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Abstract

A model of soliton—defect interactions in the sine-Gordon equations is studied using singular perturbation theory. Melnikov
theory is used to derive a critical velocity for strong interactions, which is shown to be exponentially small for weak defects.
Matched asymptotic expansions for nearly heteroclinic orbits are constructed for the initial value problem, which are then
used to derive analytical formulas for the locations of the well known two- and three-bounce resonance windows, as well as
several other phenomena seen in numerical simulations.
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1. Thetwo-bounce resonance and related phenomena

The two-bounce resonance is a phenomenon displayed by many non-integrable systems in which a solitary wave
interacts either with another solitary wave or else with a localized defect in the medium through which it propagates.
Fei et al. study the two-bounce resonance in the sine-Gordon equation perturbed by a localized nonlinear defect

[1]:
Ut — Uxx + Sinu = e8(x) sinu. (1.2)

Kink solitons are initialized propagating (numerically) toward a defect with incoming velogitgnd allowed to

interact with the defect. Then one of two things might happen: either the soliton is trapped and comes to rest at the
defect location, or else it escapes and propagates away at outgoing velggeitfhe soliton cannot be destroyed

by the interaction because it is defined by its boundary conditions at infinity.) They find that there exists a critical
velocity ve. Kink solitons with initial velocity greater than. pass by the defect. Most solitons with initial speeds
below theuv. are trapped, remaining at the defect for all times after the interaction time. However, there exist bands
of initial velocities, known as resonance windows, for which the kink is reflected by the defect, rather than being
trapped. This is summarized ig. 1, taken from their paper.
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Fig. 1. The output vs. input velocities of sine-Gordon solitons interacting with a delta-well defecf1fforaprinted with permission.

A phenomenological explanation for this phenomenon (in the context of kink—antikink interactions in various
nonlinear Klein—-Gordon equations) was given in a series of of papers by Campbell and co@«&gisThey
use very elegant physical reasoning to argue that the reflection windows are due to a resonant interaction betwee|
the movement of the kink—antikink pair in an effective potential, and shape modes oscillating about the kinks. Fei
et al. adapt this reasoning to analyze the two-bounce resonance phenomenon in the sine-Gordon equation, using
variational approximation to reduce the PDE to a pair of second order ODE, and use a similar argument to find the
resonance windows. Both these studies make the assumptions that the resonance takes a certain form, depende
on unknown constants, and use physical reasoning and statistical data fitting to find these constants.

An inspiration for the present work comes from one of the authors’ previous studies of the trapping of gap solitons
in Bragg grating optical fibers with defed]. In that study, sufficiently slow solitons in certain parameter regimes
were captured by localized defects. This previous work does not offer a mechanism to explain the existence of a
critical velocity for soliton capture, which we are now able to explain for the simpler model problem discussed here.
The two-bounce resonance phenomenon is also seen by Tan and Yang in simulations of vector solitons collisions
in birefringent optical fiber§7].

The aim of the current paper is to make mathematically precise the physical reasoning of the previous studies of
the two-bounce resonance, in a way that does not rely on statistical inference. We analyze the variational ODE mode
derived in[1] using the methods of singular perturbation theory to match a nonlinear saddle to nearly heteroclinic
orbits in a manner similar to that previously used by HaberiBs8] and Diminnie and Habermdgi0,11] The
critical velocity is determined via a Melnikov integral and the location of the resonance windows arises naturally
due to a matching condition in the expansion. Intriguingly, finding the critical velocity requires that we make use of
terms which are small beyond all orders:iim the matched asymptotic expansion, as was done, notably, by Kruskal
and Seguf12], and by many others.

Otherwork on soliton dynamics in perturbed sine-Gordon equations is summarized byt Sctittthis approach,
an ordinary differential equation is derived for the evolution of the Hamiltonian, which can then be related to the
soliton’s velocity. McLaughlin and Scdftt4] study a damped and driven sine-Gordon system modeling a Josephson
junction and find a unique limiting velocity for solitons under that perturbation. The fundamental difference between
their system and ours is the presence of the localized defect mode, which must be included in the reduced system

1 The phraséwo-bounce resonance was coined in these papers to describe the following situation. Kinks with velocity above a critical value
collided once, then separated and moved off to infinity. Kinks in the reflection windows collided and moved apart slightly, then turned around
and collided a second time before separating fully and escaping to infinity at constant velocity. The physical situation in the present case is
somewhat different, but, as the mechanism is essentially the same, we keep the terminology.
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The paper is laid out as follows. Bection 2wve introduce a system of ordinary differential equations that models
Eq. (1.1) and show the results of numerical simulations of the modé&eltion 3we determine the critical velocity
separating captured kinks from those that pass by the def&zclion 4we derive formulas that are valid in a neigh-
borhood ofl X| = co. These are used fBection Swhere we construct matched asymptotic expansions to solutions
satisfying the two-bounce resonance. We find the sequence of velocities defining the resonance windows, as well
as formulas for the window widths. We also find locations of three-bounce resonance windows and approximations
for the general initial value problem. Bection § we demonstrate the validity of this approach by comparing the
formulas derived in the previous two sections with the results of numerical simulations. We summarize and include
a more general discussion$ection 7

2. Thevariational approximation

Following Fei et al.[1], we consider a sine-Gordon model with a localized impurity at the origin, given by
Eqg. (1.1) In the absence of any impurity, i.e= 0, the sine-Gordon equation has the well-known family of kink
solutions parameterized by velocity

—ut—
up(x,t) = 4tant exp(u> )
1—12

If we consider the system with an impurity, then solutions of small amplitude approximately satisfy the linear
equation:

Ut — Uxx + u = e8(x)u, (2.1)

which, for 0 < € < 2, has standing wave solutions

uim(x, 1) = a(t) e X/2,

wherea(r) = ag cos(£2t + 0p) and

2
2=,1——. 2.2
Z (22)
Fei et al.[1] study the interaction of the kink and defect modes using a variational approximation to derive a set of
equations for the evolution of the kink positiah and the defect mode amplitudeAn excellent review of the use
of variational approximations in nonlinear optics is given by Malorfiés]. To derive the approximate equations,
they substitute the ansatz

u = ug + uim = 4tan"texp(x — X(#)) + a(r) e /2 (2.3)

into the Lagrangian ofl.1)

(L, 1,

L= Eut — Eux —[1 —€e5(x)](1 — cosu) | dx. (2.4)
—0Q

Here X replacestg + vt, anda and X, the parameters characterizing the approximate sol(#id®), are regarded

as unknown functions of It is assumed that ande are small enough that many cross-terms can be neglected.

Thus, in calculating the effective Lagrangian, all terms produced via overlap of the two modes are neglected,

excepting those which include the defect poter#tia). This is equivalent to assuming that the dominant means of
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interaction between the two modes is via the defect. Evaluating the spatial integfak¥)cdn effective Lagrangian
Leff (X, a, X, @) is obtained1]:

Leit = 4X° + %(az — 2%4%) — eU(X) — eaF(X), (2.5)
where

U(X) = —2seck(X), F(X) = —2tanh(X)sechX).
The corresponding evolution equations are then given by the classical Euler—Lagrange equafi®i} for

8X 4 €U'(X) + eaF'(X) = 0, (2.6a)

i+ 2%+ 3€F(X) = 0. (2.6b)
This system has also been studiedlif]. Note that the system conserves the Hamiltonian

H=4X%+ %(az + £2%d°) + €U(X) + eaF (X) (2.7)

and that asX| — oo, U — 0 andF — 0 exponentially. The energy is thus asymptotically positive definite, and
must be partitioned betweefianda when the soliton is far from the defect.

This system corresponds to a parti@enoving in an attractive potential wel/(X) exponentially localized in
a neighborhood of zero, coupled to a harmonic oscillatby an exponentially localized tereaF(X). Note that
this model inherits many properties from the sine-Gordon syst&iXi) and F(X) decay for largeX|, so that when
|X| is largeX ~ 0 and the kink may propagate at any constant speed, independent of the impurity,nddeh
oscillates at its characteristic frequenf@yWhenX becomes small, the two equations become coupled and the kink
may exchange energy with the impurity mode.

The variational method, while popular in the study of nonlinear optics, may contain significant pitfalls. First,
it depends on the investigator finding an appropriate ansatz, as is d&ug {A.3) Second, even if the ansatz is
chosen to be an exact representation of the initial data, there is ho guarantee given by the method that the solutiol
at a later time is well represented by an approximation of this form. Thus, one must carefully show that solutions
of the full PDE system are well approximated by the ansatz.

Fig. 1 should be compared teig. 2 The former plots the output versus input velocities for the full PDE, as
computed irf1]. It shows a critical velocity: ~ 0.166, and a finite number of resonance windows of decreasing
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Fig. 2. The analog ofig. 1for the ODE(2.6), with ¢ = 0.5.
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Fig. 3. X (r) anda(r) for the numerical experiment with= 0.5 andvj, = 0.125.

width asv 7 vc. In between these resonance windows, incoming solutions are trapped. For speeds slightly,above
itappears thaty = O((vi —vc)Y/?). The latter shows the same experiment for the ODE. This shows a critical velocity
ve &~ 0.169, in reasonable agreement with the PDE dynamics, a sequence of reflection windows, and a square-root
profile just to the right obc. There are several major differences between the two numerical experiments. The PDE
dynamics show only a finite number of resonance windows, while we will show the existence of an infinite number
of resonance windows in the ODE dynamics. Solutions of the ODE with input velocities between the resonance
windows are not, in general, captured for all time; as showl @}, almost all solutions have nonzevgy:. The
variational ODEs are Hamiltonian, and a variant of the Poincaré recurrence theorem implies that the set of initial
conditions that are trapped has measure zero. The inter-window region contains infinitely many narrower windows,
arising both from reflection and transmission. Finally, note that the exit speed in the resonance windows for the PDE
computation is significantly smaller than the input speed, while for the ODERjthe= —vj, at the center of the
resonance windows. The variational angat3)ignores energy that is lost via transfer to radiation modefd.ah a
dissipative correction t(2.6)is derived that takes this into account. This eliminates most of the sensitive dependence
of vout ON Vi, and replaces the chaotic regions with trapping regions. Nonetheless, we believe the Hamiltonian ODE
(2.6) displays the fundamental features, if not the exact details, of the two-bounce resonance.

We now describe the structure of individual solutions to the @D&). The numerical experiments were performed
with initial conditions

X(0) = —12, X(0) = vin > 0, a(0) =0, a(0) = 0.

For a general value af, < vc, X (f) comes in at constant speed, speeds up near zero, slows down as it approaches
+00, oscillates back and forth a few times, then emerges and heads off in either direction with finite uglgcity

with |voutl < vin. The harmonic oscillatar(z), at first grows monotonically, and then begins oscillating, interrupted

by a sequence of jumps in its amplitude and phase, before settling down to a steady oscilla&fion-aso;

seeFig. 3 This includes they, in the two-bounce resonance windows, in which the behavior is simjley:
approaches plus infinity, turns around, and heads back off to minus infinity@rgtows, oscillates a finite number

of time, and then shrinks again. At the very bottom of the resonance window (actually at a point tangent to the
line vout = —vin in Fig. 2), a(¢) actually returns all its energy t& (¢), so that lim_, .ca(r) = 0 andvgyt = —vin.

In each successive window, th€r) undergoes one more oscillation than in the window to its left, witi(¢)
oscillations in the leftmost window. This number increases quickly as 0. For example, whea = 0.5, a(r)
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Fig. 4. X (r) anda(z) for the numerical experiment with= 0.5 andvi, = 0.10645, showing the 2—4 resonance.

undergoes 4 oscillations fax, in the leftmost window, 5 in the next window, etc.; déigs. 4 and 5The phrase
“two-bounce resonance” was described above in Footnote 1; the equivalent of a “bounce” in this case occurs eact
time X = 0. We will refer b a 2 fr m) bounce resonance as a solution which crossés= 0 2 (n) times for which
the output speed exactly equals the input speed and the amplitu@ppfoaches zero as> +oo. We will refer to
solutions with nearly resonant initial velocities, for which the soliton escapes aftex@unces, as 2{) bounce
solutions. Thus inFig. 4, the bounces occur whexi = 0 at about = 80 andr = 100. It is during the “bounces”
that the kink is in contact with the defect and exchanges energy with the defect mode. During the first interaction,
the soliton gives up energy to the defect mode and is temporarily trapped, and in the second, the energy is returned
and the soliton resumes propagating. We generalize this name tontf@@ace resonance, wheredenotes the
number of complete oscillations undergonedy. It is possible to find in the simulations higher resonances, where
soliton interacts with the defect three or more times, before its energy is returned and it resumes propagating. These
resonance windows are naturally much narrower. Interspersed between the reflection and transmission windows i
a set of initial conditions of measure zero in which the solutions are chaoti& éndemains bounded for all time

It is helpful to look at projections of the solutions in thE, X) phase space. If we ignore the teear’ (X) in
(2.6a) the simplified system has an elliptic fixed poin{@t0) and degenerate saddle-like fixed pointsdato, 0),
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Fig. 5. X (r) anda(r) for the numerical experiment with= 0.5 andvj, = 0.1327, showing the 2-5 resonance.
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Fig. 6. The phase plane of the uncoupkedynamics, divided into three regions by a pair of degenerate heteroclinic orbits.

connected by a pair of heteroclinic orbits, which split the phase space into three regions, as is Jhigw8. iim

region R (respectively B), solutions move right (respectively left) along trajectories that asymptote to horizontal
lines for large X|. Solutions in region Roscillate clockwise, remaining bounded for all time. When the coupling to

a(r) is restored, these trajectories are no longer invariant, and the solution may cross over the separatrices. A typical
solution starting in region Rwill cross over the separatrix, oscillate inside several times, then exit to either

region R or R3; as is shown in the first graph &ig. 7. In a two-bounce solutionX (r) must first cross from R

to Ry, undergo half an oscillation, and then cross intoalRd propagate back towarebo; as is seen in the second

graph ofFig. 7 for an illustration.

3. Determination of the critical velocity

To compute the critical velocity., we will use a Melnikov computatiofi7,18]. Essentially, we write down the
time rate of change of the energy contained’ifa), and integrate this over a separatrix orbit to find the total energy
transferred away fronX as it travels from-oo to +o0. If the initial energy is greater than the energy loss, then
reachestoo. If the energy is less, than the trajectory crosses the separatrix and turns around.
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Fig. 7. Projections intgX, X) plane of the solutions shown Fig. 3 (left) andFig. 5 (right).
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We rescale the time variable— ./e/2¢t. Under this scaling, the equations become:

4X + U'(X) 4+ aF'(X) =0, (3.1a)
i+ 22a+eF(X) =0, (3.1b)
where
2 €
A==, 3.2
P (3.2)

This removes the explicit-dependence fror{8.1a)and fixes the leading-order time scale.
We consider the initial value problem defined H.1) together with the “initial condition” that
ast — —oo,

X — —o0, X—>V., a—0 a—0. (3.3)

Becausd3.1)is autonomous, this is insufficient to specify a unique solution, and we should append the condition
thatagy — —o0,

X ~ Xog— V.

We use uppercask to refer to velocity in the scaled systgi@11) andv to velocity in the original syster(2.6).
Whene = 0,a = a = 0 defines an invariant subspa@g of (3.1) with trajectories confined to lie on surfaces along
which the energy

E =2X?+ U(X) (3.4)

is constant.

As seen irFig. 6, the unperturbe&-phase space features bounded periodic orbit&fer 0, unbounded orbits
which tend to a finite velocity at| — oo for E > 0 and separatrix orbits with = 0 along whichX — 0 as
| X| — o0. Along this heteroclinic orbit

X = £sinh (¢ — 11), (3.5)

wherer; is the “symmetry time” of the orbit at whicik(r) = 0. In the calculation that follows, we will set
t1 = 0 for ease of notation. We will need to include nonzartater, and will reintroduce it at key locations in the
computation.

Whene > 0, Py ceases to be invariant, and energy is transferred Xoima. Because the coupling terf(X)
decays exponentially, almost all the energy exchange takes place Xvisesmall. This justifies calculating the
change of energy along the separatrix, because very little of the change of energy takes place in the tails. We now
compute the change in energy for small values, @fs X travels from—oo to +oo.

UsingEgs. (3.4) and (3.1ajhe time derivative of the energyis

Z_f =@X+U X)X = —aF (X)X.

Integrating this over the separatrix orbit yields the approximate total loss of energy of the soliton over the trajectory
in the form of a Melnikov integral:

© dE o .
AE:/ o = —/ F' (X)X (®)a(t) dr.

—0o0 —00
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Plugging the various formulae into the separat®®b) (using the plus signs for right-moving trajectories and
allowing#; = 0, which does not effect this calculation):

2t
1412
X =sechx = (1+ 52,

4 2

F' = —4secRX + 2sechX = — ,
+ 1+ t2)3/2 + A+ t2)l/2

F = —2seclX tanhX = —

This gives the Melnikov integral

o0 —4 2
AE = —[m ((1+ 2 + T t2> a(r) dr. (3.6)

We evaluateA E by first computing:(r) and then using this ikq. (3.6) Using initial condition(3.3), we may solve
for a by variation of parameters:

t t

F(X (7)) cositdr = —% / F(X(7))sinA(t — 7)dt

—00

t
a= ; COSM/ F(X(7))sinitdr — Esinkt/

—00

0
2¢ (! T
= — sinA(t — dr. 3.7
k/_mw 0 (37)

In fact, only the even component @fr) will be needed to evaluat& E. This is given by
€ [ | T
de = x [oo S|n)»(t — T)m dr. (38)

This may be evaluated by introducing the complex exponential and closing the integral in the loweplaaié,
which gives a contribution from the pole at= —i:

ere

COSAL. (3.9

de = —

This is small beyond all orders i but the odd component afr) contains algebraically small terms as well.
Then, putting(3.8)into (3.6) and using complex exponentials, gives

o 4 2\ .
AE = Ee**/ (— > + 2) e dr.
A —0 1+19) 1+t

This may be closed in the upper complex plane, where the residuesideads to the final answer:
AE = —21%ce?, (3.10)

where, recallj is defined byEg. (3.2)

Note that a Melnikov integral has been evaluated to determine the leading order change of energy, essentially
providing the first term in a formal series expansion of this change. In general the terms in such a series are
algebraically small in the paramteterHere the computed integral i(€¥/2 e V2/€), smaller than any power @f
Formally, the next term in the series is will be proportional to some powerasfsing, perhaps, due to algebraically
small terms in the odd part af(r). Alarmingly, this or subsequent terms might dwarf the first term in the formal
expansion, rendering the Melnikov integral meaningless. This concern was raised by Holmé@9gtvaho studied
a related problem, the rapidly forced pendulum

. ot
0" + sind = €? sin-—,
€

and were able to prove that fpr> 8 the Melnikov integral accurately measures the exponentially small separatrix
splitting. They were subsequently able to reduce the expgmebelshams and Seafa0] rigorously prove the
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validity of the formal Melnikov analysis when the factgt is replaced by an independent small paramgtand
give a more complete discussion of the history of this problem. We therefore have confidence that the Melnikov
integral correctly measures the energy change. The numerical evideBeetimn 6s also shown to be in excellent
agreement.

Eq. (3.10)may then be used to find the critical velodity

dx\2
2(?) = |AE| = 2n%ce %, (3.11)

Ve= ‘Z—f = ee ™. (3.12)

Recall thatt has been scaled by a factor.g&/2. Removing this scaling gives a critical velocity

TE
Ve = —=€". 3.13
°=7 (3.13)

We may compute output velocitiy for slightly supercritical input velocityin, = 7./e € *(1 + 8y) using the
energy:

2 2
2Vin — AE =2V
so that

Vgut ~ 4 Z(SVVC.

This gives the characteristic square root behavior of the curizgir2 to the right ofvc.

We briefly mention two generalizations of the above Melnikov analysis that will be useful in later sections. On
the first near-heteroclinic orbit, we assume that no energy residgs) irOn subsequent near-heterocling®) is
actively oscillating, so we first suppose thatas —oo,

e et

a(t) ~ Acosr(t—T1), (3.14)

whereA andT will be determined later. Then, sinégy. (3.1b)is linear ina(z), the contribution due to this term
merely adds to the contribution already calculated. As before, only the even péjtisheeded for the calculation.
Thus using co&(r — 7) = cosAT cosit + SINAT sinAt, the total change of energy is

AE = (4A coSAT — 2)n’ee 2. (3.15)

Depending on the magnitude and signdofosA T the energy change may be positive or negative.
Second, we consider the Melnikov integral computed along the separatrix in the lower half-plane. @y8tem
obeys the symmetry

(X7 X’ a, a; t) i (_X5 _Xa —a, _a; t)9

so that the Melnikov integral can be computed directly. Assuming the limiting beh@viig¥) the change of energy
is

AE = (—4A cosiT — 2)n’ee 2. (3.16)

2 Recall that as — —o0, X — —o00, SOU(X) — O.
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3.1. Thefull expansion of a(z)

In later sections, we will need more detailed knowledge of the form©f By Egs. (3.7)—(3.9)

2 o0
a=2ae — f/ SinA(t — 1) dr.
t

T
1+ 2

We obtain the asymptotic expressiortas +oo by integrating by parts:

2¢ t—n _2 2emr e
H~—|——s—+00 - COSA(t — 11). 3.17
a(r) A2<(t—t1)2+1+ ( )) - (t—11) (3.17)
Similarly, ast - —oo,
2¢ t—n _2
H~—=|——s—+00 3.18
a ~ 25 (g +00). 319)

with no exponentially small oscillatory term. Here we have re-introduced the dependence of the solution on the
symmetry time from (3.5), ignored during the calculation above for transparency of notation. The algebraically
small terms decay for large so as — oo, it is the exponentially small oscillating term that dominates. However,
when we use the method of matched asymptotic expansions, we will assumastleaponentially large of the
appropriate size so that the leading order algebraic term and the oscillation are of the same size.

4, Solutionsnear | X| = o0

In the next two sections we construct matched asymptotic solutigBslifby matching near-separatrix solutions
to solutions valid neafX| = oco. The solution for largeX| may be expanded as a near-saddle approach to the
degenerate saddle points at infinity. Nearly heteroclinic orbits alternate with near-saddle approaches. Near-saddle
expansions for linear saddle points are common. In that case, exponential growth of solutions away from the saddle
point matches to exponential decay of homaoclinic orbits. Finite nonlinear saddle points corresponding to bifurcations
for Hamiltonian systems have been analyzed by HabefB&hand Diminnie and Habermdh0,11] In the current
work, the nonlinear saddle is at infinity, and we do not believe that such an expansion has been analyzed before. Inthe
present case, solutions in the near-saddle region have finite-time singularities which match to the logarithmic growth
of the heteroclinic orbits. We note from the conservative sygt&it) and expansio§3.17)that the contribution
due toaF’ (X) is exponentially small for large so that to leading order

4X + U'(X) =0, (4.1)
with the energy given by3.4). U(X) may be approximated in a neighborhoodtafo by
U~ —8e"2X,

We may then form approximations valid for largein two different ways depending on whether the enefgig
positive or negative. Phase portraitg(4fl), shown inFig. 6, may clarify the results that follow.
If E=2V?2 > 0, then the solution of4.1) corresponding to the near-saddle approach is given by

2
e = iv sinhV(r —t,) asX — +oo. 4.2)

The = sign on the left side of the equation determines whekhes +oo, and the sign on the right must be chosen
so thatt(r — t,) is positive. The constan} is the finite blowup time at which time the right hand side approaches
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zero, forcing X | to approach infinity. Th& in the notation is used intentionally, as it gives the asymptotic velocity
of the near-approach to the saddle.
The solution for the near-saddle approach witk= —2M? < 0 is given by

e = %cosM(r — t)- (4.3)

The solutionX (r) has finite-time singularities wheM(t — t..) = £m/2 and is even about the symmetry time
f = fyxe

For large| X |, F(X) ~ F4 "X, so that from(3.1b),
i+ 2%a ~ +4e e,
Sincei > 1, the asymptotic expansion afr) is given by
a~ :t%eix(’) + €1 COSA(f — 11) + ¢2 SINA(F — 1), (4.4)

where(4.2)or (4.3)may be used depending on the circumstakce (4.4)shows that near the saddle approachies
consists of simple harmonic oscillations about a slowly varying mean (which increases in forward and backwards
time toward the finite time singularities), all of which can clearly be seen in the numerical calculations. The saddle
approach withE' < 0, described in detail in the next section must match backwards in ti(8eli®) so thatc, = 0

andc; = —2em e~ /1. Matching this near-saddle approach dgr forward in time shows how this exponentially

small oscillation is added as previously stated3ri4)

5. Construction of solutions near the separatrix

We now construct an approximation to the initial value problem for the scaled ri&dgunder the assumption
that the initial velocity is subcritical. To be precise, we consider the “initial value problem” definé8l. bhyand
(3.3). We assume that > 0 is less than the critical value found (8.12) As the Melnikov function giving the
energy change is exponentially small, we may make the assumptiaf(thatays exponentially close to 0, its value
along the heteroclinic orbitX (r) may be approximated in different way depending| &h These approximations
may then be connected by their limiting behaviors to give a matched asymptotic expansion XVee®(1), it
may be approximated by a heteroclinic orbit

X ~ +sinh™(r — 1)),

wheret; is the "symmetry time” at whiclX (1) = 0 for the jth nearly heteroclinic orbit. FqiX| large, the solution
is given by formulag4.2) and (4.3)The exponentially small part af(r) contributes to the analysis, as it is needed
to determine the energy difference between subsequent approaches to infinity.

5.1. The two-bounce solutions

The two-bounce solution can be constructed from the following pieces:
(1) A near-saddle approach = —oo with energyEgp = 2V§:

—X

2
e = ——sinhVp(t — t,), (5.1a)
Vo

with Vo < V¢ as given by(3.12)
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(2) A heteroclinic orbit with & /dz > O:

sinhX =t — 1. (5.1b)
(3) A near saddle approach = +oco with negative energy. = —ZMf:

2
eX = A COSM1(f — tyy). (5.1c)

1
(4) A heteroclinic orbit with & /dr < 0:

sinhX = —(¢t — 12). (5.1d)

(5) A near-saddle approach = —oo with positive energy = 2V22:

2
e X = v SINhVa(t — fysr). (5.1e)

2

The solution can be summarized as a succession of near-saddle approaches, connected by heteroclinic orbits. Sinc
the change of energy between consecutive near-saddle approaches is dBdidpye see

—2M? — 2VZ = —2n%ce 2. (5.2)

We now need to compute the change of energy along the second heteroclinic connection. We must first compute the
symmetry time; of the second heteroclinic orbit, which is done via leading order matchikig@f The algebraically

small components af(f) can be obtained fronX () by regular perturbation, and thus match immediately atice
satisfies matching conditions. The separatrix is giverkby: — sinh=1(r — t;), and the oscillatory part af(r)

is given by —(2exre* /1) cosr(t — t1) in backwards time. Shifting time b, we arrive at the energy change
computed in(3.16)with A = —1 andT = 1, — t1. The analytic criterion for a two-bounce solution is that the energy

be positive after the second heteroclinic transition, i.e.

Ep =2VZ — 2n%c e ? + (4cosk(rz — 11) — 2m’ee? > 0. (5.3)

If E2 < 0, then the energy at this saddle approach is less than zero, and the solution does not escape at this saddle
approach.
The large time singularity of the first heteroclinic or{Bt1b})

x 11
2t—1

must match the singularity ¢6.1c)asM1(t — t.) \ —7/2:

ex M !
2 M]_(Z‘—l‘**)—}—fl’/Z’
yielding
. 11 = id
Hok 1= 2M1.

A similar calculation yields

T

2=l =ohr
1
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Combining these gives

T
) —11 = E (5.4)
Note that this is exactly half the period of a closed orbit witk= —2M%. Matching(5.1a) and (5.1kyieldsz, = 11,

and matching5.1d) and (5.1eyieldsz, = 2.

5.2. The two-bounce resonance and the width of the two-bounce window

This does not suffice to determine resonant valuegpbecause we still need to satisfy the condition that the
oscillatory component af(r) vanishes in component 5 of the solution. Thus, at this stage we require a matching
condition on the exponentially small oscillating partagf). Two-bounce resonant solutions are defined by the
condition thatE, = 2V§. From (5.3), this requires that cog(r; — 1) = 1. Using(5.4), we obtain the analytic
condition for two-bounce resonant solutions that

AT
— = 27n,
My

wheren > 0 is an integer, so that E = 2n%¢ e~?*. Thus, the second jump in energy exactly cancels the first, and

all of the energy is returned to the propagating m&dd his gives a quantization condition
My = . (5.5)

We can combine this witkq. (5.2) to obtain a formula for the initial velocity of the 2resonant solution

V, =,|m2ee 2 — /\—2 (5.6)
4n2

V, denotes the (scaled) initial velocity of the soliton im 2esonance with the defect mode. In order thatifpto
be well-definedn must satisfy

re
2m\/€

This gives a lower bound on the numbewrebscillations in a two-bounce resonance and approaches infinity rapidly
ase — 0. This predicts that resonance windows disappeariasiecreased, as is shown in the numerical study
of Section 6that follows.

We may find the width of the 2-resonance window as follows. If the energy change along the second heteroclinic
orbit satisfiesA E > ZMf, then the solution has positive energy, the trajectory crosses the separatrix, and the soliton
escapes. INE < 2M?, then the solution remains bounded, and will approach minus infinity before turning around
another time. Therefore, the boundaries of thev@indow, as a function odf1 are given by the values af; where

(5.7)

n > nmin(e) =

AE = 2M?

in (5.3), i.e. if
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Letting M1 = A/2(n + §), then

. . 1 ”rznin(e)
COS Zt(n + §) = COS 216 = > (1+ m . (5.8)

Considering first the width of the leftmost window, weret int(nmin(€))+1, thens? = (1/2n72) (1—fr (nmin(€))),
where infZ) and fr(Z) are the integer and fractional partsf Restricting our attention to the smaller windows
closer tove, if n > nmin(€), then cos2s§ ~ 1/2, oré ~ +1/6. The left and right edges of th&h resonance
window have velocity approximately

12
Vg = |72 — ———— 5.9
+ \/” e 4(n £ 1/6)2 (5-9)

If n is sufficiently large, thed, = A € /2nn./€ <« 1, and we find that the width of the/2window is given by
3
Wy = Vi — Voo & V82 (—) : (5.10)
n
which scales as~2 for largen.

5.3. The general initial value problem

If the second jump in energy, given by by the second Melnikov calcul@i@), is less than 2/2, then the soliton
does not escape on the second interaction with the defect. Instead it jumps to a new energy level inside the separatrix.
We can then replace the sequesd) with a finite number of nearly heteroclinic orbits separated by near saddle
approaches (with negative energy) in which the solution usually escapes at the last saddle approach with positive
energy:

(1) A near saddle approach = —oo, with energyEg = 2V§:
2
e X = — = sinhVp(r — t,). (5.11a)
Vo
(2) A heteroclinic orbit withX > 0, over which the change of energyAsE1, given by the Melnikov integral
(3.10)
sinhX =+t — 1. (5.11b)

(3) A near saddle approach alternating betw&es +oo, with energyE; = E;_1 + AE; = —2M/2:
2 .
eX = — cosM;(t —t]). (5.11c)
M;
(4) A heteroclinic orbit (alternating betweéh < 0 andX > 0):
sinhX = +(r — 1)). (5.11d)

After each nearly heteroclinic orbit, the energyfis, 1 = E; + AE;. If Ej;1 < 0, the solution solution has
a near saddle approach with negative energy and hence returns to step 3. HoweuarSf 0, the solution
escapes, and this last saddle approach is instead mathematically described by step 5.
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(5) Ifthe solution escapes (at velocityV¢), then the near saddle approachr at oo satisfies:

etX = %sinth(t — s (5.11e)

Usually the solution will escape after a finite number of bounces. However, for a set of initial velocities of zero
measure, the solution will consist of an infinite number of nearly heteroclinic orbits, will not escape, and will be
chaotic. The interesting dynamics take place at step 3 above. We must again consider the oscillatosyspart of
analogy with expansio(8.17), after j near-heteroclinic orbitsi(r) may be written

et

J
~ > (=Dt tcosa( — u),

k=1

. . 2¢
a(r) ~ algebraically small non-oscillatory terms

where we findy, — 1,1 = 7/ M1, the appropriate generalization (&.4). The change in energy along thth
heteroclinic orbit is given by a generalizationkdis. (3.15) and (3.1 include multiple oscillating terms. If the
solution contains exactly heteroclinic connections, then the change of energy over all of the connections is given
by the sum of the contributions over all thenearly heteroclinic orbits, which, after some algebraic manipulation,
is

m m

AEiotal = 2n%c e Z 2:(—1)““’”rl cosi(tj — ;). (5.12)
i=1 j=1

The condition for a perfeek-bounce resonance in whi¢hy,| = |vout is thus thatA E = 0, which will happen only

for a measure zero set of initial velociti&s. If this is the case, thek (r) will have interacted with the defect a total

of m times. Between each pair of bounceg) will have undergone an integer number of complete oscillations (plus

a small phase shift). We may thus construct, in a manner similar to that abowethe1, ¢2. . . ., ¢,—1) bounce
window. Of course many of windows do not contain a complete resonance, i.e. there does not exist a velocity in the
window for which all energy is returned to the propagating mode. When all the windows of initial conditions that
eventually escape t&roo are removed, what remains is a Cantor-like set of initial conditions that are trapped for
all positive time.

5.4. The three-bounce resonance

Itis also possible to construct the three-bounce resonance solutions, which lobigliBén phase space. From
(5.12) a three-bounce solution satisfies

AT AT AT AT
AEiotal = 21%ce % | =3+ 2cos=— + 2cos— — 2cos| — + =—} ).
total JT € + Ml + M2 Ml + M2

dx/dt

0
X

Fig. 8. A phase-plane portrait of a transmitted three-bounce soluti.of3.1) Compare to reflected two-bounce solutiorfdj. 7.
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Three-bounce resonant solutions may be obtained by leNiBg:; = 0. Here we analyze this special case using
symmetry. Note that the two-bounce solutions consist ahda which are even functions ofwith the time origin

shifted to be the midpoint between the two singularity times). Simil@ly) admits special solutions in which both

X (r) anda(z) are odd. A three bounce resonant solution is an odd function of time, in which there are three energy
jumps andu(r) — 0 as|t| — oo. We may assume that the three singularity times-atg 0, andzp. Then we note

that for the solution to be odd, the energy le¥al for r € (—1p, 0) must be the same as the energy leglfor

t € (0, 19), SOAE = 0 along the second heteroclinic orbit, i.e.

AE = (4cositg — 2)rlee 2 = 0.
Therefore coarg = 1/2 or
Mo = 2nm £+ %n.

By our standard reasoning this gives

2
V=_|n2ee 2 — M ,
4(n + 1/6)2

which is exactly the formula we obtained(5.9) when we ignored a small term in that calculation. Therefore very
close to the edge of each two-bounce window, on either side, there exists a symmetric three-bounce window. We
may check that if before the second energy jump

a(t) ~ —2cos(rt £ ),
then afterward
a(t) ~ 2cos(rt F 37),

so the solution is odd, and we do not need to compute the third interaction. Although the three-bounce windows
are too narrow to see with the naked eye, we were able to find them quite easily by looking carefully at the region
around the above-determined velocitieslg. 9, we showu(r) for the two three-bounce windows to the immediate

0.4 - r r T . 0.4
0.3} | 0.3f
0.2} 1 0.2f

0.1} \ 1 0.1f \ 1
© © O
_0.1. 1 _0.1'

-0.2 -0.2

-0.3 -0.3

0.4 L L . . . 0.4 L L L .
50 100 150 200 250 0 50 100 150 200

t t

Fig. 9. The two three-bounce resonant solutiat(g) (only) to the left and right of the first two-bounce windowhig. 2 (a) v = 0.09796; (b)
v =0.11301.
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left and right of the first two-bounce window shownfiig. 2 Asymmetric three-bounce windows also exist, in
which a oscillates a different number of times on the first approach to infinity than it does on the second. Although
no transmission windows are seerfig. 1, they have been seen, albeit infrequently, in numerical simulations of
the PDE[21].

6. Numerical verification

The analysis of the previous section has given us formulas by which we may compute several features of the
solution, as a function of the defect strengtffhese include the critical velocity (3.13) the minimum number of
oscillations ofa(z) in a reflection window:min(¢) (5.7), and the locations and width of the two-bounce resonance
windows (5.6) and (5.10gfter rescaling to the physical time and velocity scales).

6.1. Critical velocities

Fig. 10 shows the numerically computed critical velocities for the vakies {1/8,1/4,1/2, 1}, as well as
ve = meexp(—1)/+/2. Of course, both the curve of calculated velocities, as well as the numerically computed
velocities approach zero as— 0, so we must show they approach zero at the same rate to validate our theory. The
lower half of the figure shows the ratio of the numerical and asymptotic values, which are correct to within 6% for
€ = 1 and to within 0.2% foe = 1/8.

6.2. Predicted minimum number of a-oscillations for resonance (nmin(€))

For the values = {1/4,1/2, 1}, formula (5.7) yields nmin(¢) (rounded up to the nearest whole number):
nmin(1/4) = 15,nmin(1/2) = 4, andnmin(1) = 1, which are precisely the values found via numerical experiment.
The formula givesinmin(1/8) = 98. The fewest oscillations seen in the numerical experimentsewdthl/8 was
100, but the equations are very stiff wheanduvi, are very small, and smaller valuesigf were not investigated.

0.8

0 0.2 0.4 0.6 0.8 1
€

Fig. 10. (Top) Critical velocity as a function @f numerical+, and via asymptotic calculation (solid line). (Bottom) Ratio of numerical to
asymptotic calculated values.



R.H. Goodman, R. Haberman/Physica D 195 (2004) 303-323 321

= + + + o+ 4+

_0.03 N N N N N N N
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
V.

n

Fig. 11. Input vs. output velocities fer= 1/4 showing the predicted resonant initial velocitiesThe chaotic scattering between the windows
have been removed and only the first 13 windows are shown.

6.3. Resonance windows

The comparison of,, with numerically computed values is showrfiy. 11for e = 1/4. Many of the resonance
windows are well-predicted. We may gain more insight by considegiqg(5.6)as defining: as a function of
(and hence as a function of the unscaled velogityn Fig. 12we plot cos Zn(v) as a function ob. If n € Z, then
cos Ztn = 1. Therefore the two-bounce resonance window centers (i.e. the resonant initial velocities) are given by
the points where the curye= cos 2rn(v) is tangent to the ling = 1. Eq. (5.8)(with n + § replaced by:(v)) gives
the edges of the resonance windows. Therefore to the immediate left and right of the resonance window centers, the
curvey = cos 2rn(v) crosses the curve= (1/2)(1+ nzmin(e)/n(v)z), giving the window edges. We note from the
figure that this implies that the leftmost resonance windows should be narrowed with respect to the space between
windows. This is confirmed in the plot @f vs. vin.

Finally, the reasoning dbection 5.4hows that the center of the three-bounce windows should be given by the
intersection of the curve = cos Zrn(v) with the liney = 1/2.

0.035

-0.02f

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
V.
n

Fig. 12. (Top) The oscillatory curve is= cos 2wn(viy) as a function oby,. Its intersections with the line = 1 (dotted line) give the location of
the two-bounce resonant initial velocities. Intersections with the cuevg1/2)(1+ nﬁﬂn(e)/n(v)z) (thick line) give the edges of the resonance
windows. Intersections with = 1/2 (dashed line) give the three-bounce resonant window velocities. (Bottom) Thewglve. vin.
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7. Conclusions

We have shown how a resonant exchange of energy between a soliton and defect mode gives rise to two-bounc
resonance windows. This was known to Campbell et al. as well as to Fei et al. However by applying perturbation
techniques to a variational model of the system, we have been able to quantify this effect without recourse to
statistical data fitting. The study of Fei et al. shows remarkable fits between the numerically determined locations of
the resonance windows, and also gives an implicit equation for the critical velocity that is asymptotically equivalent
to ourEq. (3.13) The chief advantage of our method is that we are able to determine the dependence of all these
guantities ore explicitly.

One of us has previously studied the mo¢&b) in [16]. In that papere was considered to be order 1 and an
artificial parametey: was introduced as a factor multiplying the coupling functigiX). For small values of,
we were able to show the dynamics contains a Smale horseshoe. In that construction, capture was identified witt
transfer of phase space between the regiorfSa@f6 via turnstile lobes in a certain Poincaré map. That Poincaré
map was ill-defined ag — 1, so the results were not directly applicabl&tn (2.6) although were very suggestive
of the dynamics. It does indicate how the dynamics in the regions between the resonance wirkiguadapends
sensitively on the input velocity. Combining this with the quantitative information contained in the current study
gives a rather complete picture of the dynamics.

Other studies of the two-bounce resonant phenomenon have often derived a formula for the resonance windows
of the form

(ve — Ui1)71/2 ~ nT + 6o,

whereT is the period of the fast oscillations, afglis some offset time. The equivalent statement in this study is
given inEq. (5.5) This is equivalent to settingp to zero. To asymptotically computy we would need to find
further terms in(5.4), the equation for the time between interactions, in terms of the small energy-derivetiiterm
The leading order term is @/~1) and symmetries oEq. (4.1)show that the QL) term must be zero. The next
term in the series is necessarily /).

Many similar systems have shown the two-bounce resonance, and the methods developed here should be adaptak
to such systems. However the current system is the simplest to study for several reasons. First, it depends explicitly
on a small coupling parameterand where — 0 decouples into two independent oscillators. Anninos et al. derive
a variational model of the kink—antikink scattering in tfeexperiments of Campbell et 2,22]. This model does
not depend explicitly on a small parameter, so an artificial one might need to be introduced. Since our formula for
vc is correct to within 6% even with = 1, this may be a reasonable step to take. Other models do not decouple so
cleanly ag3.1)ase — 0. Nonetheless, in many systems it is possible to draw a diagram simHég.t& so we
believe that a similar mechanism is at work.
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