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Abstract

A model of soliton–defect interactions in the sine-Gordon equations is studied using singular perturbation theory. Melnikov
theory is used to derive a critical velocity for strong interactions, which is shown to be exponentially small for weak defects.
Matched asymptotic expansions for nearly heteroclinic orbits are constructed for the initial value problem, which are then
used to derive analytical formulas for the locations of the well known two- and three-bounce resonance windows, as well as
several other phenomena seen in numerical simulations.
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1. The two-bounce resonance and related phenomena

The two-bounce resonance is a phenomenon displayed by many non-integrable systems in which a solitary wave
interacts either with another solitary wave or else with a localized defect in the medium through which it propagates.
Fei et al. study the two-bounce resonance in the sine-Gordon equation perturbed by a localized nonlinear defect
[1]:

utt − uxx + sinu = εδ(x) sinu. (1.1)

Kink solitons are initialized propagating (numerically) toward a defect with incoming velocityvin and allowed to
interact with the defect. Then one of two things might happen: either the soliton is trapped and comes to rest at the
defect location, or else it escapes and propagates away at outgoing velocityvout. (The soliton cannot be destroyed
by the interaction because it is defined by its boundary conditions at infinity.) They find that there exists a critical
velocity vc. Kink solitons with initial velocity greater thanvc pass by the defect. Most solitons with initial speeds
below thevc are trapped, remaining at the defect for all times after the interaction time. However, there exist bands
of initial velocities, known as resonance windows, for which the kink is reflected by the defect, rather than being
trapped. This is summarized inFig. 1, taken from their paper.
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Fig. 1. The output vs. input velocities of sine-Gordon solitons interacting with a delta-well defect, from[1], reprinted with permission.

A phenomenological explanation for this phenomenon (in the context of kink–antikink interactions in various
nonlinear Klein–Gordon equations) was given in a series of of papers by Campbell and coworkers[2–5].1 They
use very elegant physical reasoning to argue that the reflection windows are due to a resonant interaction between
the movement of the kink–antikink pair in an effective potential, and shape modes oscillating about the kinks. Fei
et al. adapt this reasoning to analyze the two-bounce resonance phenomenon in the sine-Gordon equation, using a
variational approximation to reduce the PDE to a pair of second order ODE, and use a similar argument to find the
resonance windows. Both these studies make the assumptions that the resonance takes a certain form, dependent
on unknown constants, and use physical reasoning and statistical data fitting to find these constants.

An inspiration for the present work comes from one of the authors’ previous studies of the trapping of gap solitons
in Bragg grating optical fibers with defects[6]. In that study, sufficiently slow solitons in certain parameter regimes
were captured by localized defects. This previous work does not offer a mechanism to explain the existence of a
critical velocity for soliton capture, which we are now able to explain for the simpler model problem discussed here.
The two-bounce resonance phenomenon is also seen by Tan and Yang in simulations of vector solitons collisions
in birefringent optical fibers[7].

The aim of the current paper is to make mathematically precise the physical reasoning of the previous studies of
the two-bounce resonance, in a way that does not rely on statistical inference. We analyze the variational ODE model
derived in[1] using the methods of singular perturbation theory to match a nonlinear saddle to nearly heteroclinic
orbits in a manner similar to that previously used by Haberman[8,9] and Diminnie and Haberman[10,11]. The
critical velocity is determined via a Melnikov integral and the location of the resonance windows arises naturally
due to a matching condition in the expansion. Intriguingly, finding the critical velocity requires that we make use of
terms which are small beyond all orders inε in the matched asymptotic expansion, as was done, notably, by Kruskal
and Segur[12], and by many others.

Other work on soliton dynamics in perturbed sine-Gordon equations is summarized by Scott[13]. In this approach,
an ordinary differential equation is derived for the evolution of the Hamiltonian, which can then be related to the
soliton’s velocity. McLaughlin and Scott[14] study a damped and driven sine-Gordon system modeling a Josephson
junction and find a unique limiting velocity for solitons under that perturbation. The fundamental difference between
their system and ours is the presence of the localized defect mode, which must be included in the reduced system.

1 The phrasetwo-bounce resonance was coined in these papers to describe the following situation. Kinks with velocity above a critical value
collided once, then separated and moved off to infinity. Kinks in the reflection windows collided and moved apart slightly, then turned around
and collided a second time before separating fully and escaping to infinity at constant velocity. The physical situation in the present case is
somewhat different, but, as the mechanism is essentially the same, we keep the terminology.
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The paper is laid out as follows. InSection 2we introduce a system of ordinary differential equations that models
Eq. (1.1), and show the results of numerical simulations of the model. InSection 3, we determine the critical velocity
separating captured kinks from those that pass by the defect. InSection 4, we derive formulas that are valid in a neigh-
borhood of|X| = ∞. These are used inSection 5where we construct matched asymptotic expansions to solutions
satisfying the two-bounce resonance. We find the sequence of velocities defining the resonance windows, as well
as formulas for the window widths. We also find locations of three-bounce resonance windows and approximations
for the general initial value problem. InSection 6, we demonstrate the validity of this approach by comparing the
formulas derived in the previous two sections with the results of numerical simulations. We summarize and include
a more general discussion inSection 7.

2. The variational approximation

Following Fei et al.[1], we consider a sine-Gordon model with a localized impurity at the origin, given by
Eq. (1.1). In the absence of any impurity, i.e.ε = 0, the sine-Gordon equation has the well-known family of kink
solutions parameterized by velocityv:

uk(x, t) = 4 tan−1 exp

(
x− vt − x0√

1 − v2

)
.

If we consider the system with an impurity, then solutions of small amplitude approximately satisfy the linear
equation:

utt − uxx + u = εδ(x)u, (2.1)

which, for 0< ε < 2, has standing wave solutions

uim(x, t) = a(t)e−ε|x|/2,

wherea(t) = a0 cos(Ωt + θ0) and

Ω =
√

1 − ε2

4
. (2.2)

Fei et al.[1] study the interaction of the kink and defect modes using a variational approximation to derive a set of
equations for the evolution of the kink positionX, and the defect mode amplitudea. An excellent review of the use
of variational approximations in nonlinear optics is given by Malomed[15]. To derive the approximate equations,
they substitute the ansatz

u = uk + uim = 4 tan−1 exp(x−X(t))+ a(t)e−ε|x|/2 (2.3)

into the Lagrangian of(1.1)

L =
∫ ∞

−∞

(
1

2
u2
t − 1

2
u2
x − [1 − εδ(x)](1 − cosu)

)
dx. (2.4)

HereX replacesx0 + vt, anda andX, the parameters characterizing the approximate solution(2.3), are regarded
as unknown functions oft. It is assumed thata andε are small enough that many cross-terms can be neglected.
Thus, in calculating the effective Lagrangian, all terms produced via overlap of the two modes are neglected,
excepting those which include the defect potentialδ(x). This is equivalent to assuming that the dominant means of



306 R.H. Goodman, R. Haberman / Physica D 195 (2004) 303–323

interaction between the two modes is via the defect. Evaluating the spatial integrals of(2.4), an effective Lagrangian
Leff(X, a, Ẋ, ȧ) is obtained[1]:

Leff = 4Ẋ2 + 1

ε
(ȧ2 −Ω2a2)− εU(X)− εaF(X), (2.5)

where

U(X) = −2sech2(X), F(X) = −2 tanh(X)sech(X).

The corresponding evolution equations are then given by the classical Euler–Lagrange equations for(2.5):

8Ẍ+ εU ′(X)+ εaF′(X) = 0, (2.6a)

ä+Ω2a+ 1
2ε

2F(X) = 0. (2.6b)

This system has also been studied in[16]. Note that the system conserves the Hamiltonian

H = 4Ẋ2 + 1

ε
(ȧ2 +Ω2a2)+ εU(X)+ εaF(X) (2.7)

and that as|X| → ∞, U → 0 andF → 0 exponentially. The energy is thus asymptotically positive definite, and
must be partitioned betweenX anda when the soliton is far from the defect.

This system corresponds to a particleX moving in an attractive potential wellεU(X) exponentially localized in
a neighborhood of zero, coupled to a harmonic oscillatora by an exponentially localized termεaF(X). Note that
this model inherits many properties from the sine-Gordon system.U(X) andF(X) decay for large|X|, so that when
|X| is largeẌ ≈ 0 and the kink may propagate at any constant speed, independent of the impurity modea, which
oscillates at its characteristic frequencyΩ. WhenX becomes small, the two equations become coupled and the kink
may exchange energy with the impurity mode.

The variational method, while popular in the study of nonlinear optics, may contain significant pitfalls. First,
it depends on the investigator finding an appropriate ansatz, as is done inEq. (2.3). Second, even if the ansatz is
chosen to be an exact representation of the initial data, there is no guarantee given by the method that the solution
at a later time is well represented by an approximation of this form. Thus, one must carefully show that solutions
of the full PDE system are well approximated by the ansatz.

Fig. 1 should be compared toFig. 2. The former plots the output versus input velocities for the full PDE, as
computed in[1]. It shows a critical velocityvc ≈ 0.166, and a finite number of resonance windows of decreasing

Fig. 2. The analog ofFig. 1for the ODE(2.6), with ε = 0.5.
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Fig. 3.X(t) anda(t) for the numerical experiment withε = 0.5 andvin = 0.125.

width asv ↗ vc. In between these resonance windows, incoming solutions are trapped. For speeds slightly abovevc,
it appears thatvf = O((vi −vc)

1/2). The latter shows the same experiment for the ODE. This shows a critical velocity
vc ≈ 0.169, in reasonable agreement with the PDE dynamics, a sequence of reflection windows, and a square-root
profile just to the right ofvc. There are several major differences between the two numerical experiments. The PDE
dynamics show only a finite number of resonance windows, while we will show the existence of an infinite number
of resonance windows in the ODE dynamics. Solutions of the ODE with input velocities between the resonance
windows are not, in general, captured for all time; as shown in[16], almost all solutions have nonzerovout. The
variational ODEs are Hamiltonian, and a variant of the Poincaré recurrence theorem implies that the set of initial
conditions that are trapped has measure zero. The inter-window region contains infinitely many narrower windows,
arising both from reflection and transmission. Finally, note that the exit speed in the resonance windows for the PDE
computation is significantly smaller than the input speed, while for the ODE, thevout = −vin at the center of the
resonance windows. The variational ansatz(2.3)ignores energy that is lost via transfer to radiation modes. In[16], a
dissipative correction to(2.6)is derived that takes this into account. This eliminates most of the sensitive dependence
of vout onvin and replaces the chaotic regions with trapping regions. Nonetheless, we believe the Hamiltonian ODE
(2.6)displays the fundamental features, if not the exact details, of the two-bounce resonance.

We now describe the structure of individual solutions to the ODE(2.6). The numerical experiments were performed
with initial conditions

X(0) = −12, Ẋ(0) = vin > 0, a(0) = 0, ȧ(0) = 0.

For a general value ofvin < vc,X(t) comes in at constant speed, speeds up near zero, slows down as it approaches
+∞, oscillates back and forth a few times, then emerges and heads off in either direction with finite velocityvout,
with |vout| ≤ vin. The harmonic oscillatora(t), at first grows monotonically, and then begins oscillating, interrupted
by a sequence of jumps in its amplitude and phase, before settling down to a steady oscillation asX → ∞;
seeFig. 3. This includes thevin in the two-bounce resonance windows, in which the behavior is simpler:X(t)

approaches plus infinity, turns around, and heads back off to minus infinity anda(t) grows, oscillates a finite number
of time, and then shrinks again. At the very bottom of the resonance window (actually at a point tangent to the
line vout = −vin in Fig. 2), a(t) actually returns all its energy toX(t), so that limt→∞a(t) = 0 andvout = −vin.
In each successive window, thea(t) undergoes one more oscillation than in the window to its left, withnmin(ε)

oscillations in the leftmost window. This number increases quickly asε ↘ 0. For example, whenε = 0.5, a(t)
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Fig. 4.X(t) anda(t) for the numerical experiment withε = 0.5 andvin = 0.10645, showing the 2–4 resonance.

undergoes 4 oscillations forvin in the leftmost window, 5 in the next window, etc.; seeFigs. 4 and 5. The phrase
“two-bounce resonance” was described above in Footnote 1; the equivalent of a “bounce” in this case occurs each
timeX = 0. We will refer to a 2 (orm) bounce resonance as a solution which crossesX = 0 2 (m) times for which
the output speed exactly equals the input speed and the amplitude ofa approaches zero ast → ±∞. We will refer to
solutions with nearly resonant initial velocities, for which the soliton escapes after 2 (m) bounces, as 2 (m) bounce
solutions. Thus inFig. 4, the bounces occur whenX = 0 at aboutt = 80 andt = 100. It is during the “bounces”
that the kink is in contact with the defect and exchanges energy with the defect mode. During the first interaction,
the soliton gives up energy to the defect mode and is temporarily trapped, and in the second, the energy is returned,
and the soliton resumes propagating. We generalize this name to the 2-n bounce resonance, wheren denotes the
number of complete oscillations undergone bya(t). It is possible to find in the simulations higher resonances, where
soliton interacts with the defect three or more times, before its energy is returned and it resumes propagating. These
resonance windows are naturally much narrower. Interspersed between the reflection and transmission windows is
a set of initial conditions of measure zero in which the solutions are chaotic andX(t) remains bounded for all time

It is helpful to look at projections of the solutions in the(X, Ẋ) phase space. If we ignore the termεaF′(X) in
(2.6a), the simplified system has an elliptic fixed point at(0,0) and degenerate saddle-like fixed points at(±∞,0),
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Fig. 5.X(t) anda(t) for the numerical experiment withε = 0.5 andvin = 0.1327, showing the 2–5 resonance.
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Fig. 6. The phase plane of the uncoupledX dynamics, divided into three regions by a pair of degenerate heteroclinic orbits.

connected by a pair of heteroclinic orbits, which split the phase space into three regions, as is shown inFig. 6. In
region R1 (respectively R3), solutions move right (respectively left) along trajectories that asymptote to horizontal
lines for large|X|. Solutions in region R2 oscillate clockwise, remaining bounded for all time. When the coupling to
a(t) is restored, these trajectories are no longer invariant, and the solution may cross over the separatrices. A typical
solution starting in region R1 will cross over the separatrix, oscillate inside R2 several times, then exit to either
region R1 or R3; as is shown in the first graph ofFig. 7. In a two-bounce solution,X(t) must first cross from R1
to R2, undergo half an oscillation, and then cross into R3 and propagate back toward−∞; as is seen in the second
graph ofFig. 7for an illustration.

3. Determination of the critical velocity

To compute the critical velocityvc, we will use a Melnikov computation[17,18]. Essentially, we write down the
time rate of change of the energy contained inX(t), and integrate this over a separatrix orbit to find the total energy
transferred away fromX as it travels from−∞ to +∞. If the initial energy is greater than the energy loss, thenX

reaches+∞. If the energy is less, than the trajectory crosses the separatrix and turns around.
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Fig. 7. Projections into(X, Ẋ) plane of the solutions shown inFig. 3(left) andFig. 5(right).
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We rescale the time variablet → √
ε/2t. Under this scaling, the equations become:

4Ẍ+ U ′(X)+ aF′(X) = 0, (3.1a)

ä+ λ2a+ εF(X) = 0, (3.1b)

where

λ2 = 2

ε
− ε

2
. (3.2)

This removes the explicitε-dependence from(3.1a)and fixes the leading-order time scale.
We consider the initial value problem defined by(3.1) together with the “initial condition” that

ast → −∞,

X → −∞, Ẋ → V, a → 0, ȧ → 0. (3.3)

Because(3.1) is autonomous, this is insufficient to specify a unique solution, and we should append the condition
that ast → −∞,

X ∼ X0 − Vt.

We use uppercaseV to refer to velocity in the scaled system(3.1) andv to velocity in the original system(2.6).
Whenε = 0,a = ȧ = 0 defines an invariant subspaceP0 of (3.1)with trajectories confined to lie on surfaces along
which the energy

E = 2Ẋ2 + U(X) (3.4)

is constant.
As seen inFig. 6, the unperturbedX-phase space features bounded periodic orbits forE < 0, unbounded orbits

which tend to a finite velocity at|t| → ∞ for E > 0 and separatrix orbits withE = 0 along whichẊ → 0 as
|X| → ∞. Along this heteroclinic orbit

X = ± sinh−1(t − t1), (3.5)

where t1 is the “symmetry time” of the orbit at whichX(t) = 0. In the calculation that follows, we will set
t1 = 0 for ease of notation. We will need to include nonzerot1 later, and will reintroduce it at key locations in the
computation.

Whenε > 0,P0 ceases to be invariant, and energy is transferred fromX to a. Because the coupling termF(X)
decays exponentially, almost all the energy exchange takes place whenX is small. This justifies calculating the
change of energy along the separatrix, because very little of the change of energy takes place in the tails. We now
compute the change in energy for small values ofε, asX travels from−∞ to +∞.

UsingEqs. (3.4) and (3.1a), the time derivative of the energyE is

dE

dt
= (4Ẍ+ U ′(X))Ẋ = −aF′(X)Ẋ.

Integrating this over the separatrix orbit yields the approximate total loss of energy of the soliton over the trajectory
in the form of a Melnikov integral:

�E =
∫ ∞

−∞
dE

dt
dt = −

∫ ∞

−∞
F ′(X(t))Ẋ(t)a(t) dt.
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Plugging the various formulae into the separatrix(3.5) (using the plus signs for right-moving trajectories and
allowing t1 = 0, which does not effect this calculation):

F = −2sechX tanhX = − 2t

1 + t2
, F ′ = −4sech3X+ 2sechX = − 4

(1 + t2)3/2
+ 2

(1 + t2)1/2
,

Ẋ = sechX = (1 + t2)−1/2.

This gives the Melnikov integral

�E = −
∫ ∞

−∞

( −4

(1 + t2)2
+ 2

1 + t2

)
a(t)dt. (3.6)

We evaluate�E by first computinga(t) and then using this inEq. (3.6). Using initial condition(3.3), we may solve
for a by variation of parameters:

a= ε

λ
cosλt

∫ t

−∞
F(X(τ)) sinλτ dτ − ε

λ
sinλt

∫ t

−∞
F(X(τ)) cosλτ dτ = − ε

λ

∫ t

−∞
F(X(τ)) sinλ(t − τ)dτ

= 2ε

λ

∫ t

−∞
sinλ(t − τ)

τ

1 + τ2
dτ. (3.7)

In fact, only the even component ofa(t) will be needed to evaluate�E. This is given by

ae = ε

λ

∫ ∞

−∞
sinλ(t − τ)

τ

1 + τ2
dτ. (3.8)

This may be evaluated by introducing the complex exponential and closing the integral in the lower halfτ-plane,
which gives a contribution from the pole atτ = −i:

ae = −επ e−λ

λ
cosλt. (3.9)

This is small beyond all orders inε, but the odd component ofa(t) contains algebraically small terms as well.
Then, putting(3.8) into (3.6)and using complex exponentials, gives

�E = πε

λ
e−λ

∫ ∞

−∞

(
− 4

(1 + t2)2
+ 2

1 + t2

)
eiλt dt.

This may be closed in the upper complex plane, where the residues att = i leads to the final answer:

�E = −2π2εe−2λ, (3.10)

where, recall,λ is defined byEq. (3.2).
Note that a Melnikov integral has been evaluated to determine the leading order change of energy, essentially

providing the first term in a formal series expansion of this change. In general the terms in such a series are
algebraically small in the paramteterε. Here the computed integral is O(ε3/2 e−√

2/ε), smaller than any power ofε.
Formally, the next term in the series is will be proportional to some power ofε, arising, perhaps, due to algebraically
small terms in the odd part ofa(t). Alarmingly, this or subsequent terms might dwarf the first term in the formal
expansion, rendering the Melnikov integral meaningless. This concern was raised by Holmes et al.[19], who studied
a related problem, the rapidly forced pendulum

θ′′ + sinθ = εp sin
t

ε
,

and were able to prove that forp ≥ 8 the Melnikov integral accurately measures the exponentially small separatrix
splitting. They were subsequently able to reduce the exponentp. Delshams and Seara[20] rigorously prove the
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validity of the formal Melnikov analysis when the factorεp is replaced by an independent small parameterµ and
give a more complete discussion of the history of this problem. We therefore have confidence that the Melnikov
integral correctly measures the energy change. The numerical evidence ofSection 6is also shown to be in excellent
agreement.

Eq. (3.10)may then be used to find the critical velocity2:

2

(
dX

dt

)2

= |�E| = 2π2εe−2λ, (3.11)

Vc ≡ dX

dt
= π

√
εe−λ. (3.12)

Recall thatt has been scaled by a factor of
√
ε/2. Removing this scaling gives a critical velocity

vc = πε√
2

e−λ. (3.13)

We may compute output velocityVout for slightly supercritical input velocityVin = π
√
εe−λ(1 + δV ) using the

energy:

2V 2
in −�E = 2V 2

out,

so that

Vout ∼
√

2δVVc.

This gives the characteristic square root behavior of the curve inFig. 2to the right ofvc.
We briefly mention two generalizations of the above Melnikov analysis that will be useful in later sections. On

the first near-heteroclinic orbit, we assume that no energy resides ina(t). On subsequent near-heteroclines,a(t) is
actively oscillating, so we first suppose that ast → −∞,

a(t) ∼ 2επ e−λ

λ
A cosλ(t − T), (3.14)

whereA andT will be determined later. Then, sinceEq. (3.1b)is linear ina(t), the contribution due to this term
merely adds to the contribution already calculated. As before, only the even part ofa(t) is needed for the calculation.
Thus using cosλ(t − T) = cosλT cosλt + sinλT sinλt, the total change of energy is

�E = (4A cosλT − 2)π2εe−2λ. (3.15)

Depending on the magnitude and sign ofA cosλT the energy change may be positive or negative.
Second, we consider the Melnikov integral computed along the separatrix in the lower half-plane. System(2.6)

obeys the symmetry

(X, Ẋ, a, ȧ; t) → (−X,−Ẋ,−a,−ȧ; t),
so that the Melnikov integral can be computed directly. Assuming the limiting behavior(3.14), the change of energy
is

�E = (−4A cosλT − 2)π2εe−2λ. (3.16)

2 Recall that ast → −∞,X → −∞, soU(X) → 0.
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3.1. The full expansion of a(t)

In later sections, we will need more detailed knowledge of the form ofa(t). By Eqs. (3.7)–(3.9),

a = 2ae − 2ε

λ

∫ ∞

t

sinλ(t − τ)
τ

1 + τ2
dτ.

We obtain the asymptotic expression ast → +∞ by integrating by parts:

a(t) ∼ 2ε

λ2

(
t − t1

(t − t1)2 + 1
+ O(λ−2)

)
− 2επ e−λ

λ
cosλ(t − t1). (3.17)

Similarly, ast → −∞,

a(t) ∼ 2ε

λ2

(
t − t1

(t − t1)2 + 1
+ O(λ−2)

)
, (3.18)

with no exponentially small oscillatory term. Here we have re-introduced the dependence of the solution on the
symmetry timet1 from (3.5), ignored during the calculation above for transparency of notation. The algebraically
small terms decay for larget, so ast → ∞, it is the exponentially small oscillating term that dominates. However,
when we use the method of matched asymptotic expansions, we will assume thatt is exponentially large of the
appropriate size so that the leading order algebraic term and the oscillation are of the same size.

4. Solutions near |X| = ∞

In the next two sections we construct matched asymptotic solutions to(3.1)by matching near-separatrix solutions
to solutions valid near|X| = ∞. The solution for large|X| may be expanded as a near-saddle approach to the
degenerate saddle points at infinity. Nearly heteroclinic orbits alternate with near-saddle approaches. Near-saddle
expansions for linear saddle points are common. In that case, exponential growth of solutions away from the saddle
point matches to exponential decay of homoclinic orbits. Finite nonlinear saddle points corresponding to bifurcations
for Hamiltonian systems have been analyzed by Haberman[8,9] and Diminnie and Haberman[10,11]. In the current
work, the nonlinear saddle is at infinity, and we do not believe that such an expansion has been analyzed before. In the
present case, solutions in the near-saddle region have finite-time singularities which match to the logarithmic growth
of the heteroclinic orbits. We note from the conservative system(3.1) and expansion(3.17) that the contribution
due toaF′(X) is exponentially small for larget, so that to leading order

4Ẍ+ U ′(X) = 0, (4.1)

with the energy given by(3.4). U(X) may be approximated in a neighborhood of±∞ by

U ∼ −8 e∓2X.

We may then form approximations valid for largeX in two different ways depending on whether the energyE is
positive or negative. Phase portraits of(4.1), shown inFig. 6, may clarify the results that follow.

If E = 2V 2 > 0, then the solution of(4.1)corresponding to the near-saddle approach is given by

e±X = ± 2

V
sinhV(t − t∗) asX → ±∞. (4.2)

The± sign on the left side of the equation determines whetherX → ±∞, and the sign on the right must be chosen
so that±(t − t∗) is positive. The constantt∗ is the finite blowup time at which time the right hand side approaches
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zero, forcing|X| to approach infinity. TheV in the notation is used intentionally, as it gives the asymptotic velocity
of the near-approach to the saddle.

The solution for the near-saddle approach withE = −2M2 < 0 is given by

e±X = 2

M
cosM(t − t∗∗). (4.3)

The solutionX(t) has finite-time singularities whenM(t − t∗∗) = ±π/2 and is even about the symmetry time
t = t∗∗.

For large|X|, F(X) ∼ ∓4 e±X, so that from(3.1b),

ä+ λ2a ∼ ±4εe±X.

Sinceλ � 1, the asymptotic expansion ofa(t) is given by

a ∼ ±4ε

λ2
e±X(t) + c1 cosλ(t − t1)+ c2 sinλ(t − t1), (4.4)

where(4.2)or (4.3)may be used depending on the circumstance.Eq. (4.4)shows that near the saddle approachesa(t)

consists of simple harmonic oscillations about a slowly varying mean (which increases in forward and backwards
time toward the finite time singularities), all of which can clearly be seen in the numerical calculations. The saddle
approach withE < 0, described in detail in the next section must match backwards in time to(3.17), so thatc2 = 0
andc1 = −2επ e−λ/λ. Matching this near-saddle approach fora(t) forward in time shows how this exponentially
small oscillation is added as previously stated in(3.14).

5. Construction of solutions near the separatrix

We now construct an approximation to the initial value problem for the scaled model(3.1)under the assumption
that the initial velocity is subcritical. To be precise, we consider the “initial value problem” defined by(3.1) and
(3.3). We assume thatV > 0 is less than the critical value found in(3.12). As the Melnikov function giving the
energy change is exponentially small, we may make the assumption thatE(t) stays exponentially close to 0, its value
along the heteroclinic orbit.X(t) may be approximated in different way depending on|X|. These approximations
may then be connected by their limiting behaviors to give a matched asymptotic expansion. When|X| = O(1), it
may be approximated by a heteroclinic orbit

X ≈ ± sinh−1(t − tj),

wheretj is the “symmetry time” at whichX(t) = 0 for thejth nearly heteroclinic orbit. For|X| large, the solution
is given by formulas(4.2) and (4.3). The exponentially small part ofa(t) contributes to the analysis, as it is needed
to determine the energy difference between subsequent approaches to infinity.

5.1. The two-bounce solutions

The two-bounce solution can be constructed from the following pieces:

(1) A near-saddle approach toX = −∞ with energyE0 = 2V 2
0 :

e−X = − 2

V0
sinhV0(t − t∗), (5.1a)

with V0 < Vc as given by(3.12).
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(2) A heteroclinic orbit with dX/dt > 0:

sinhX = t − t1. (5.1b)

(3) A near saddle approach toX = +∞ with negative energyE = −2M2
1:

eX = 2

M1
cosM1(t − t∗∗). (5.1c)

(4) A heteroclinic orbit with dX/dt < 0:

sinhX = −(t − t2). (5.1d)

(5) A near-saddle approach toX = −∞ with positive energyE = 2V 2
2 :

e−X = 2

V2
sinhV2(t − t∗∗∗). (5.1e)

The solution can be summarized as a succession of near-saddle approaches, connected by heteroclinic orbits. Since
the change of energy between consecutive near-saddle approaches is given by(3.10), we see

−2M2
1 − 2V 2

0 = −2π2εe−2λ. (5.2)

We now need to compute the change of energy along the second heteroclinic connection. We must first compute the
symmetry timet2 of the second heteroclinic orbit, which is done via leading order matching ofX(t). The algebraically
small components ofa(t) can be obtained fromX(t) by regular perturbation, and thus match immediately onceX

satisfies matching conditions. The separatrix is given byX = − sinh−1(t − tj), and the oscillatory part ofa(t)
is given by−(2επ e−λ/λ) cosλ(t − t1) in backwards time. Shifting time byt2, we arrive at the energy change
computed in(3.16)withA = −1 andT = t2− t1. The analytic criterion for a two-bounce solution is that the energy
be positive after the second heteroclinic transition, i.e.

E2 = 2V 2
0 − 2π2εe−2λ + (4 cosλ(t2 − t1)− 2)π2εe−2λ > 0. (5.3)

If E2 < 0, then the energy at this saddle approach is less than zero, and the solution does not escape at this saddle
approach.

The large time singularity of the first heteroclinic orbit(5.1b):

e−X ∼ 1

2

1

t − t1

must match the singularity of(5.1c)asM1(t − t∗∗) ↘ −π/2:

e−X ∼ M1

2

1

M1(t − t∗∗)+ π/2
,

yielding

t∗∗ − t1 = π

2M1
.

A similar calculation yields

t2 − t∗∗ = π

2M1
.
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Combining these gives

t2 − t1 = π

M1
. (5.4)

Note that this is exactly half the period of a closed orbit withE = −2M2
1. Matching(5.1a) and (5.1b)yieldst∗ = t1,

and matching(5.1d) and (5.1e)yieldst∗∗∗ = t2.

5.2. The two-bounce resonance and the width of the two-bounce window

This does not suffice to determine resonant values ofV0, because we still need to satisfy the condition that the
oscillatory component ofa(t) vanishes in component 5 of the solution. Thus, at this stage we require a matching
condition on the exponentially small oscillating part ofa(t). Two-bounce resonant solutions are defined by the
condition thatE2 = 2V 2

0 . From(5.3), this requires that cosλ(t2 − t1) = 1. Using(5.4), we obtain the analytic
condition for two-bounce resonant solutions that

λπ

M1
= 2πn,

wheren > 0 is an integer, so that�E = 2π2εe−2λ. Thus, the second jump in energy exactly cancels the first, and
all of the energy is returned to the propagating modeX. This gives a quantization condition

M1 = λ

2n
. (5.5)

We can combine this withEq. (5.2), to obtain a formula for the initial velocity of the 2-n resonant solution

Vn =
√
π2εe−2λ − λ2

4n2
. (5.6)

Vn denotes the (scaled) initial velocity of the soliton in 2-n resonance with the defect mode. In order that forVn to
be well-defined,n must satisfy

n ≥ nmin(ε) ≡ λeλ

2π
√
ε
. (5.7)

This gives a lower bound on the number ofa-oscillations in a two-bounce resonance and approaches infinity rapidly
asε → 0+. This predicts that resonance windows disappear asε is decreased, as is shown in the numerical study
of Section 6that follows.

We may find the width of the 2-n resonance window as follows. If the energy change along the second heteroclinic
orbit satisfies�E > 2M2

1, then the solution has positive energy, the trajectory crosses the separatrix, and the soliton
escapes. If�E < 2M2

1, then the solution remains bounded, and will approach minus infinity before turning around
another time. Therefore, the boundaries of the 2-nwindow, as a function ofM1 are given by the values ofM1 where

�E = 2M2
1

in (5.3), i.e. if

cos
λπ

M1
= 1

2

(
1 + M2

1

π2εe−2λ

)
.
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LettingM1 = λ/2(n+ δ), then

cos 2π(n+ δ) = cos 2πδ = 1

2

(
1 + n2

min(ε)

(n+ δ)2

)
. (5.8)

Considering first the width of the leftmost window, we letn = int(nmin(ε))+1, thenδ2 = (1/2nπ2)(1−fr(nmin(ε))),
where int(Z) and fr(Z) are the integer and fractional parts ofZ. Restricting our attention to the smaller windows
closer tovc, if n � nmin(ε), then cos 2πδ ≈ 1/2, or δ ≈ ±1/6. The left and right edges of thenth resonance
window have velocity approximately

Vn± =
√
π2εe−2λ − λ2

4(n± 1/6)2
. (5.9)

If n is sufficiently large, thenδn = λeλ/2πn
√
ε � 1, and we find that the width of the 2-n window is given by

Wn = Vn+ − Vn− ≈ Vcδ
2
n

(
3

n

)
, (5.10)

which scales asn−3 for largen.

5.3. The general initial value problem

If the second jump in energy, given by by the second Melnikov calculation(5.3), is less than 2M2
1, then the soliton

does not escape on the second interaction with the defect. Instead it jumps to a new energy level inside the separatrix.
We can then replace the sequence(5.1)with a finite number of nearly heteroclinic orbits separated by near saddle
approaches (with negative energy) in which the solution usually escapes at the last saddle approach with positive
energy:

(1) A near saddle approach toX = −∞, with energyE0 = 2V 2
0 :

e−X = − 2

V0
sinhV0(t − t∗). (5.11a)

(2) A heteroclinic orbit withẊ > 0, over which the change of energy is�E1, given by the Melnikov integral
(3.10):

sinhX = t − t1. (5.11b)

(3) A near saddle approach alternating betweenX = ±∞, with energyEj = Ej−1 +�Ej = −2M2
j :

eX = 2

Mj

cosMj(t − t
j
∗). (5.11c)

(4) A heteroclinic orbit (alternating betweeṅX < 0 andẊ > 0):

sinhX = ±(t − tj). (5.11d)

After each nearly heteroclinic orbit, the energy isEj+1 = Ej +�Ej. If Ej+1 < 0, the solution solution has
a near saddle approach with negative energy and hence returns to step 3. However, ifEj+1 > 0, the solution
escapes, and this last saddle approach is instead mathematically described by step 5.
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(5) If the solution escapes (at velocity±Vf ), then the near saddle approach atx = ±∞ satisfies:

e±X = 2

Vf
sinhVf (t − t∗∗∗). (5.11e)

Usually the solution will escape after a finite number of bounces. However, for a set of initial velocities of zero
measure, the solution will consist of an infinite number of nearly heteroclinic orbits, will not escape, and will be
chaotic. The interesting dynamics take place at step 3 above. We must again consider the oscillatory part ofa(t). In
analogy with expansion(3.17), afterj near-heteroclinic orbits,a(t) may be written

a(t) ∼ algebraically small non-oscillatory terms+ 2επ e−λ

λ

j∑
k=1

(−1)k+1 cosλ(t − tk),

where we findtk − tk−1 = π/Mk−1, the appropriate generalization of(5.4). The change in energy along thekth
heteroclinic orbit is given by a generalization ofEqs. (3.15) and (3.16)to include multiple oscillating terms. If the
solution contains exactlym heteroclinic connections, then the change of energy over all of the connections is given
by the sum of the contributions over all them nearly heteroclinic orbits, which, after some algebraic manipulation,
is

�Etotal = 2π2εe−2λ
m∑
i=1

m∑
j=1

(−1)i+j+1 cosλ(tj − ti). (5.12)

The condition for a perfectm-bounce resonance in which|vin| = |vout| is thus that�E = 0, which will happen only
for a measure zero set of initial velocitiesV0. If this is the case, thenX(t) will have interacted with the defect a total
ofm times. Between each pair of bounces,a(t)will have undergone an integer number of complete oscillations (plus
a small phase shift). We may thus construct, in a manner similar to that above, them− (q1, q2, . . . , qm−1) bounce
window. Of course many of windows do not contain a complete resonance, i.e. there does not exist a velocity in the
window for which all energy is returned to the propagating mode. When all the windows of initial conditions that
eventually escape to±∞ are removed, what remains is a Cantor-like set of initial conditions that are trapped for
all positive time.

5.4. The three-bounce resonance

It is also possible to construct the three-bounce resonance solutions, which look likeFig. 8in phase space. From
(5.12), a three-bounce solution satisfies

�Etotal = 2π2εe−2λ
(

−3 + 2 cos
λπ

M1
+ 2 cos

λπ

M2
− 2 cos

(
λπ

M1
+ λπ

M2

))
.

−5 0 5
−0.5

0

0.5

X

dX
/d

t

Fig. 8. A phase-plane portrait of a transmitted three-bounce solution ofEq. (3.1). Compare to reflected two-bounce solution ofFig. 7.
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Three-bounce resonant solutions may be obtained by letting�Etotal = 0. Here we analyze this special case using
symmetry. Note that the two-bounce solutions consist ofX andawhich are even functions oft (with the time origin
shifted to be the midpoint between the two singularity times). Similarly(3.1)admits special solutions in which both
X(t) anda(t) are odd. A three bounce resonant solution is an odd function of time, in which there are three energy
jumps anda(t) → 0 as|t| → ∞. We may assume that the three singularity times are−t0, 0, andt0. Then we note
that for the solution to be odd, the energy levelE1 for t ∈ (−t0,0) must be the same as the energy levelE2 for
t ∈ (0, t0), so�E = 0 along the second heteroclinic orbit, i.e.

�E = (4 cosλt0 − 2)π2εe−2λ = 0.

Therefore cosλt0 = 1/2 or

λt0 = 2nπ ± 1
3π.

By our standard reasoning this gives

V =
√
π2εe−2λ − λ2

4(n± 1/6)2
,

which is exactly the formula we obtained in(5.9)when we ignored a small term in that calculation. Therefore very
close to the edge of each two-bounce window, on either side, there exists a symmetric three-bounce window. We
may check that if before the second energy jump

a(t) ∼ −2 cos(λt ± 1
3π),

then afterward

a(t) ∼ 2 cos(λt ∓ 1
3π),

so the solution is odd, and we do not need to compute the third interaction. Although the three-bounce windows
are too narrow to see with the naked eye, we were able to find them quite easily by looking carefully at the region
around the above-determined velocities. InFig. 9, we showa(t) for the two three-bounce windows to the immediate
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Fig. 9. The two three-bounce resonant solutions (a(t) only) to the left and right of the first two-bounce window inFig. 2: (a) v = 0.09796; (b)
v = 0.11301.
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left and right of the first two-bounce window shown inFig. 2. Asymmetric three-bounce windows also exist, in
whicha oscillates a different number of times on the first approach to infinity than it does on the second. Although
no transmission windows are seen inFig. 1, they have been seen, albeit infrequently, in numerical simulations of
the PDE[21].

6. Numerical verification

The analysis of the previous section has given us formulas by which we may compute several features of the
solution, as a function of the defect strengthε. These include the critical velocityvc (3.13), the minimum number of
oscillations ofa(t) in a reflection windownmin(ε) (5.7), and the locations and width of the two-bounce resonance
windows ((5.6) and (5.10)after rescaling to the physical time and velocity scales).

6.1. Critical velocities

Fig. 10, shows the numerically computed critical velocities for the valuesε ∈ {1/8,1/4,1/2,1}, as well as
vc = πεexp(−λ)/√2. Of course, both the curve of calculated velocities, as well as the numerically computed
velocities approach zero asε → 0, so we must show they approach zero at the same rate to validate our theory. The
lower half of the figure shows the ratio of the numerical and asymptotic values, which are correct to within 6% for
ε = 1 and to within 0.2% forε = 1/8.

6.2. Predicted minimum number of a-oscillations for resonance (nmin(ε))

For the valuesε = {1/4,1/2,1}, formula (5.7) yields nmin(ε) (rounded up to the nearest whole number):
nmin(1/4) = 15,nmin(1/2) = 4, andnmin(1) = 1, which are precisely the values found via numerical experiment.
The formula givesnmin(1/8) = 98. The fewest oscillations seen in the numerical experiments withε = 1/8 was
100, but the equations are very stiff whenε andvin are very small, and smaller values ofvin were not investigated.
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Fig. 10. (Top) Critical velocity as a function ofε, numerical+, and via asymptotic calculation (solid line). (Bottom) Ratio of numerical to
asymptotic calculated values.
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Fig. 11. Input vs. output velocities forε = 1/4 showing the predicted resonant initial velocities+. The chaotic scattering between the windows
have been removed and only the first 13 windows are shown.

6.3. Resonance windows

The comparison ofvn with numerically computed values is shown inFig. 11for ε = 1/4. Many of the resonance
windows are well-predicted. We may gain more insight by consideringEq. (5.6)as definingn as a function ofV
(and hence as a function of the unscaled velocityv). In Fig. 12we plot cos 2πn(v) as a function ofv. If n ∈ Z, then
cos 2πn = 1. Therefore the two-bounce resonance window centers (i.e. the resonant initial velocities) are given by
the points where the curvey = cos 2πn(v) is tangent to the liney = 1.Eq. (5.8)(with n+ δ replaced byn(v)) gives
the edges of the resonance windows. Therefore to the immediate left and right of the resonance window centers, the
curvey = cos 2πn(v) crosses the curvey = (1/2)(1+n2

min(ε)/n(v)
2), giving the window edges. We note from the

figure that this implies that the leftmost resonance windows should be narrowed with respect to the space between
windows. This is confirmed in the plot ofvout vs.vin.

Finally, the reasoning ofSection 5.4shows that the center of the three-bounce windows should be given by the
intersection of the curvey = cos 2πn(v) with the liney = 1/2.
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Fig. 12. (Top) The oscillatory curve isy = cos 2πn(vin) as a function ofvin. Its intersections with the liney = 1 (dotted line) give the location of
the two-bounce resonant initial velocities. Intersections with the curvey = (1/2)(1+n2

min(ε)/n(v)
2) (thick line) give the edges of the resonance

windows. Intersections withy = 1/2 (dashed line) give the three-bounce resonant window velocities. (Bottom) The curvevout vs.vin.
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7. Conclusions

We have shown how a resonant exchange of energy between a soliton and defect mode gives rise to two-bounce
resonance windows. This was known to Campbell et al. as well as to Fei et al. However by applying perturbation
techniques to a variational model of the system, we have been able to quantify this effect without recourse to
statistical data fitting. The study of Fei et al. shows remarkable fits between the numerically determined locations of
the resonance windows, and also gives an implicit equation for the critical velocity that is asymptotically equivalent
to ourEq. (3.13). The chief advantage of our method is that we are able to determine the dependence of all these
quantities onε explicitly.

One of us has previously studied the model(2.6) in [16]. In that paper,ε was considered to be order 1 and an
artificial parameterµ was introduced as a factor multiplying the coupling functionF(X). For small values ofµ,
we were able to show the dynamics contains a Smale horseshoe. In that construction, capture was identified with
transfer of phase space between the regions ofFig. 6 via turnstile lobes in a certain Poincaré map. That Poincaré
map was ill-defined asµ → 1, so the results were not directly applicable toEq. (2.6), although were very suggestive
of the dynamics. It does indicate how the dynamics in the regions between the resonance windows inFig. 2depends
sensitively on the input velocity. Combining this with the quantitative information contained in the current study
gives a rather complete picture of the dynamics.

Other studies of the two-bounce resonant phenomenon have often derived a formula for the resonance windows
of the form

(vc − vn)
−1/2 ∼ nT + θ0,

whereT is the period of the fast oscillations, andθ0 is some offset time. The equivalent statement in this study is
given in Eq. (5.5). This is equivalent to settingθ0 to zero. To asymptotically computeθ0 we would need to find
further terms in(5.4), the equation for the time between interactions, in terms of the small energy-derived termM.
The leading order term is O(M−1) and symmetries ofEq. (4.1)show that the O(1) term must be zero. The next
term in the series is necessarily O(M).

Many similar systems have shown the two-bounce resonance, and the methods developed here should be adaptable
to such systems. However the current system is the simplest to study for several reasons. First, it depends explicitly
on a small coupling parameterε, and whenε → 0 decouples into two independent oscillators. Anninos et al. derive
a variational model of the kink–antikink scattering in theφ4 experiments of Campbell et al.[2,22]. This model does
not depend explicitly on a small parameter, so an artificial one might need to be introduced. Since our formula for
vc is correct to within 6% even withε = 1, this may be a reasonable step to take. Other models do not decouple so
cleanly as(3.1) asε → 0. Nonetheless, in many systems it is possible to draw a diagram similar toFig. 2, so we
believe that a similar mechanism is at work.

Acknowledgements

We would like to thank Phil Holmes, Michael Weinstein, Greg Kriegsmann, and Chris Raymond for helpful
discussions. RG was supported by NSF DMS-0204881 and by an SBR grant from NJIT.

References

[1] Z. Fei, Y.S. Kivshar, L. Vázquez, Resonant kink–impurity interactions in the sine-Gordon model, Phys. Rev. A 45 (1992) 6019–6030.
[2] D.K. Campbell, J.S. Schonfeld, C.A. Wingate, Resonance structure in kink–antikink interactions inφ4 theory, Physica D 9 (1983) 1–32.



R.H. Goodman, R. Haberman / Physica D 195 (2004) 303–323 323

[3] M. Peyrard, D.K. Campbell, Kink–antikink interactions in a modified sine-Gordon model, Physica D 9 (1983) 33–51.
[4] D.K. Campbell, M. Peyrard, Solitary wave collisions revisited, Physica D 18 (1986) 47–53.
[5] D.K. Campbell, M. Peyrard, Kink–antikink interactions in the double sine-Gordon equation, Physica D 19 (1986) 165–205.
[6] R.H. Goodman, R.E. Slusher, M.I. Weinstein, Stopping light on a defect, J. Opt. Soc. Am. B 19 (2002) 1632–1635.
[7] Y. Tan, J. Yang, Complexity and regularity of vector–soliton collisions, Phys. Rev. E 64 (2001) 56616.
[8] R. Haberman, Slow passage through a transcritical bifurcation for Hamiltonian systems and the change in action due to a nonhyperbolic

homoclinic orbit, Chaos 10 (2000) 641–648.
[9] R. Haberman, Slow passage through the nonhyperbolic homoclinic orbit associated with a subcritical pitchfork bifurcation for Hamiltonian

systems and the change in action, SIAM J. Appl. Math. 62 (2001) 488–513.
[10] D.C. Diminnie, R. Haberman, Slow passage through a saddle-center bifurcation, J. Nonlinear Sci. 10 (2000) 197–221.
[11] D.C. Diminnie, R. Haberman, Slow passage through homoclinic orbits for the unfolding of a saddle-center bifurcation and the change in

the adiabatic invariant, Physica D 162 (2002) 34–52.
[12] M.D. Kruskal, H. Segur, Asymptotics beyond all orders in a model of crystal growth, Stud. Appl. Math. 85 (1991) 129–181.
[13] A. Scott, Nonlinear science, in: Oxford Applied and Engineering Mathematics, vol. 1, Oxford University Press, Oxford, 1999 (emergence

and dynamics of coherent structures, with contributions by Mads Peter Sørensen and Peter Leth Christiansen).
[14] D.W. McLaughlin, A.C. Scott, Perturbation analysis of flux on dynamics, Phys. Rev. A 18 (1978) 1652–1680.
[15] B.A. Malomed, Variational methods in nonlinear fiber optics and related fields, Progress Opt. 43 (2002) 71–193.
[16] R.H. Goodman, P.J. Holmes, M.I. Weinstein, Interaction of sine-Gordon kinks with defects: phase space transport in a two-mode model,

Physica D 161 (2002) 21–44.
[17] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York,

1983.
[18] V.K. Melnikov, On the stability of the center for time periodic perturbations, Trans. Moscow Math. Soc. 12 (1963) 1–57.
[19] P. Holmes, J. Marsden, J. Scheurle, Exponentially small splittings of separatrices with applications to KAM theory and degenerate

bifurcations, in: Hamiltonian Dynamical Systems (Boulder, CO, 1987), vol. 81 of Contemporary Mathematics, Am. Math. Soc., Providence,
RI, 1988, pp. 213–244.

[20] A. Delshams, T.M. Seara, An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum, Commun. Math. Phys.
150 (1992) 433–463.

[21] Y. Kivshar, Private communication.
[22] P. Anninos, S. Oliveira, R.A. Matzner, Fractal structure in the scalarλ(φ2 − 1)2 model, Phys. Rev. D 44 (1991) 1147–1160.


	Interaction of sine-Gordon kinks with defects: the two-bounce resonance
	The two-bounce resonance and related phenomena
	The variational approximation
	Determination of the critical velocity
	The full expansion of a(t)

	Solutions near |X|=
	Construction of solutions near the separatrix
	The two-bounce solutions
	The two-bounce resonance and the width of the two-bounce window
	The general initial value problem
	The three-bounce resonance

	Numerical verification
	Critical velocities
	Predicted minimum number of a-oscillations for resonance (nmin(epsi))
	Resonance windows

	Conclusions
	Acknowledgements
	References


