)‖2,β ≤ C‖ρ1 − σ‖2,β ≤ C/n2.

Thus we have ‖ρ2‖2,β ≤ C/n2.
The completion of the proof is done via a bootstrap argument. Let η := ρ1 − σ. Since c2σ′′ = δ2V ′(σ)

and ρ1 solves (1.3a), we see that

η′′ = c−2δ2[V ′(ρ1) − V ′(σ)] + c−2κδρ2.

This implies, using the same sort of reasoning as above, that

‖η‖s+2,β ≤ C‖η‖s,β + C‖ρ2‖s,β . (3.18)

Last, we estimate the ρ2 term in (3.18). If we apply the Σc,μ,κ estimate (3.9) to the first term in (3.17),
again relying on the smoothness of σ, and crudely estimate the second using the Σc,μ,κ estimate (3.10)
and the substitution operator estimates, we get

‖ρ2‖s+1,β ≤ C/n2 + C‖η‖s,β . (3.19)

Since we know that ‖η‖2,β = ‖ρ1 − σ‖2,β ≤ C/n2 and ‖ρ2‖2,β ≤ C/n2, the estimates (3.18) and (3.19)
imply by induction that ‖ρ1 − σ‖s,β + ‖ρ2‖s,β ≤ C/n2 for all s ≥ 0. We have completed the proof of
Theorem 2.2.

3.5. The final steps for the proof of Theorem 2.3

Fix μ > 0. Suppose that c 	= 0 is (1 + μ)−1V -admissible and take σ and β as in that definition. Take
κ = κn as in the statement of Theorem 2.3 so that (1.14) is satisfied. Thus we have ωc,μ,κn

= 2nπ for
n ∈ N.

In this case, we have κn/c2ω2
c,μ,κn

= μ/(1 + μ) and so (3.7) tells us

Γc,μ,κn
= −μ/(1 + μ)∂−2

x δ2 + Ψc,μ,κn
.

With this, (3.5) becomes, after simplification,

c2ρ1 − (∂−2
x δ2 + (1 + μ)Ψc,μ,κn

)
(

1
1 + μ

V ′(ρ1)
)

= 0. (3.20)

Now put Bn := (1 + μ)Ψc,μ,κn
. Lemma 3.3 implies

‖Bn‖E2
β→E2

β
≤ Cβκn(1 + μ)/c2ω3

c,μ,κn
≤ C/n.

Thus for n big enough, we can call on Theorem 3.7 and get ρ1 ∈ E2
β for which (3.20) and

‖σ − ρ1‖2,β ≤ α‖Bn‖Es
β→Es

β
≤ C/n. (3.21)

We put ρ2 = Σc,μ,κn
V ′(ρ1) as in (3.2) and following the same steps as in the previous section we find

‖ρ2‖2,β ≤ C/n. Likewise, we get conclusions (i), (ii) and (iii) of Theorem 2.3.
The improvements when V is smooth are a bit trickier in this setting. As above, if V is smooth, so is σ

and this will drive the argument. Letting η := ρ1−σ, we find that η solves (as in the proof of Lemma 3.7)

η = (1 + μ)−1L−1
(
∂−2

x δ2 (V ′(σ + η) − V ′(σ) − V ′′(σ)η)
)

+ L−1Ψc,μ,κn
V ′(σ + η).
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Take the Hs
β (with s ≥ 3) norm of both sides to get

‖η‖s,β ≤ C‖∂−2
x δ2 (V ′(σ + η) − V ′(σ) − V ′′(σ)η) ‖s,β︸ ︷︷ ︸

I

+ C‖Ψc,μ,κn
V ′(σ + η)‖s,β︸ ︷︷ ︸

II

. (3.22)

We have used the fact that L is a homeomorphism here. Next, we estimate ∂−2
x δ2 = S2

0 with Lemma 3.4
and then use Lemma 3.8 to bound I ≤ C‖η‖2

Hs−2
β

.

As for II, we use the triangle inequality to get

II ≤ ‖Ψc,μ,κn
(V ′(σ + η) − V ′(σ))‖s,β + ‖Ψc,μ,κn

V ′(σ)‖s,β . (3.23)

Using the smoothing estimate (3.10) for Ψc,μ,κ on the first term and the estimate (3.9) for Ψc,μ,κ on the
other term gets us

II ≤ Cκnω−2
c,μ,κn

‖V ′(σ + η) − V ′(σ)‖s−1,β + Cκnω−4
c,μ,κn

‖V ′(σ)‖s+1,β (3.24)

Then Lemma 3.8 gives

II ≤ Cκnω−2
c,μ,κn

‖η‖s−1,β + Cκnω−4
c,μ,κn

‖σ‖s+1,β .

Since κn = O(n2) and ωc,μ,κn
= O(n) we have

II ≤ C‖η‖s−1,β + C/n2.

All together then we have

‖η‖s,β ≤ C‖η‖2s−2,β + C‖η‖s−1,β + C/n2.

Since we know from above that ‖η‖2,β ≤ C/n, a simple induction argument using the above estimate
tells us that

‖η‖s,β ≤ C/n (3.25)

for all s ≥ 2.
Now we estimate II again, but slightly differently. Using (3.9) for Ψc,μ,κ on both terms in (3.24):

II ≤ Cκnω−4
c,μ,κn

‖η‖s+1,β + Cκnω−4
c,μ,κn

‖σ‖s+1,β ≤ C(‖η‖s+1,β + 1)/n2.

Thus we have from (3.22)

‖η‖s,β ≤ C‖η‖2s−2,β + C(‖η‖s+1,β + 1)/n2.

Using (3.25) converts this to

‖η‖s,β ≤ C/n2

for all s ≥ 2. Since ρ2 = Σc,μ,κn
V ′(ρ1), it follows from this last estimate (as in the proof of Theorem 2.2)

that ‖ρ2‖s,β ≤ C/n2, for all s ≥ 2.

4. Numerical explorations

In this section, we both confirm and extend the conclusions of the paper’s two main theorems. In par-
ticular, both theorems concern the existence of antiresonant traveling waves on particular sets of points
in the parameter space, so it is of interest to determine numerically whether the conclusions remain true
more generally.

To solve for the traveling waves numerically, we choose the potential to be the cubic potential (2.4)
with a = 1 and b = 2, an admissible velocity c > 1, and an integer n ≥ 1 and choose the parameters κ and
μ to satisfy assumption (1.14). We then solve the regularized form of the equations (3.5) for ρ1. Afterward,
ρ2 is found by numerically evaluating (3.2). As a further check on the procedure, the numerical solution
is then substituted directly into system (1.3), and the pointwise error is found to be within the numerical
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Fig. 2. The evolution of Rj(t), with initial condition given by a solution to the traveling wave problem (1.3). The parameters
in (1.1) are μ = 0.4 and κ ≈ 45.12, leading to a traveling wave profile in (1.3) with c = 2, corresponding to n = 1 in (1.9).
Initial and final conditions marked with black circles. Each curve represents the evolution of one bead Rj

tolerance of the solver. Subsequently, the solution is downsampled to the discrete variables Rj and rj

using Eq. (1.2), and the initial value problem for the displacement coordinates is solved numerically using
the sixth-order in time symplectic method of Yoshida [48]. The solutions are found to propagate without
distortion over large distances.

The result of one such numerical solution and subsequent time integration is shown in Fig. 2. The
traveling wave was computed on −16 < x ≤ 16 with 256 points, with parameters c = 2, μ = 0.4 and n = 1,
and periodic boundary conditions. The downsampled values of Rj and rj are used as initial conditions
for the time-dependent problem in displacement coordinates. The solution is shown propagating one
time around the periodic domain, but in simulations, we have observed the solution traveling around the
domain many more times without distortion. In this simulation, the solution at the final time agrees with
the initial condition with a pointwise error about 10−9.

Equation (1.14) relating the admissible values of μ and κ for a given c > 1 and n ≥ 1 is shown in
Fig. 3. Although Theorems 2.2 and 2.3 only guarantee the existence of traveling waves when the integer
constant n in (1.14) is sufficiently large, we have successfully found numerical solutions wherever we
have looked in parameter space, for all values of n including n = 1. Fig. 4 shows numerical solutions for
c = 1.25, κ = 20 and n = 1, 2, 3. For n > 3, ρ1 is difficult to distinguish from σ, the traveling wave of the
limiting FPUT equation. The L2 distance between the solution and the limiting FPUT traveling wave is
shown to converge like 1/n2. A similar calculation for μ = 0.4 and increasing n is shown in Fig. 5.

Observing that the two theorems say nothing about the properties of the one-parameter families
as μ and κ are varied along the curves of fixed n, we perform some numerical calculations to explore
them. Figure 6 shows that the solutions on these one-parameter families approach the traveling waves
linearly, i.e., that they are O(μ) close that this near-linear growth continues as μ grows away from
zero for all values shown in this image, and that as n increases, the curves coalesce, consistently with
Theorem 2.3. Interestingly, we may of course continue this calculation beyond μ = 1 into the regime of
large μ. Numerically, this is straightforward, and all the branches continue to grow monotonically and
spread apart for increasing μ, which we have calculated up to μ = 50. In the formal limit μ → ∞, the
solution Eq. (1.1b) is simply uj ≡ 0, so that Eq. (1.1a) becomes and FPUT equation with an additional
onsite linear restoring force, a system known as Newton’s cradle in the context of granular chains.
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Fig. 3. Curves of antiresonant μ and κ for c = 1.25. The blue squares illustrate a sequence of values with fixed κ = 20 and
decreasing mass μ → 0 as n → ∞, satisfying the hypotheses of Theorem 2.2. Corresponding numerical solutions are shown
in Fig. 4. The red dots mark a sequence of points with fixed μ = 0.4, and increasing stiffness κ → ∞ as n → ∞, satisfying
the hypotheses of Theorem 2.3. Corresponding numerical solutions are shown in Fig. 5

Fig. 4. Left: Numerically obtained traveling waves solutions with c = 1.25, κ = 20 and n = 3, 2, 1 (in blue, red and yellow),
along with the limiting FPUT traveling wave σ (black dashed). The discrete points forming an initial condition for (Rj , rj)

are represented as dots. Right: A plot of ‖ρ1 − σ‖L2 + ‖ρ2‖L2 vs. 1/n2, showing rapid convergence of solutions
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Fig. 5. Left: Numerically obtained traveling waves solutions with c = 1.25, μ = 0.4 and n = 3, 2, 1 (in blue, red and yellow),
along with the limiting FPUT traveling wave σ (black dashed). Right: A plot of ‖ρ1 − σ‖L2 + ‖ρ2‖L2 vs. 1/n2, showing
rapid convergence of solutions

Fig. 6. The approach of the solutions (ρ1, ρ2) to the FPUT traveling wave σ as μ → 0+ along the antiresonance curves of
Fig. 3

James and collaborators have studied nonlinear waves including breathers and periodic waves, but not,
surprisingly, traveling waves [26,27] in such systems. It appears the methods of Friesecke and Pego would
be straightforwardly adapted to show the existence of such waves in this limiting case. Extending the
results of this paper to the large μ limit would be a worthwhile exercise.

We have run several numerical experiments to investigate the traveling waves’ stability. These show
that if the traveling wave is indeed unstable, then the instability must quite subtle. The simplest such
experiment is simply to simulate the time-dependent dynamics using an initial condition formed by
multiplying the exact traveling wave profile by 1 + ε where |ε| � 1 and may take either sign. As the
traveling waves lie on a one-parameter family whose wave speed increases as a function of the norm,
choosing ε > 0 results, to leading order, in a slightly faster traveling wave, and, similarly, ε < 0 leads to a
slower wave. For ε = ±10−2, we observe traveling waves that at first glance generate no visible radiation,
though upon zooming in to the neighborhood of the initial disturbance, i.e., near the site n = 0, we
find that after the traveling wave escapes from this neighborhood, it leaves behind a small disturbance
that slowly disperses over time; this is likely a transient effect and not indicative of instability. However
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Fig. 7. (Left) Numerical results of time-dependent simulation initiated with traveling-wave initial condition multiplied by
1.01, showing the value of R32 as a function of time; parameters as in Fig. 2. In the unmagnified view, only the traveling
wave is visible, which passes at about t = 16. Inset (a) shows a zoomed view immediately after the passage of traveling wave,
displaying the oscillatory wake. Inset (b) shows a zoom somewhat later, showing the arrival of the dispersing disturbance
that spreads out from a neighborhood of the initial location of the wave (Right). The equivalent numerical experiment for
the FPUT system with μ = 0, showing no oscillatory wake behind the propagating wave

after zooming in sufficiently close on the region immediately behind the traveling wave, we find a very
small “oscillatory wake.” This wake is generated at each lattice site and therefore slowly drains energy
(which is, of course, conserved for the system) from the solitary wave. As such this will cause a slow, but
substantial, attenuation of the solitary wave’s amplitude. One such simulation is shown in the left panel
Fig. 7. Additional simulations using different parameters, not shown here, display an identical behavior.
By contrast, the right panel shows the result of the analogous experiment for the FPUT system, i.e.,
Eq. (1.1) with μ = 0. This simulation lacks the sinusoidal oscillations in the wake of the traveling wave. It
is our point of view that the oscillatory wake is evidence of a very weak and purely nonlinear instability
for the antiresonant waves. Similar phenomena is known to occur in the diatomic FPUT lattice [18,35] as
well as other problems which have “embedded solitons” [4,41]. A more detailed rigorous stability analysis
is beyond the scope of this current paper, but certainly of great interest.
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