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We consider the interactions of two identical, orthogonally polarized vector solitons in a nonlinear optical
fiber with two polarization directions, described by a coupled pair of nonlinear Schrödinger equations. We
study a low-dimensional model system of Hamiltonian ordinary differential equationssODEsd derived by Ueda
and Kath and also studied by Tan and Yang. We derive a further simplified model which has similar dynamics
but is more amenable to analysis. Sufficiently fast solitons move by each other without much interaction, but
below a critical velocity the solitons may be captured. In certain bands of initial velocities the solitons are
initially captured, but separate after passing each other twice, a phenomenon known as the two-bounce or
two-pass resonance. We derive an analytic formula for the critical velocity. Using matched asymptotic expan-
sions for separatrix crossing, we determine the location of these “resonance windows.” Numerical simulations
of the ODE models show they compare quite well with the asymptotic theory.
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I. INTRODUCTION

Solitary waves are an important phenomenon in nonlinear
physics and applied mathematics. Solitary waves have been
studied in a diverse array of physical models including water
waves f1–3g, quantum electronic devicessJosephson junc-
tionsd f4g, and cosmologyf5,6g. One of the most important
applications is to nonlinear optical communications where
solitary waves have been proposed as information bits in
optical fiber transmission systemsf7g and produced experi-
mentally about 25 years agof8g. Other solitary wave phe-
nomena in nonlinear optics include gap solitons in Bragg
gratings f9,10g and dispersion managed solitonsf11,12g,
which hold promise for eliminating the timing jitter associ-
ated with soliton transmission systems.

A single solitary wave propagating through a uniform me-
dium appears particlelike in its coherence and steady propa-
gation. Of great interest are the interaction of multiple soli-
tary waves and the behavior of solitary waves propagating
through nonuniform media. Solitary waves of completely in-
tegrable equations are known as solitons, and their interac-
tions can be described completely, using multiple-soliton for-
mulas derived via the inverse scattering transformf13g. The
infinite set of conservation laws in integrable systems se-
verely constrain the dynamics: collisions are elastic, and the
solitons will reemerge from a collision propagating with their
initial amplitudes and speeds intact, although their positions
will have undergone a finite jump. Solitary wave collisions in
nonintegrable wave equations can usually not be found in
closed form and show a much richer variety of behaviors: the
waves may attract or repel each other and, upon collision, the

solitary waves may lose their coherence and break apart,
merge into a single localized structure, or even oscillate
about one anotherf14–21g.

In a soliton-based communications system, the bits are
represented by solitons. In the simplest scenario, the pres-
ence of a soliton in a given timing window codes a one, and
its absence codes a zero. Collisions between solitons,
coupled with random noise in fiber characteristics, can lead
to large perturbations in the solitons polarizations and to tim-
ing jitter f22g. A bit that arrives at the wrong time may be
interpreted incorrectly by a receiver, as would a soliton that
splits in half or two solitons that merge. Ueda and Kath show
such behaviors are possible and cite several additional nu-
merical studies of soliton collisions not included here. We
describe here an approach to the modeling and analysis of
these phenomena that, while highly idealized, leads to new
insights into these collisions.

Interacting pairs of solitary waves from several distinct
snonintegrabled physical models have shown an interesting
behavior in common. At high speeds, the solitary waves
move right past each other, hardly interacting, while at
speeds below some critical velocity, the solitary waves inter-
act strongly and may merge into a single localized state.
Interspersed among the initial velocities that lead to this cap-
ture are “resonance windows,” for which the two waves ap-
proach each other, interact with each other for a finite time,
and then move apart again; see the second and third graph in
Fig. 1. This has been explored by Tan and Yang in a system
of coupled nonlinear SchrödingersCNLSd equations that
model nonlinear propagation of light in birefringent optical
fibers f15–17g, and by Cambell and collaborators in kink-
antikink interaction in thef4 equations and several other
nonlinear Klein-Gordon modelsf18–21g. These windows
form a complicated fractal structure that has been described
qualitatively and even quantitatively, but for which the un-
derlying mechanism has been poorly understood.
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The same phenomenon was also observed by Fei,
Kivshar, and Vázquez in the interaction of traveling kink
solutions of the sine-Gordon andf4 equations with weak
localized defectsf23–25g. Instead of two solitary waves
merging, in this case the soliton could be captured, or
pinned, at the location of the defect. Almost all of the de-
scribed models have been studied using the so-called varia-
tional approximation, in which the complex dynamics of the
full partial differential equationsPDEd are modeled by a
small, finite-dimensional system of ordinary differential
equations.

The sine-Gordon equation with defect and the birefringent
fiber-optic model discussed above feature a small parameter
measuring the “non-integrability” of the system. In a recent
publication, Goodman and Habermanf26g, exploited this

small parameter to construct approximate solutions to the
system of ODEs for the sine-Gordon model derived inf24g.
We calculated the critical velocity for defect-induced soliton
capture via an energy calculation involving separatrix cross-
ing, and the location of the resonance windows using a quan-
tization condition that occurs in the asymptotic expansion. In
the current paper, we apply the same method to derive simi-
lar quantitative features in Ueda and Kath’s ODE model of
solitary wave collision in coupled nonlinear Schrödinger
equations, and to explain the structure underlying the fractal
structure of resonance windows.

In Sec. II we introduce the physical model—a coupled
system of nonlinear Schrödinger equations—and describe
previous results in which the “two-pass resonance” phenom-
enon has been observed. In Sec. III we introduce Ueda and
Kath’s finite-dimensional model system that captures the ob-
served dynamics and introduce a simplified model which
partially linearizes the system and renders it amenable to our
analysis. We show numerically that this simplification does
not qualitatively alter the dynamics. In Sec. IV we set up the
calculation as a singular perturbation problem and describe
the unperturbed dynamics. We determine the critical velocity
by calculating the energy that is lost to vibrations as the
solitons pass each other, employing a Melnikov integral. We
generalize this calculation slightly for subsequent interac-
tions. In Sec. V we construct approximate solutions using
matched asymptotic approximations, incorporating the previ-
ously calculated energy changes. Section VI contains a dis-
cussion of the differences between the original model and its
simplification and presents a weakly nonlinear theory to ac-
count for them. We conclude in Sec. VII with a physical
summary and a discussion on the applicability of these re-
sults to other systems displaying similar behaviors.

II. PHYSICAL PROBLEM AND PRIOR RESULTS

Following the previously citedf16,27g, we consider the
model of polarized light propagation in a optical fiber, given
by the system of coupled nonlinear Schrödinger equations

i]tA + ]z
2A + suAu2 + buBu2dA = 0,

i]tB + ]z
2B + suBu2 + buAu2dB = 0. s1d

This system replaces the more familiar scalar Schrödinger
equation when polarization is taken into effectf28g. The
equations may be derived using the slowly varying envelope
approximation to Maxwell’s equations in an optical fiber
waveguide. The variablesA andB describe the envelopes of
wave packets in the two polarization directions andb is the
nonlinear cross-phase modulationsXPMd coefficient that
arises due to cubicsxs3dd terms in the dielectric response of
the glass. Here we usez as a spacelike variable andt as a
timelike variable. Of course, in the optics interpretation, the
labels z and t are switched, as the signal is defined as a
function of time atz=0 and the evolution occurs as the pulse
moves down the length of the fiber. For mathematical sim-
plicity, we will use t as the evolution variable.

Our interest is in the interaction of solitary waves in the
above system. In the casesb=0 and b=1, systems1d is

FIG. 1. The exit velocity as a function of the input velocity for
b=0.05,b=0.2, andb=0.6, from Tan and Yangf16g, original au-
thors’ annotations removed.
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completely integrablef29,30g. In the first case it reduces to a
pair of uncoupled NLS equations; in the second it is known
as the Manakov system. For other values ofb, the equations
are not integrable. Of special interest is the caseb= 2

3, which
corresponds to linear fiber birefringence. For very small val-
ues ofb, this system models light propagation in a two-mode
optical fiberf31g. In the caseb=0, the equations are simply
a pair of focusing nonlinear Schrödinger equations, with
well-known soliton solutions, first suggested as carriers of
optical signals by Hasegawa and Tappertf7g. Whenb takes
any other value, the equations are nonintegrable. Yangf32g
studied these equations in great detail, enumerating several
families of solitary waves and determining their stability. Of
these, the only stable solitary waves come from a family of
symmetric single-humped solutions.

The simplest solutions of interest to Eq.s1d consist of an
exponentially localized soliton in the first component,A, and
zero in the second component,B, or vice versa. A single
soliton propagates at constant speed with a fixed spatial pro-
file. An important problem is the interaction of two such
solitons upon collision, as interactions between two such
solitons may lead to errors in a soliton-based transmission
system.

Tan and Yang numerically studied the interaction of two
solitons initialized in orthogonal channels with identical am-
plitude, headed toward each other with exactly opposite ini-
tial velocities f15–17g. For small values ofb<0.05, their
simulations show that for waves traveling above a critical
velocity vc, the solitons pass by each other, losing a little bit
of speed, but not otherwise showing a complicated interac-
tion. At initial velocities belowvc, the solitons capture each
other and merge into a stationary state near their point of
collision. Figure 1 shows the result of simulations in whichb
is held fixed, and the initial velocityV0, with which the soli-
tons approach each other, is systematically varied. The ve-
locity at which the two solitons eventually move apart is
plotted on they axis, with a zero assigned if the two pulses
become trapped.

For somewhat larger values ofb<0.2, they find that in
addition to the above behavior, that the capture region is
interrupted by a sequence of “resonant reflection windows.”
Solitons with initial velocities in these resonance windows
are reflected instead of being captured. The numerical simu-
lations show that the solitons pass each other once, undergo
a finite number of width oscillations, then pass each other a
second time. Thus they call this the “two-pass” resonance.

For larger values ofb<0.6, they find not only reflection
windows, but an intricate fractal-like structure of both reflec-
tion and transmission windows. Certain portions of the struc-
ture, when properly scaled, look like copies, in some cases
even reflected copies, of other portions of the structure, and
such features are seen at many different scales.

The two-bounce resonance in kink-antikink interactions
was explained qualitatively in the first papers of the Camp-
bell group f20,21g. As the kinks approach each other, they
begin to interact, and, at timet1, energy is transferred into a
secondary mode of vibration, with some characteristic fre-
quencyv. If the initial velocity is below a critical value, the
kinks no longer have enough energy to escape each other’s
orbit and turn around to interact a second timet2. They show

numerically that a resonant reflection occurs ift2− t1
<2pn/v+d. The parameterd is found by a least-squares fit
with numerical data. This relation is used to estimate the
resonant initial velocities. This reasoning has subsequently
been adapted in studies of sine-Gordon kink-defect interac-
tions f23–25g and of vector soliton collisionsf15–17g which
are the focus of this paper.

III. THE MODEL EQUATIONS

In order to gain further insight into the resonance phe-
nomenon, Tan and Yang examine a model system derived by
Ueda and Kathf27g using the variational method. In the
variational method, the solution is assumed to take a certain
functional form AfpWstdg, BfpWstdg, dependent on parameters
pWstd that are allowed to vary as a function of time. This
ansatz is then substituted into the Lagrangian functional for
the PDE, which is integrated in space to yield a finite-
dimensional effective Lagrangian,

Leff =E
−`

`

LsA,A* ,B,B*ddz,

whose Euler-Lagrange equations describe the evolution of
the time-dependent parameters. Equations1d has Lagrangian
density

L = isAAz
* − AzA

*d + isBBz
* − BzB

*d + suAtu2 − uAu4d

+ suBtu2 − uBu4d − 2buAu2uBu2. s2d

Many examples using this method for PDE’s arising as
Euler-Lagrange equations are given in a recent review by
Malomedf33g.

Following f27g, we take an ansatz corresponding to two
solitons at distance 2X of equal magnitude heading toward
each other with equal speed,

A = h sech
z− X

w
expiSvsz− Xd +

b

2w
sz− Xd2 + sD ,

B = h sech
z+ X

w
expiS− vsz+ Xd +

b

2w
sz+ Xd2 + sD ,

s3d

whereh, X, w, v, b, ands are time-dependent parameters for
the amplitude, position, width, velocity, chirp, and phase,
whose evolution remains to be determined. The variational
procedure yields a conserved quantityK=h2w, related to the
conservation of theL2 norm in CNLS, as well as the relations
dX/dt=v and dw/dt=b. The evolution is described by the
Euler-Lagrange equations

d2X

dt2
=

16Kb

w2

d

da
Fsad, s4ad

d2w

dt2
=

16

p2w2S 1

w
− K − 3bK

d

da
faFsadgD , s4bd

where a=X/w and the potential and coupling terms are
given by
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Fsxd =
x coshx − sinhx

sinh3 x
. s5d

Note thatF, actually −F, is a potential term, not a force. We
keep this notation for continuity with previous studies.

Numerical simulations show that for smallb, a solution to
Eq. s1d with an initial condition of the form given in ansatz
s3d will remain close to that form, i.e., the solution will con-
tinue to consist of two nearly orthogonally polarized solitons,
at least until they merge into a single bound state. Using the
symmetries of Eq.s4d, we may setK=1 without loss of
generality. Equivalently, the PDE symmetry may be used to
setK=1 in the ansatz used by the variational method.

These equations display the two-bounce resonance phe-
nomenon, as shown by Tan and Yang. Consider the initial
value problem, with “initial” conditions describing the be-
havior ast→−`,

X → − `;
dX

dt
→ vin . 0; w → 1;

dw

dt
→ 0.

This does not strictly determine a unique solution, since the
solution is invariant to time translation. We plotvout as a
function of vin with b=0.05 in Fig. 2. These and all other
ODE simulations were performed using routines from
ODEPACK f34g. Compare this figure to the three plots of Fig.
1. There are key similarities and differences between this
graph and the exit velocity graphs of the full PDE simula-
tions. The critical velocity in this figure is aboutvc=0.19,
close to the valuevc=0.1715 found inf16g. A noteworthy
difference is the complex behavior of solutions with initial
velocity belowvc—no such behavior, not even the two-pass
windows, was seen in the very careful simulations of Tan and

Yang. This should not be surprising, as systems4d is Hamil-
tonian, and the set of initial conditions leading to unbounded
trajectories in backwards time and bounded trajectories in
forward time has measure zero, by reasoning similar to
Poincaré recurrence, as shown in Proposition 1 off35g. Lo-
calized solutions to Eq.s1d may lose energy to radiation
modes, a dissipation mechanism not present in the ODE
model. As a further result of the dissipation, the output
speeds of the reflected solutions are much smaller than the
input speeds in the PDE solutions, whereas at the very center
of the ODE windows, the output speed exactly matches the
input speed. A more interesting difference can be seen in the
presence of the wide reflection windows, which were not
found in the PDE simulations with this value ofb, summa-
rized in Fig. 1.

In Fig. 3, the exit velocity graph of Eq.s4d shows that
even atb=0.2, the ODE dynamics display a complex fractal-
like structure in addition to the reflection windows, which
are not seen in the PDE dynamics for such small values ofb.
The numerical value of the crititcal velocity isvc=0.86,
close to the valuevc=0.936 found inf16g.

The numerical solutions of Eq.s4d qualitatively explain
the resonance windows. In Fig. 4 we show thewstd compo-
nents of the solutions with initial velocityv at the center of
the first two resonance windowssactually the points tangents
to the linevout=−vind. In the leftmost window, the oscillator
wstd is excited, oscillates about five times, and then is deex-
cited. In the next window,wstd oscillates six times. In each
of the successive windows,wstd oscillates one more time
before it is extinguished. We will refer to the first window as
the 2-5 window and the second window as the 2-6 resonance
window. Recall that no such windows have been found in
PDE dynamics for this value ofb, but such windows have

FIG. 2. The input vs output ve-
locity of a pair of orthogonally po-
larized solitons withb=0.05.
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been found in the ODE dynamics for all values ofb. Tan and
Yang demonstrated a width oscillation in the PDE solutions
in analogy with that shown here. The minimum value ofn in
the 2-n resonance decreases with increasingb. There does
exist a 2-1 resonance with velocityv=0.649 in the ODE
dynamics shown in Fig. 3, while the first resonance window
found in the PDE simulations is the 2-2 resonance at about
v=0.9 in Fig. 1.

A further simplified model

The models4d bears a striking resemblance to the system
derived inf24g to study the two-pass resonance in the sine-
Gordon equation with defect and analyzed inf26g. In that
case, however, the situation is much simpler: the term
equivalent tow in Eq. s4d occurs only linearly, and the po-
tential and coupling terms, equivalent toFsX/wd here, are

functions ofX alone. This allows us to solve the analog of
Eq. s4bd by variation of parameters to solve for this term and
then insert it into the equivalent of Eq.s4ad critical step in
our analysis. In our numerically computed solutions display-
ing the two-bounce resonance for small values ofb, the
width w undergoes only a small oscillation about its initial
width w=1. Therefore we may partially linearize systems4d,
which allows us to proceed in the same manner as we have
for the sine-Gordon system. We find reasonable agreement,
with a few notable differences, between the two ODE sys-
tems. We will discuss the linearized theory first and then
discuss corrections due to the nonlinearity.

Allowing w=1+W, whereW is considered small, expand
all the terms inW, and keep only leading-order terms. We
arrive at the reduced system:

d2X

dt2
= 16bfF8sXd + G8sXdWg; s6ad

FIG. 3. Top: The exit velocity graph for Eq.
s4d for b=0.2, showing reflection windows and a
variety of more complex fractal-like structures.
Bottom: The same figure with all but the main
resonant reflections removed.
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d2W

dt2
+

16

p2W=
48b

p2 GsXd, s6bd

where

GsXd = − fXFsXdg8.

Figure 5 shows that this simplified equation gives an accu-
rate estimate of the critical velocity for small values ofb
based on numerical simulation. Figure 6 shows the equiva-
lent of Fig. 2 with the same value ofb=0.05 for the simpli-
fied equations. It shows that the qualitative picture, chaotic
scattering interupted by resonance windows forv,vc, is the
same, while the actual location of those windows varies
greatly. In the caseb=0.05, the simplified equation has a 2-4
window, while the full equation’s first resonance is 2-5. Asb
was decreased further, the agreement between the two sys-

tems improved. We rescale time by allowingt→4Îbt, trans-
forming Eq.s4d to

Ẍ = F8sXd + G8sXdW; s7ad

Ẅ+ l2W=
3

p2GsXd, s7bd

with fast frequencyl given by

l =
1

pÎb
. s8d

The dot notation will be used for derivatives with respect to
the scaled time. The conditions in backward time ast→−`
become

FIG. 4. Plots of thewstd component of Eq.s4d
with initial velocity v=0.09988 stopd and v
=0.13464sbottomd andb=0.05, showing the 2-5
and 2-6 resonances.

FIG. 5. The critical velocity for capture as a
function of the couplingb for the fully nonlinear
systems4d ssolidd and the simplified systems6d
sdashedd.
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X → − `; Ẋ → Vin . 0; W→ 0; Ẇ→ 0. s9d

We will use a capitalV to represent velocities in the scaled
time t and lower-casev for velocities in the physical time.

IV. DETERMINATION OF ENERGY CHANGE AND
CRITICAL VELOCITY

A. Setup of Melnikov integral for DE

First, note that ifW is held equal to zero, Eq.s7ad has the
phase space shown in Fig. 7, showing three distinct types of

orbits: closed orbits, corresponding to a pair of solitons
bound together as a breather, unbounded orbits, cor-
responding to two solitons passing each other by, and orbits
heteroclinic to degenerate saddle points at

sX,Ẋd=s±` ,0d—separatrices—that form a boundary be-
tween the two regimes. These orbits correspond to level sets,
where the energy

E =
1

2
Ẋ2 − FsXd s10d

FIG. 6. The exit velocity graph
for the simplified system s6d,
showing qualitative agreement
with Fig. 2.

FIG. 7. TheX phase plane, showing trapped
sdashedd, untrapped sdash-dotd, and separatrix
sthin solidd orbits, corresponding to level sets of

Eq. s10d. Superimposed is theX−Ẋ projection of
the 2-6 resonant solution to the fully nonlinear
Eqs.s4d with b=0.05 sthick solid lined.
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is negative, positive, or zero, respectively. AsW is allowed to
vary, solutions may cross the separatrices. We will show be-
low that W remainsOsÎbd by variation of parameterss13d
below and, thus, that perturbation methods are applicable.

We wish to asymptotically analyze orbits near the separa-
trix ssee Fig. 7d since two solitons are initially captured when
they cross the separatrix and are reflected or transmitted
when they cross it a second time and may escape. We first
determine the energy loss as a soliton goes fromX=−` to
X= +` by computing an energy integral called a Melnikov
integralf36g. A Melnikov integral is a perturbative device for
measuring the change of energy in a given system. It is sim-
ply the integral of the time rate-of-change of the energy
along some trajectory in the unperturbed problem. A zero of
the Melnikov integral is commonly a necessary condition for
chaos in low-dimensional dynamical systemsf37g. In our
case, we simply wish to calculate a change in energy.

The calculation has been simplified significantly from that
given in f26g, in a manner that yields additional insight into
the form of the energy loss. In particular, we do not need to
keep track of whether certain functions possess even or odd
symmetry, and we find in an elementary way that the change
of energy is negative. First, we note that the separatrix is
given by the level setE=0, therefore, along the separatrix,
Eq. s10d may be solved forXstd, giving

dXS

dt
= Î2FsXSd. s11d

Given the functionF in Eq. s5d, it is not possible to find the
separatrix orbitXSstd in closed form. The time-dependent
energy exactly satisfies the differential equation

dE

dt
= sẌ − FsXddẊ = ẊG8sXdW= S d

dt
G„Xstd…DW, s12d

where we have used Eq.s7ad. We approximate the change in
energy for one nearly heteroclinic orbit along the separatrix
sfrom one saddle at infinity to the next saddle approachd by
approximatingXstd in Eq. s12d with the known separatrix
solutionXSstd. We integrate Eq.s12d along the length of the
orbit and integrate by parts to find the total change in energy:

DE =E
−`

` S d

dt
G„XSstd…DWdt= −E

−`

`

G„XSstd…
dWstd

dt
dt,

where we have integrated by parts. Given the initial condi-
tion s9d, with Vin=0 for the separatrix case, we may solve
Eq. s6bd for Wstd using variation of parameters:

Wstd =
− 3

p2l
cosltE

−`

t

G„XSstd…sinltdt

+
3

p2l
sinltE

−`

t

G„XSstd…cosltdt, s13d

fagain approximatingXstd by XSstdg and

dWstd
dt

=
3

p2 sinltE
−`

t

G„XSstd…sinltdt

+
3

p2 cosltE
−`

t

G„XSstd…cosltdt.

Setting Isstd=e−`
t G(XSstd)sinltdt and Icstd

=e−`
t G(XSstd)cosltdt, we find that

DE = −
3

p2E
−`

`

IsstdIs8stddt −
3

p2E
−`

`

IcstdIc8stddt

= −
3

2p2fIs
2s`d + Ic

2s`dg. s14d

This may be integrated by a standard substitution to yield

DE = −
3

2p2FSE
−`

`

G„XSstd…sinltdtD2

+ SE
−`

`

G„XSstd…cosltdtD2G
= −

3

2p2UE
−`

`

G„XSstd…eiltdtU2

. s15d

Thus the problem is reduced to to calculating the integral
s15d. In fact, because in this caseG(XSstd) is an even func-
tion,

DE = −
3

2p2Ics`d2. s16d

Note that this shows the change in energy is generically
negative when we assumeW→0 ast→−`. In fact, it must
be negative, as the system conserves an energy that is
positive-definite asuXu→`, and no energy resides in the
width oscillation initially. UsingDE=−vc

2/2, we find

vc =
Î3

p
Ic,̀ ,

where Ic,̀ = Ics`d. The integral in Eq.s16d may be solved
numerically by converting it into a differential equation,
which may be integrated simultaneously with Eq.s11d. Al-
ternatively, we derive closed-form approximations toDE and
vc in Sec. IV C below using complex analysis.

B. A generalizaton of the calculation

Next, we briefly mention two generalizations of the
Melnikov calculation above that will be useful later. First,
suppose that instead of approaching zero ast→−`,

W,
3

p2l
Ic,̀ W sinlst − fd.

Then the change of energy will be given by
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DE =
3Ic,̀

2

p2 S−
1

2
+ W coslfD .

As X traverses the heteroclinic orbit in the reverse direction,
the sign ofG8(XSstd) in Eq. s12d is reversed, which leads to

DE =
3Ic,̀

2

p2 S−
1

2
− W coslfD . s17d

For a resonance to occur, the change of energy calculated in
the first Melnikov integral must cancel with the energy jump
on the return trip. Assume the forward heteroclinic orbit has
“symmetry time”t1 at whichX=0, with symmetry timet2 on
the return trip. Then, by Eq.s13d, as t→` on the forward
heteroclinic orbit,

Wstd ,
3

p2l
Ic,̀ sinlst − t1d. s18d

For an exact resonance to occur, the energy change along the
two heteroclinics must cancel, leading to the condition

DE1 + DE2 = −
3Ic,̀

2

2p2 +
3Ic,̀

2

p2 S−
1

2
− coslst2 − t1dD = 0,

obtained by combining Eqs.s15d and s17d with W=1 and
f= t2− t1. Thus coslst2− t1d=−1, or

t2 − t1 =
s2n + 1dp

l
. s19d

This differs from the equivalent resonance condition inf26g,
in which t2− t1=2pn/l. The difference arises because in that
system the equivalent term toGsXd was an odd function,
whereas hereG is even.

Many analyses of two-bounce and two-pass resonance
phenomena have been based on the assumption thatt2− t1
=2pn/l+d for some undeterminedd, a phase shift that ac-
counts for unidentified physical processes that have not been
modeled. Equations19d shows that in this cased=p /l. It is
worth computing a linear fit oft2− t1 vs n for comparison
with earlier studies and, we will see, for comparison with the
analogous result for the fully nonlinear ODEs4d. At b
=0.05, we find the linear fitt2− t1=4.935sn+ 1

2
d−0.011 and

for b=0.2, we find t2− t1<4.931sn+ 1
2

d+0.139, whereas
2p /l<4.9348. Therefore, we see that to leading order, rela-
tion s19d holds, and that the agreement improves with de-
creasingb.

C. Evaluation of critical velocity using complex analysis

Since l is large andGsXd is analytic, the calculated
change of energys15d is exponentially small. In a calculation
for a similar system, we were able to calculate the analogous
integrals explicitly becauseXSstd was known in a simple
closed formf26g. In the present case, we are forced instead
to expand the integrand of Eq.s15d about a certainsbranchd
pole. Given the form of the potentials5d, F has a pole when-
ever sinhX=0 and the numerator ofF is nonzero or has a
zero of order less than 3. The nearest pole toX=0 occurs at
X= ip. Along the separatrix

dX

dt
= Î2FsXd, s20d

so we let t* be chosen such thatXst*d=0 given the initial
conditionXs0d=0. This gives the formula:

iT ; t* =E
0

t*

dt =E
0

ipÎ 1

2FsXd
dX

=
i

Î2
E

0

pÎ sin3 y

siny − y cosy
dy< 2.10392i .

s21d

We expand Eq.s20d aboutX= ip and t= t* and find

S s− 1d−1/4

Î2p
sX − ipd3/2 + O„sX − ipd9/2

…DdX= dt,

s− 1d−1/4Î2

5Îp
sX − ipd5/2 + O„sX − ipd11/2

… = t − t*

which may be inverted to form

X − ip = s− 1d1/10p1/52−1/55−2/5st − t*d2/5 + O„st − t*d8/5
….

Based on the expansion

FsXd = ipsX − ipd−3 + Os1d

we compute the two leading order terms of the integrand of
Eq. s15d

G„XSstd… =
s− 1d3/5p6/524/53

58/5 st − t*d−8/5 +
s− 1d1/5p2/528/5

56/5

3st − t*d−6/5 + O„st − t*d−2/5
….

Therefore Eq.s15d involves integrals of the type

Isl,T,pd =E
−`

`

eiltst − iTdpdt

with l.0, T.0, and p,0. Here iT is the branch point,
from which a branch line extends vertically toi`. By a shift
of contour and a change of variables toz= ilst− iTd, this can
be replaced by an integral over the Hankel contourg, which
starts at −̀ below the real axis, circles zero once in the
positive direction, and returns to −̀along sand aboved the
real axisf38g:

Isl,T,pd =
s− idp+1

lp+1 e−lTE
g

ezzpdz

which forms part of a familiar representation of Euler’s
gamma function and yields the exponentially small term

Isl,T,pd = s− 1d−p/22 sinfsp + 1dpgGsp + 1de−lTl−sp+1d.

s22d

Using Eq.s22d and standard trigonometric and gamma func-
tion identities, we evaluate the integral in Eq.s15d
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E
−`

`

G„XSstd…eiltdt = F s− 1d7/524/5p6/5

53/5 GS2

5
Dsin

2p

5
l3/5

+
s− 1d4/528/5p2/5

51/5 GS4

5
Dsin

4p

5
l1/5

+ Osl−3/5dGe−lT. s23d

As the integrand is real, we choose the branchs−1d1/5=−1
above. Using thatDE=vc

2/2 and the scaling relation given
before Eq.s7d, we arrive at the expansion for the critical
velocity in physical variables:

vc =
8Î3

5
e−T/pÎbfus2/5dab1/5 − us4/5da2b2/5 + ¯ g,

s24d

whereusxd=sinpx Gsxd and a=p−2/524/552/5 using Eqs.s8d
ands10d, as well as the two integrals above. Figure 8 shows
that the critical velocity is poorly predicted by the first term
in this series, but well-predicted up to aboutb=0.1 when the
second term is added. The series expansion of the integrand
of Eq. s15d about t= t* contains one more integrable term
which does not lead to a visible improvement of the approxi-
mation to vc. In order to improve the approximation, one
would have to calculate expansions about the additional sin-
gularities ofG(XSstd) further off the imaginaryt axis.

V. MATCHED ASYMPTOTIC CONSTRUCTION
OF SOLUTIONS

A. The expansion framework

If Vin.Vc, then Ẋ remains positive for all time andX
→ +` monotonically. We can call this a one-pass transmitted

solution. A “pass” will occur each timeX=0, when the two
solitons pass each other and energy is transferred between
the translation and vibration modes. IfVin,Vc, then the en-
ergy is negative after one pass, and the solitons reverse di-
rection, setting up the second pass. On the first pass, the
change of energy was shown in Eq.s15d to be negative, but
on subsequent passes, it may take either sign, by Eq.s17d.
On the second, and subsequent, passes the solitons may es-
cape if the energy is positive, or may be reversed again. We
will focus primarily on the case that the solitons interact
twice before escaping.

Following f26g, we construct two-pass solutions by a
matched asymptotic expansion. The solution consists of se-
quences of nearly heteroclinic orbits connected to near
saddle approaches atX= ±`. The change in energy from one
saddle approach to the next is approximated by the Melnikov
integral calculated in Sec. IV. The two-bounce solution can
be constructed from the following five pieces:

s1d A near saddle approach toX=−` with energy

E0= 1
2Vin

2 , such thatẊ→Vin,Vc, ast↘−`;
s2d a heteroclinic orbit with dX/dt.0 such that

Xst1d=0, with energy changeDE1 given by Eq.s16d;
s3d a near saddle approach toX= +` with negative en-

ergy E=−1
2M2, such thatX achieves its maximum att= t* ;

s4d a heteroclinic orbit with dX/dt,0 such that
Xst2d=0, with energy changeDE2 given by Eq.s17d;

s5d and a near saddle approach toX=−` with positive

energyE= 1
2Vout

2 , suchẊ→−Vout, ast↗`.

The timest1, t2, andt* , as well as the energy levels, remain to
be determined below. In the language of matched asymptot-
ics, the approximations at steps 1, 3, and 5 are the “outer
solutions” and steps 2 and 4 are the “inner solutions.”

FIG. 8. The critical velocity of
the ODE systems6d computed via
direct numerical simulationssolid
lined, the first-order asymptotic
approximation sdotsd, and the
second-order asymptotic approxi-
mation sdashed lined from Eq.
s24d, and via numerical evaluation
of integral s15d.
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A comment about the last step is in order. For general
initial velocity Vin, the energy at step 5 will not match the
energy at step 1. If these two energies match exactly, then we
say the solution is a two-pass resonance. If the energy at step
5 is positive but less thanVin

2 /2, then the solution is in the
two-pass window, and may be called an incomplete reso-
nance. Physically, the solitons reflect off each other, but with
reduced speed and with significant energy remaining in their
width oscillation. The outer edges of the window will be
given by velocities where the energy at step 5 is identically
zero. This defines the width of the windows. If at step 5, the
energy is instead negative, then the solution remains trapped
for another step, alternating between negative energy near-
saddle approaches toX=−` andX=` until enough energy is
returned toX such thatE=Vout

2 /2, andX→ ±`. Nonresonant
solutions and higher resonances are explained in Sec. V E.

For the simpler sine-Gordon system, we wrote down a
general asymptotic formula forn-pass solutions, calculated
the location of three-pass windows, and calculated the widths
of the two-bounce windowsf26g. Analogous results are pos-
sible in the present situation and are discussed below in Sec.
V E, although in less detail than in the previous paper.

We use the method of matched asymptotic expansions, as
in f26,39,40g. The heteroclinic orbits along the separatrix are
matchedsforward and backward in timed to the finite time
singularities associated with the near- saddle approaches. We
will not make use of the two positive energy expansions, so
we will not compute them. They enter the analysis when the
energy change calculated over the heteroclinic orbits in the
above section will then be used to connect the positive and
negative energy expansions.

B. Asymptotic description of heteroclinic orbit for large X

We first construct an expansion of the “inner solution,”
given by the heteroclinic orbit. Along the heteroclinic orbit,

Ẋ2/2=FsXd. SettingX=0 at t= t1, the trajectory is given as
the solution to

E
t1

t

dt8 =E
0

X dX8
Î2FsX8d

=E
0

X0 dX8
Î2FsX8d

+E
X0

X dX8
Î2FsX8d

s25d

for an arbitrary Os1d constantX0,X. The first integral is
Os1d and will be asymptotically dominated by the second.
For X@1, we may approximate the potential by

FsXd , 4sX − 1de−2X. s26d

If we let Z=X−1, then

FsXd , s4e−2dZe−2Z, s27d

which we substitute into Eq.s25d and get

t − t1 =
e
Î8
E eZ

ÎZ
dZ+ Os1d.

We make the substitutionZ=C+y, where C@1 and y
=Os1d, as motivated in the next section, and expand the in-
tegral in powers ofC−1, yielding

t − t1 =
e1+C

Î8C
Fey +

1

2C
s1 − ydey + OS 1

C2DG + Os1d.

s28d

C. Asymptotic description of the saddle approach near
X=`

As the width perturbationWstd remains small, we may
construct approximate solutions from solutions to Eq.s7ad
with W=0. SinceFsXd→0 asuXu→`, s` ,0d is a degenerate
fixed point and is of saddle-type. First we compute the near-
saddle approach atX= +`, under the approximation that the
solution has small constant energy given by

E = −
M2

2

with M !1. So that, using Eq.s27d, the near-saddle expan-
sion satisfies

1

2
Ż2 − 4e−2Ze−2Z = −

M2

2
.

We make the expansionZ=C+y, whereC@1 is determined
in Eq. s29d and showy=Os1d. Then

1

2
ẏ2 − 4e−2sC + yde−2Ce−2y = −

M2

2
.

We defineC by

8Ce−2e−2C = M2 s29d

and letT=Mt, which gives the simplified equation

S dy

dT
D2

− S1 +
y

C
De−2y = − 1. s30d

D. The matching procedure for near and exact two-pass
resonances

1. The simplest asymptotic approximation

Ignoring the termy/C in Eq. s30d, as C@1, the near
saddle approach takes the form

ey = cossT − T*d,

whereT* is the “center time” at which the near saddle ap-

proach comes closest to the degenerate saddle atsX,Ẋd
=s` ,0d. This has finite-time singularities forward and back-
ward in time. Backwards in time, this is singular asT
−T* ↘−p /2, and may be asymptotically expanded as

ey = T − T* +
p

2
. s31d

For largeX, the heteroclinic orbit in Eq.s28d is asymptoti-
cally approximated using Eq.s29d, to leading order inC−1,
by

ey = T − T1

with a similar expression forT2−T along the return hetero-
clinic. The algebraic growth of the heteroclinic orbit matches
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the finite time singularities of the near-saddle approach only
if

T* − T1 =
p

2
,

which, combined with a similar relation forT2−T* , yields
T2−T1=p as in our analysis of the sine-Gordon model, or, in
the unscaled time variable

t2 − t1 =
p

M
, s32d

which shows the energy dependence of the period. The en-
ergies at steps 1 and 3 are related byVin

2 /2+DE1=−M2/2.

2. Exact resonance condition

To this point, the calculation has been valid for general
Vin,Vc. We now specialize to the case of exact two-pass
resonance. In a resonant solution the second energy jump
must balance the firstDE2=−DE1, a condition for which is
given in Eq. s19d, implying l / s2n+1d. Thus the resonant
initial velocity Vn solves

Vn
2

2
+ DE1 = −

Mn
2

2
. s33d

Solving this forVn, using thatDE1=−Vc
2/2,

vn =Îvc
2 −

16

p2s2n + 1d2 , s34d

where scalings8d has been used to convert this result back to
the physical variables. Alsonminsbd is given by the smallest
integern that makesvn a real number in Eq.s34d. In Fig. 9,
we see that this does a relatively poor job at predicting reso-
nant velocities.

3. An improved approximation for resonance

The above calculation showed clearly the procedure used
to find the resonant velocities. Here it is refined slightly to

improve its accuracy. After some rearrangement, Eq.s30d
becomes

dy

ÎS1 +
y

Cn
De−2y − 1

= dt. s35d

Scaling the time variable as before, we expand this integral
in powers of 1/Cn and keep the first two terms. This gives

dy
Îe−2y − 1

+
1

2Cn

ye−2ydy

s− 1 +e−2yd3/2 = dT s36d

for the near saddle approach, which has solution:

ey − sinS 1

2Cn + 1

y
Îe−2y − 1

D = cos1 T − T*

1 +
1

2Cn
2 . s37d

As T−T* ↘ s1+1/2Cndp /2 on the right-hand side, we find
y→−`. Rearranging the expansion of the heteroclinic orbit,
we find Eq.s28d

S1 −
1

2Cn + 1
yDey =

T − T1

1 +
1

2Cn

.

Matching these two approximations givesT2−T1=s1
+1/2Cndp or

t2 − t1 =
S1 +

1

2Cn
Dp

Mn
, s38d

a more accurate approximation to the period. Combining this
with Eq. s19d yields

FIG. 9. The resonant velocities, indexed by
the number of complete oscillations ofwstd, with
b=0.05. The thick solid curve at the bottom is
the result of direct numerical simulation. From
top to bottom, the other curves are the asymptotic
results of Eqs.s34d ands40d and the value involv-
ing numerical calculation of the energy level,
given the resonant periods43d.
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S1 +
1

2Cn
Dp

Mn
=

s2n + 1dp
l

.

This is still not a closed equation asCn has yet to be speci-
fied. We may eliminateMn from this equation and Eq.s29d to
obtain an implicit relation that definesCn:

32p2bs2n + 1d2Cn
3 − s2Cn + 1d2e2Cn+2 = 0. s39d

This has exactly two positive roots as long as 2p2e−2bs2n
+1d2. fs3+2Î3d /9geÎ3, with the larger root relevant. Thus
we come to the revised estimate of the resonant velocities

vn =Îvc
2 −

16S1 +
1

2Cn
D

p2s2n + 1d2 . s40d

Figure 9 shows that this does better than our first estimate. In
a similar computation, we found that this analysis in a neigh-
borhood ofX=` was enough to determine the resonant ve-
locities. We find in the next section that we can do better
with a numerical criterion based on Eq.s19d.

4. A numerical condition for resonance

In all situations where heteroclinic or homoclinic orbits
are matched to near-saddle approachest2− t1 equals half the
period of Eq.s7ad with W set to zero,

Ẍ − FsXd = 0. s41d

Let PsEd be the period of the closed orbit of Eq.s41d with
energyE,0. We may solve forPsEd by evaluating the defi-
nite integral

P = 2E
−XmaxsEd

XmaxsEd dX
Î2ÎFsXd + E

, s42d

whereXmaxsEd is the positive root ofFsXd+E=0. The period
P cannot be computed in closed form given the particular
potential −FsXd in this problem. Alternately, one can com-
pute the period simply by integrating Eq.s41d with initial

conditionsX=XmaxsEd, Ẋ=0 until reaching the termination
conditionX=−XmaxsEd at the timePsEd /2.

In either case, the above calculation must be inverted nu-
merically to yield the energy as a function of the period,
using the secant method or some variant. In the scaled vari-
ables, we have, from Eq.s19d,

PsEnd
2

=
s2n + 1dp

l
. s43d

This is solved forEn=−Mn
2/2, and the resonant velocity is

found using Eq.s33d. This, and the other two approxima-
tions, are shown in Fig. 9. All solutions with positiven up to
n=14 are shown in the figure. Approximationss34d ands40d
both predict the existence of a 2-3 window, while the nu-
merical calculations43d does not, and no such window is
found by direct numerical simulation.

E. Generalizaton to near-resonances and higher resonances

The two-pass resonant solutions are a countable, and thus
measure-zero, family of initial conditions. Each two-pass
window has finite width whose left and right edges can be
found by imposing the conditions thatDE2=M2/2, so that
the output energy is identically zero. It can be shown that the
window widths scale asn−3 for largen.

In between the two-pass windows there is a complicated
structure consisting of many narrower windows. These in-
clude three-pass windows, which can be found as follows. A
three-pass resonant solution has three energy jumps. Just as
Wstd andXstd are even functions aboutt* in two-pass solu-
tions, in three-pass solutions,Wstd andXstd are odd functions
about their center time. We can place the three “center times”
at t=−t0, t=0, andt= t0, and notice that if the solution is odd,
thenDE=0 at t=0. The change of energy at the second jump
is DE=−3Ic,̀

2 /p2s 1
2 +coslt0d, which implies

t0 =
S2n + 1 ±

1

3
Dp

l

and gives three-pass resonant solutions with

v3,n± =Îvc
2 −

16

p2S2n + 1 ±
1

3
D2 .

A corrected formula, as in Eq.s40d, and a more accurate
numerical condition, as in Eq.s43d, may also be derived. A
general formula for the locations of higher complete reso-
nances can be derived as inf26g, but this equation must be
solved numerically.

VI. THE EFFECT OF COUPLING TO A WEAKLY
NONLINEAR OSCILLATOR

We briefly discuss the discrepancies between the full
ODE model s4d and the simplified models6d in order to
account for the marked difference between the window loca-
tions between Figs. 2 and 6. The most obvious is seen by
comparing the two graphs of Fig. 10, where the components
wstd and 1+Wstd are both plotted for the 2-5 resonance with
b=0.2. It is clear thatwstd, the fully nonlinear oscillation,
has a larger amplitude, a larger period, and the mean about
which it oscillates is displaced upward. As done following
Eq. s19d, we fit t2− t1 from our numerical simulations and
find t2− t1<5.00sn+ 1

2
d+0.541 whenb=0.05. For the case

b=0.2, careful examination shows thatt2− t1 is not approxi-
mated that well by a linear fit, with the growth int2− t1
slowing asn increased, andt2− t1<6.38sn+ 1

2
d+0.327 when

the first 10 resonances are used, andt2− t1<6.20sn+ 1
2

d
+1.93 when resonances 11–20 are used, and the error in this
fit is much larger than in the simplified model, especially
when the leftmost windows are included. We see then that, in
addition to a large correction to the oscillation frequency, a
significant phase shift appears in the fully nonlinear dynam-
ics.

This shift in amplitude, frequency, and mean value can be
explained using a strained coordinate or Poincaré-Lindstedt
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expansionf41g. We assume thatw=W+1 satisfies the homo-
geneous part of Eq.s4bd

d2w

dt2
=

l2

w2S 1

w
− 1D , s44d

where we have used scalings8d and have again setK=1.
Expanding this as a power series inW, we find

d2W

dt2
+ l2W= l2f3W2 − 6W3 + OsW4dg. s45d

We look for periodic solutions with initial conditions

Ws0d = e andẆs0d = 0, s46d

noting that these initial conditions are somewhat arbitrary,
and leavinge positive and small, but for now undefined. We

expand both the functionW and the frequency of oscillations
V in powers ofe,

W= o
k=1

`

ekWk−1sTd,

V = o
k=0

`

ekVk, s47d

whereT=Vt, and assume that the solution has period 2p in
T. The equation is satisfied at each order ine, with the Vk
chosen to suppress secular growth terms. We find that

V0 = l; V1 = 0; V2 = −
3

2
l

and

FIG. 10. The solutions components of the 2-5
resonance ofsad 1+Wstd of the simplified equa-
tion s6d and sbd wstd of the full ODE s4d.
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W0 = cosVt,

W1 =
3

2
− cosVt −

1

2
cos 2Vt,

W2 = − 3 +
13

8
cosVt + cos 2Vt +

3

8
cos 3Vt. s48d

Thus the period of oscillation is decreased at larger ampli-
tudes, as found from the least-squares fits.

It remains to determine a suitable value ofe in Eq. s46d
and its effect on the resonance. The full ODE models4d
conserves the Hamiltonian

H =
1

2
Ẋ2 +

2p2

3
ẇ2 +

8

3
S1 +

1

w2 −
2

w
D −

16b

w
FSX

w
D ,

s49d

not written here in canonical variables. We see from Fig. 5
thatvc, and henceDE, is approximately the same for the full
and simplified ODE systems. Expanding this in powers of
W=w−1, we obtain the approximate Hamiltonian

H <
1

2
Ẋ2 +

2p2

3
Ẇ2 +

8

3
sW2 − 2W3 + 3W4 + ¯ d − 16bFsXd

− 16bGsXdW+ ¯ . s50d

As t→−`, all of the energy is stored as kinetic energy in
the soliton modesH= 1

2v0
2. At the symmetry time, which we

can set tot* =0, Ẋ=0, and ẇ=0, andX=Xmax is given, if
GsXdW is small enough to be ignored, by the solution to
1
2v0

2− 1
2vc

2=−16bFsXmaxd. Plugging this back into the energy
s49d and using the expansions50d only for the coupling
FsX/wd term, we obtain

1

2
vc

2 <
8

3
S1 +

1

s1 + Wd2 −
2

1 + W
D − 16bGsXmaxdW.

For resonant velocities sufficiently close tovc or for small
enoughb, 16bGsXmaxd is negligibly small, and we can solve
the resulting quadratic equation forWs0d and obtain

Ws0d =

±
Î3

4
vc

1 ±
Î3

4
vc

< ±
Î3

4
vc.

For larger values of 16bGsXmaxd, the equation is cubic inW
and the roots may be found by a perturbation expansion
around the previously found roots. We use this value ofWs0d
as our value ofe. For b=0.05, it is sufficient to usee
=Î3vc/4, which gives a period 5.00, as was found from the
linear fit. Forb=0.2, we find that weakly nonlinear theory is
not useful as the first several terms of the expansion of the
Hamiltonian inW of Eq. s50d are all found numerically to
about the same order, so that ignoring theW4 andW5 term in
the Poincaré-Lindstedt expansion is invalid.

VII. CONCLUSION

We have explained many of the phenomena seen in the
collision of vector solitons in CNLS. First we derived and
justified a simplified version of a model derived by Ueda and
Kath. Using a Melnikov integral, we estimated the critical
velocity, and using matched asymptotic expansions near
separatrices, we explained how to connect subsequent passes
to construct an approximate solution. Imposing the condition
that the total energy change after two passes is zero allowed
us to find the locations of the exact two-pass resonant veloci-
ties, the centers of the two-pass windows. It remains to be
seen if this phenomenon can be produced in physical experi-
ments, but the experimental setup would appear to be fairly
simple.

More importantly, we have elucidated the mechanism un-
derlying two-pass and two-bounce resonance phenomena in
general. The important elements of an ODE model are the
following:

s1d a “position” modeZstd that moves in a potential well
VsZd, which is localized nearZ=0, so that the force ap-
proaches zero at large distances;

s2d a secondary oscillator modeWstd that acts as a tem-
porary energy reservoir; and

s3d a termCsZ,Wd that couples the two modes together,
also localized nearZ=0, so that coupling decays at large
distances.
Trapping takes place on the initial interaction if enough en-
ergy leaks from the position modesZd to the energy reservoir
sWd. In that case, the first mode crosses a separatrix curve in
its unperturbed phase space. The energy change on subse-
quent interactions may be positive or negative, depending
sensitively on the phase ofWstd at the interaction time, even
though W may remain exponentially small. Eventually, in
any Hamiltonian model, enough energy will eventually be
transferred back to the position mode that it returns to the
unbounded portions of phase space and escapes. It is trans-
mitted if it escapes to +̀ and reflected if it escapes to −`.
All the models we have seen are Hamiltonian, but it should
be possible to carry through much of the analysis in the
presence of a simple dissipative term.

We believe this mechanism to be present in all the sys-
tems which have displayed two-bounce resonance phenom-
ena, including the foundational papers on kink-antikink in-
teractions in nonlinear Klein-Gordon equationsf18–21g. A
finite dimensional model for kink-antikink interactions in the
f4 model is presented by Anninoset al. f5g. The model they
derive is essentially of the form described, but the potential
and coupling terms are much more complicated than Eq.s4d,
and it would be quite difficult even to find expansions about
poles in the solution, as was done in Sec. IV of the current
paper. What is more there is no natural small parameter mea-
suring the coupling and the difference in time scales of the
two modes, as we have here. The topology is slightly differ-
ent in thef4 kink-antikink problem: the separatrix is given
by an orbit homoclinic to infinity, rather than heteroclinic.
This is indeed why the interaction is a “bounce” rather
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than a “pass.” We have developed a simple model that dis-
plays the same topology as inf5g and are in the process of
analyzing it as a next step in understanding the two-bounce
case.
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