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Vector-soliton collision dynamics in nonlinear optical fibers
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We consider the interactions of two identical, orthogonally polarized vector solitons in a nonlinear optical
fiber with two polarization directions, described by a coupled pair of nonlinear Schrodinger equations. We
study a low-dimensional model system of Hamiltonian ordinary differential equai@bg&s derived by Ueda
and Kath and also studied by Tan and Yang. We derive a further simplified model which has similar dynamics
but is more amenable to analysis. Sufficiently fast solitons move by each other without much interaction, but
below a critical velocity the solitons may be captured. In certain bands of initial velocities the solitons are
initially captured, but separate after passing each other twice, a phenomenon known as the two-bounce or
two-pass resonance. We derive an analytic formula for the critical velocity. Using matched asymptotic expan-
sions for separatrix crossing, we determine the location of these “resonance windows.” Numerical simulations
of the ODE models show they compare quite well with the asymptotic theory.
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I. INTRODUCTION solitary waves may lose their coherence and break apart,

) ) ) . merge into a single localized structure, or even oscillate
Solitary waves are an important phenomenon in nonlineagy it one anothdtl4—21]

physics and applied mathematics. Solitary waves have been
studied in a diverse array of physical models including water,
waves[1-3], quantum electronic deviceggdosephson junc-
tions) [4], and cosmology5,6]. One of the most important
applications is to nonlinear optical communications wher
solitary waves have been proposed as information bits
optical fiber transmission systerfig] and produced experi-
mentally about 25 years ad@®]. Other solitary wave phe-
nomena in nonlinear optics include gap solitons in Brag
gratings [9,10] and dispersion managed solitoh1,12,
which hold promise for eliminating the timing jitter associ-
ated with soliton transmission systems.

In a soliton-based communications system, the bits are
epresented by solitons. In the simplest scenario, the pres-
ence of a soliton in a given timing window codes a one, and
its absence codes a zero. Collisions between solitons,
.ecoupled with random noise in fiber characteristics, can lead
) large perturbations in the solitons polarizations and to tim-
ing jitter [22]. A bit that arrives at the wrong time may be
interpreted incorrectly by a receiver, as would a soliton that
gs.plits in half or two solitons that merge. Ueda and Kath show
such behaviors are possible and cite several additional nu-
merical studies of soliton collisions not included here. We
describe here an approach to the modeling and analysis of

. Asingle soIitarylwa\_/e p'ropagating through a uniform Me these phenomena that, while highly idealized, leads to new
dium appears particlelike in its coherence and steady pmpfi‘ﬁsights into these collisions.

gation. Of great interest are the interaction of multiple soli- 02 cting pairs of solitary waves from several distinct
tary waves and the behavior of solitary waves propagating, ,ninteqrable physical models have shown an interesting
through nonuniform media. Solitary waves of completely iN-Kehavior in common. At high speeds, the solitary waves
tegrable equations are known as solitons, and their interaq.hove right past each other, hardly i’nteracting while at
tions can be described completely, using multiple-soliton for'speeds below some critical vélocity the solitary W1aves inter-
mulas derived via the inverse scattering transfoi/®]. The act strongly and may merge into 'a single localized state.

infinite set of conservation laws in integrable systems S€josnersed among the initial velocities that lead to this cap-
verely constrain the dynamics: collisions are elastic, and th re are “resonance windows,” for which the two waves ap-

solitons will reemerge from a collision propagating with their roach each other, interact with each other for a finite time,

initial amplitudes and speeds intact, although their positiongnd then move apart again; see the second and third graph in
will have undergone a finite jump. Solitary wave collisions in Fig. 1. This has been explored by Tan and Yang in a system

nonintegrable wave equations can usually not be found in coupled nonlinear SchrodingdCNLS) equations that

closed form and show a much richer variety of behav_io_rs: th?nodel nonlinear propagation of light in birefringent optical
waves may attract or repel each other and, upon collision, thﬁbers [15-17, and by Cambell and collaborators in kink-

antikink interaction in the¢* equations and several other
nonlinear Klein-Gordon model$18—21]. These windows

*Electronic address: goodman@niit.edu; form a complicated fractal structure that has been described
URL: http://math.njit.edu/goodman/ qualitatively and even quantitatively, but for which the un-
"Electronic address: rhaberma@mail.smu.edu derlying mechanism has been poorly understood.
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0.3 y y Sy small parameter to construct approximate solutions to the
a system of ODEs for the sine-Gordon model derivedad.
0.2} We calculated the critical velocity for defect-induced soliton
capture via an energy calculation involving separatrix cross-
0.1} Ve ing, and the location of the resonance windows using a quan-
v tization condition that occurs in the asymptotic expansion. In
01 the current paper, we apply the same method to derive simi-
lar quantitative features in Ueda and Kath’'s ODE model of
-0.1} solitary wave collision in coupled nonlinear Schrddinger
equations, and to explain the structure underlying the fractal
0.2 N . N structure of resonance windows.
01 0'2V 03 0.4 In Sec. Il we introduce the physical model—a coupled
0 system of nonlinear Schrédinger equations—and describe
0.2 previous results in which the “two-pass resonance” phenom-
enon has been observed. In Sec. Il we introduce Ueda and
017 Ve Kath's finite-dimensional model system that captures the ob-
Of= & " — served dynamics and introduce a simplified model which
‘.vg’ ii i partially linearizes the system and renders it amenable to our
v o1y §j d analysis. We show numerically that this simplification does
0.2t i! : not qualitatively alter the dynamics. In Sec. IV we set up the
03} ij ﬂ calculation as a singular perturbation problem and describe
’ ; i the unperturbed dynamics. We determine the critical velocity
—0.4f { by calculating the energy that is lost to vibrations as the
05 solitons pass each other, employing a Melnikov integral. We
0.9 0.91 0.92 0.93 0.94 generalize this calculation slightly for subsequent interac-
Vo tions. In Sec. V we construct approximate solutions using
matched asymptotic approximations, incorporating the previ-
1 ously calculated energy changes. Section VI contains a dis-
cussion of the differences between the original model and its
05 simplification and presents a weakly nonlinear theory to ac-
count for them. We conclude in Sec. VII with a physical
summary and a discussion on the applicability of these re-
V oo ' sults to other systems displaying similar behaviors.
05 ’ | Il. PHYSICAL PROBLEM AND PRIOR RESULTS
Following the previously cited16,27], we consider the
1L . model of polarized light propagation in a optical fiber, given
T 42 122 by the system of coupled nonlinear Schrédinger equations

igA+ EA+(|A?+ BB[)A=0,
FIG. 1. The exit velocity as a function of the input velocity for
B=0.05,8=0.2, andB=0.6, from Tan and Yan{l6], original au- ioB+ 3B+ (|B>+ BlA)B=0. (1)

thors’ annotations removed. . - .y
This system replaces the more familiar scalar Schrodinger

The same phenomenon was also observed by Feequation when polarization is taken into effd@8]. The
Kivshar, and Vazquez in the interaction of traveling kink equations may be derived using the slowly varying envelope
solutions of the sine-Gordon ang* equations with weak approximation to Maxwell's equations in an optical fiber
localized defectg23-25. Instead of two solitary waves waveguide. The variables andB describe the envelopes of
merging, in this case the soliton could be captured, owave packets in the two polarization directions ghd the
pinned, at the location of the defect. Aimost all of the de-nonlinear cross-phase modulatigXPM) coefficient that
scribed models have been studied using the so-called variarises due to cubity®) terms in the dielectric response of
tional approximation, in which the complex dynamics of thethe glass. Here we useas a spacelike variable aricas a
full partial differential equation(PDE) are modeled by a timelike variable. Of course, in the optics interpretation, the
small, finite-dimensional system of ordinary differential labelsz andt are switched, as the signal is defined as a
equations. function of time atz=0 and the evolution occurs as the pulse

The sine-Gordon equation with defect and the birefringentmoves down the length of the fiber. For mathematical sim-
fiber-optic model discussed above feature a small parametgticity, we will uset as the evolution variable.
measuring the “non-integrability” of the system. In a recent Our interest is in the interaction of solitary waves in the
publication, Goodman and Haberm#®6], exploited this above system. In the casggs=0 and 8=1, system(l) is
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completely integrablg29,30. In the first case it reduces to a numerically that a resonant reflection occurs tif-t;

pair of uncoupled NLS equations; in the second it is known=2xn/w+ 8. The paramete# is found by a least-squares fit
as the Manakov system. For other valuegpthe equations with numerical data. This relation is used to estimate the
are not integrable. Of special interest is the qﬁs%, which  resonant initial velocities. This reasoning has subsequently
corresponds to linear fiber birefringence. For very small valbeen adapted in studies of sine-Gordon kink-defect interac-

ues of3, this system models light propagation in a two-modetions[23-25 and of vector soliton collisiongl5-17 which
optical fiber[31]. In the casgd=0, the equations are simply are the focus of this paper.
a pair of focusing nonlinear Schrédinger equations, with

well-known soliton solutions, first suggested as carriers of Il. THE MODEL EQUATIONS
optical signals by Hasegawa and Tapgé&it When 3 takes ) S
any other value, the equations are nonintegrable. Yaay In order to gain further insight into the resonance phe-

studied these equations in great detail, enumerating sever@pmenon, Tan and Yang examine a model system derived by
families of solitary waves and determining their stability. Of Ueda and Kath[27] using the variational method. In the
these, the only stable solitary waves come from a family ofvariational method, the solution is assumed to take a certain
symmetric single-humped solutions. functional form A[p(t)], B[p(t)], dependent on parameters
The simplest solutions of interest to Hd) consist of an  p(t) that are allowed to vary as a function of time. This
exponentially localized soliton in the first componeitand  ansatz is then substituted into the Lagrangian functional for

zero in the second componer®, or vice versa. A single the PDE, which is integrated in space to yield a finite-
soliton propagates at constant speed with a fixed spatial prefimensional effective Lagrangian,

file. An important problem is the interaction of two such

solitons upon collision, as interactions between two such L= - CAA BB
solitons may lead to errors in a soliton-based transmission et ™ | (AA,B,B)dz,
system.

Tan and Yang numerically studied the interaction of twowhose Euler-Lagrange equations describe the evolution of
solitons initialized in orthogonal channels with identical am-the time-dependent parameters. Equafibrhas Lagrangian
plitude, headed toward each other with exactly opposite inidensity
tial velocities[15-17. For small values of3=0.05, their s P . s 4
simulations show that for waves traveling above a critical L=i(AA, = AA) +i(BB, - BB) + (|Af* - |A])
velocity v, the solitons pass by ea_ch other, Ios_,ing a Iittle bit +(|B 2~ B|* - 28|A/4BJ. 2)
of speed, but not otherwise showing a complicated interac-
tion. At initial velocities belowv,, the solitons capture each Many examples using this method for PDE’s arising as
other and merge into a stationary state near their point ofuler-Lagrange equations are given in a recent review by
collision. Figure 1 shows the result of simulations in whigh Malomed[33].
is held fixed, and the initial velocity,, with which the soli- Following [27], we take an ansatz corresponding to two
tons approach each other, is systematically varied. The vesolitons at distanceX of equal magnitude heading toward
locity at which the two solitons eventually move apart is€ach other with equal speed,
plotted on they axis, with a zero assigned if the two pulses 7-X b
become trapped. A= nsech— expi (v(z— X) + —(z—-X)?+ 0') :

For somewhat larger values @= 0.2, they find that in w 2w
addition to the above behavior, that the capture region is
interrupted by a sequence of “resonant reflection windows.”
Solitons with initial velocities in these resonance windows
are reflected instead of being captured. The numerical simu- 3)
lations show that the solitons pass each other once, undergo
a finite number of width oscillations, then pass each other avhere, X, w, v, b, ando are time-dependent parameters for
second time. Thus they call this the “two-pass” resonance. the amplitude, position, width, velocity, chirp, and phase,

For larger values o~ 0.6, they find not only reflection whose evolution remains to be determined. The variational
windows, but an intricate fractal-like structure of both reflec-procedure yields a conserved quantity 772W, related to the
tion and transmission windows. Certain portions of the strucconservation of th&2 norm in CNLS, as well as the relations
ture, when properly scaled, look like copies, in some casedX/dt=v and dw/dt=b. The evolution is described by the
even reflected copies, of other portions of the structure, anguler-Lagrange equations
such features are seen at many different scales.

z+X b
B=#nsech—— expi(—v(z+ X)+ ——(z+X)?+ U>,
w 2w

The two-bounce resonance in kink-antikink interactions dZ_X: 16K:3i|:(a) (4a)
was explained qualitatively in the first papers of the Camp- dt? w2 da ’
bell group[20,21]. As the kinks approach each other, they
begin to interact, and, at timg, energy is transferred into a ddw 16 (1 d
secondary mode of vibration, with some characteristic fre- e W(v—v -K- 3/3Kd—a[01|:(a)]), (4b)

quencyw. If the initial velocity is below a critical value, the
kinks no longer have enough energy to escape each othenghere a=X/w and the potential and coupling terms are
orbit and turn around to interact a second titnerhey show  given by
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i FIG. 2. The input vs output ve-
locity of a pair of orthogonally po-
larized solitons with3=0.05.

1 | 1 1 1 | 1 | 1 N~
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
\'A
n
X coshx — sinhx Yang. This should not be surprising, as syst@nis Hamil-

F(x) = (5 tonian, and the set of initial conditions leading to unbounded

trajectories in backwards time and bounded trajectories in
Note thatF, actually F, is a potential term, not a force. We forward time has measure zero, by reasoning similar to
keep this notation for continuity with previous studies. Poincaré recurrence, as shown in Proposition {36 Lo-

Numerical simulations show that for small a solution to ~ calized solutions to Eq(1) may lose energy to radiation

Eqg. (1) with an initial condition of the form given in ansatz Modes, a dissipation mechanism not present in the ODE
(3) will remain close to that form, i.e., the solution will con- model. As a further result of the dissipation, the output
tinue to consist of two nearly orthogonally polarized solitons,SPe€ds of the reflected solutions are much smaller than the
at least until they merge into a single bound state. Using théPut speeds in the PDE solutions, whereas at the very center
symmetries of Eq(4), we may setK=1 without loss of of the ODE windows, the output speed exactly matches the

generality. Equivalently, the PDE symmetry may be used tdnPut speed. A more interesting difference can be seen in the
setK=1 in the ansatz used by the variational method. presence of the wide reflection windows, which were not

These equations display the two-bounce resonance ph&und in the PDE simulations with this value gf summa-
nomenon, as shown by Tan and Yang. Consider the initiafized in Fig. 1.

value problem, with “initial” conditions describing the be- [N Fig. 3, the exit velocity graph of Eq4) shows that
havior ast— —, even a3=0.2, the ODE dynamics display a complex fractal-

like structure in addition to the reflection windows, which
15).4 dw are not seen in the PDE dynamics for such small valuga of
X — —oo; g i >0;w—1; T 0. The numerical value of the crititcal velocity is.=0.86,
close to the value.=0.936 found in16].
This does not strictly determine a unique solution, since the The numerical solutions of Eq4) qualitatively explain
solution is invariant to time translation. We plot,, as a the resonance windows. In Fig. 4 we show ti) compo-
function of v;,, with 8=0.05 in Fig. 2. These and all other nents of the solutions with initial velocity at the center of
ODE simulations were performed using routines fromthe first two resonance windowactually the points tangents
ODEPACK [34]. Compare this figure to the three plots of Fig. to the linevy,=-vj,). In the leftmost window, the oscillator
1. There are key similarities and differences between thigu(t) is excited, oscillates about five times, and then is deex-
graph and the exit velocity graphs of the full PDE simula-cited. In the next windoww(t) oscillates six times. In each
tions. The critical velocity in this figure is about=0.19, of the successive windowsy(t) oscillates one more time
close to the value.=0.1715 found in[16]. A noteworthy  before it is extinguished. We will refer to the first window as
difference is the complex behavior of solutions with initial the 2-5 window and the second window as the 2-6 resonance
velocity belowv—no such behavior, not even the two-passwindow. Recall that no such windows have been found in
windows, was seen in the very careful simulations of Tan andPDE dynamics for this value g8, but such windows have

sink? x
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06f -~~~

out

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 FIG. 3. Top: The exit velocity graph for Eq.
in (4) for B=0.2, showing reflection windows and a
variety of more complex fractal-like structures.
Bottom: The same figure with all but the main
resonant reflections removed.

0.6 T T T T T T T T

0.4 E

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
A

been found in the ODE dynamics for all values®fTan and  functions of X alone. This allows us to solve the analog of
Yang demonstrated a width oscillation in the PDE solutionsEg. (4b) by variation of parameters to solve for this term and
in analogy with that shown here. The minimum valuenah  then insert it into the equivalent of E¢da) critical step in
the 2n resonance decreases with increasthgrhere does our analysis. In our numerically computed solutions display-
exist a 2-1 resonance with velocity=0.649 in the ODE ing the two-bounce resonance for small valuespbfthe
dynamics shown in Fig. 3, while the first resonance windowWidth w undergoes only a small oscillation about its initial

found in the PDE simulations is the 2-2 resonance at aboidth w=1. Therefore we may partially linearize systé,
»=0.9 in Fig. 1. which allows us to proceed in the same manner as we have

for the sine-Gordon system. We find reasonable agreement,
with a few notable differences, between the two ODE sys-
A further simplified model tems. We will discuss the linearized theory first and then

o discuss corrections due to the nonlinearity.
The model(4) bears a striking resemblance to the system Allowing w=1+W, whereW is considered small, expand

derived in[24] to study the two-pass resonance in the sine-j| the terms inW, and keep only leading-order terms. We
Gordon equation with defect and analyzed[26]. In that  g.rive at the reduced system:

case, however, the situation is much simpler: the term P
equivalent tow in Eq. (4) occurs only linearly, and the po- 22 _168E (X) + G XOWI: 6
tential and coupling terms, equivalent EgX/w) here, are dt? AF ) W (63
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o.g 1 1 1 1 1 1 1 1
150 160 170 180 ; 190 200 210 220 FIG. 4. Plots of thev(t) component of Eq(4)
with initial velocity v=0.09988 (top) and v
1.5 — : : : : : : : =0.13464(bottom and 8=0.05, showing the 2-5

and 2-6 resonances.

%% 0 120 130 140 150 160 170 180
1
d®w 16 488 tems improved. We rescale time by allowitig 4\%, trans-
a2 T 2V= ?G(X% (6b)  forming Eq.(4) to
where X=F'(X) + G'(X)W: (73

G(X) == [XF(X)]".

- 3
2= >
Figure 5 shows that this simplified equation gives an accu- WA W= 77.ZG(X)' (7b)

rate estimate of the critical velocity for small values @f
based on numerical simulation. Figure 6 shows the equivawith fast frequency\ given by
lent of Fig. 2 with the same value ¢f=0.05 for the simpli-
fied equations. It shows that the qualitative picture, chaotic \ = 1
i . ; =—F. (8)
scattering interupted by resonance windowsifetv,, is the B
same, while the actual location of those windows varies
greatly. In the cas@=0.05, the simplified equation has a 2-4 The dot notation will be used for derivatives with respect to
window, while the full equation’s first resonance is 2-5.As the scaled time. The conditions in backward time-as—o

was decreased further, the agreement between the two sysecome

0.9 T T T T T T T T T
0.8
0.7
0.6

.51 FIG. 5. The critical velocity for capture as a

function of the coupling3 for the fully nonlinear
system(4) (solid) and the simplified syster(6)
(dashedl

04

0.3

0.2

0.1

0 002 004 006 0.08 0.1 012 014 0.16 0.18 0.2
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FIG. 6. The exit velocity graph
for the simplified system(6),
showing qualitative agreement

with Fig. 2.
1 | 1 1 [ | 1 | 1 1~
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
\'A
X — —oo: )I(va >0 W—0: W—0. (9) orbits: closed orbits, corresponding to a pair of solitons

_ _ - bound together as a breather, unbounded orbits, cor-
We will use a capitaV to represent velocities in the scaled responding to two solitons passing each other by, and orbits
time t and lower-case for velocities in the physical time. heteroclinic to degenerate saddle points at

(X,X):(ioo,O)—separatrices—that form a boundary be-
tween the two regimes. These orbits correspond to level sets,

IV. DETERMINATION OF ENERGY CHANGE AND where the energy

CRITICAL VELOCITY
A. Setup of Melnikov integral for AE

First, note that i1\N_is h_eld equal to zero, Ecﬂ7_a)_has the E= })'(2 —F(X) (10)
phase space shown in Fig. 7, showing three distinct types of 2

1

0.8

0.6

0.4

0.2 FIG. 7. TheX phase plane, showing trapped
o] (dashed, untrapped(dash-dot, and separatrix
% 0 (thin solid) orbits, corresponding to level sets of

Eq. (10). Superimposed is th&—-X projection of
the 2-6 resonant solution to the fully nonlinear
Egs.(4) with 8=0.05(thick solid line.
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is negative, positive, or zero, respectively.\WWds allowed to dW(t) _ t _
vary, solutions may cross the separatrices. We will show be- T4t 250 Mf G(Xg(7))sinA7dr
low that W remainsO(y8) by variation of parameter&l3) w

below and, thus, that perturbation methods are applicable. t
We wish to asymptotically analyze orbits near the separa- 2 COSAt f G(Xs(7))cosnmdr.
trix (see Fig. T since two solitons are initially captured when _°°
they cross the separatrix and are reflected or transmittegetﬁng 1 ()= G(Xs(7)sin A rd7 and ()

when they cross it a second time and may escape. We first '
determine the energy loss as a soliton goes fdtmr~ to ~<G(Xs(7))coshrdr, we find that
X=+00 by computing an energy integral called a Melnikov

integral[36]. A Melnikov integral is a perturbative device for AE=- if (D14 (t)dt - if [(D)1:(H)dt
measuring the change of energy in a given system. It is sim- ) )

ply the integral of the time rate-of-change of the energy 3

along some trajectory in the unperturbed problem. A zero of =- ﬁ[@(w) + Iﬁ(oo)]. (14

the Melnikov integral is commonly a necessary condition for
chaos in low-dimensional dynamical systef®]. In our

case, we simply wish to calculate a change in energy. This may be integrated by a standard substitution to yield

The calculation has been simplified significantly from that o 2

given in[26], in a manner that yields additional insight into AE=- —l(f G(Xg(7)sin 7\7’d7’>

the form of the energy loss. In particular, we do not need to 27° —os

keep track of whether certain functions possess even or odd o 2

symmetry, and we find in an elementary way that the change + (f G(XS(T))costr) }

of energy is negative. First, we note that the separatrix is —

given by the level seE=0, therefore, along the separatrix, 3 0 2

Eq. (100 may be solved foX(t), giving =53 f G(Xs(n)erNdr (15)

7| J e
dXS [~ . . H
at = V2F(Xg). (11 Thus the problem is reduced to to calculating the integral
(15). In fact, because in this cag&(Xg(t)) is an even func-

Given the functiorF in Eq. (5), it is not possible to find the tion,

separatrix orbitXg(t) in closed form. The time-dependent 3

energy exactly satisfies the differential equation AE=- ﬁ%(oo)z_ (16)

d—Ez(j'(—F(x)))'(z)'(G'(x)W: (EG(X(I)))W, (12) Note that this shows the change in energy is generically
dt dt negative when we assunw— 0 ast— —o. In fact, it must

) ~ be negative, as the system conserves an energy that is
where we have used E(7a). We approximate the change in positive-definite agX|— =, and no energy resides in the

energy for one nearly heteroclinic orbit along the separatrixyigth oscillation initially. UsingAE=-v2/2, we find
(from one saddle at infinity to the next saddle apprgdmh ¢

approximatingX(t) in Eq. (12) with the known separatrix V3

solution Xg(t). We integrate Eq(12) along the length of the Ve=—
orbit and integrate by parts to find the total change in energy:
. . where |, ..=l.(). The integral in Eq.(16) may be solved
AE:f (EG(XS(t))>Wdt=—f G(Xs(t))wdt numerically by converting it into a differential equation,
dt - d which may be integrated simultaneously with Efl). Al-

ternatively, we derive closed-form approximations\ie and
where we have integrated by parts. Given the initial condi2c in Sec. IV C below using complex analysis.
tion (9), with Vi,=0 for the separatrix case, we may solve
Eq. (6b) for W(t) using variation of parameters: B. A generalizaton of the calculation

Ic'oca

—0 —

" Next, we briefly mention two generalizations of the
W(t) = -3 cos)\tf G(Xg(7)sin\rdr Melnikov calculation above that will be useful later. First,

N suppose that instead of approaching zerd-as-o°,
3 ' 3
+ o sin )\tf_w G(Xs(m)cosnmdr,  (13) W~ e Wsinh(t- ¢).
[again approximatingl(t) by Xg(t)] and Then the change of energy will be given by
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32, 1 dX  ——
AE= ;2 (— > + Wcos)\¢) m =v2F(X), (20

As X traverses the heteroclinic orbit in the reverse directionso we lett” be chosen such tha¢(t")=0 given the initial
the sign of G’ (X4(t)) in Eqg. (12) is reversed, which leads to conditionX(0)=0. This gives the formula:

AE= %(—}—Wcos)uﬁ) (17) 'T—t*—fdt—fw ! dXx
p "EEE) N, VR

For a resonance to occur, the change of energy calculated in

the first Melnikov integral must cancel with the energy jump i (7 Siry _ 2
on the return trip. Assume the forward heteroclinic orbit has ‘E o siny—ycosydy~ 2.10392.
“symmetry time”t; at whichX=0, with symmetry time, on
the return trip. Then, by Eq13), ast— o on the forward (21)
heteroclinic orbit, We expand Eq(20) aboutX=is andt=t" and find
3 . 1/4
_~ - 1
W(t) thlcyoc Sin )\(t tl)- (18) (( ’2) (X )3/2 + O((X _ iﬂ_)Q/Z))dX: dt,
\J
For an exact resonance to occur, the energy change along the
two heteroclinics must cancel, leading to the condition (-1)" a5
a2 32 : (x i+ O((X-im*)=t-t"
AE, +AE,= - 2% + °'°°<———cos)\t—t )zo, V
1 2 2772 772 (2 1)

which may be inverted to form
obtained by combining Eq€15) and (17) with WW=1 and e aN110_1/59-1/50-2/54 _ +*\2/5 _"\8/5
¢=t,—t;. Thus cos\(t,—-t;)=-1, or X—im= (- DO E2E R - )70 + O((t - 1)),

(2n+ 1) Based on the expansion
ko
L-1,= - (19 F(X) =im(X—im) 3+ 0(1)

This differs from the equivalent resonance conditiofid), = we compute the two leading order terms of the integrand of
in whicht,—t,=27n/\. The difference arises because in thatEQ. (15)

system the equivalent term B6(X) was an odd function, 3/5_6/5~4/5 /5. 2/5m8/5
; (-1 3 - 157252
whereas her& is even. G(Xg(t)) = ———z——(t-t) 8/5 e
Many analyses of two-bounce and two-pass resonance S 5
phenomena have been based on the assumptiort thit X (t—t7)85+ O((t - t')25).

=2mn/\+ 6 for some undetermined, a phase shift that ac-
counts for unidentified physical processes that have not beefherefore Eq(15) involves integrals of the type
modeled. Equatiofil9) shows that in this casé=m/\. It is w0

worth computing a linear fit of,—t; vs n for comparison I(\,T,p) :J eM(t —iT)Pdt

with earlier studies and, we will see, for comparison with the —os

analogous result for the fully nonlinear OD@). At B
=0.05, we find the linear fit,—t;=4. 93E§n+ -0.011 and
for =0.2, we find t,—t;=4. 931(n+ L+o. 139 whereas
27/ \=~=4.9348. Therefore, we see that to leading order, rela;
tion (19) holds, and that the agreement improves with de-
creasingpg.

with A\>0, T>0, andp<0. HereiT is the branch point,
from which a branch line extends vertically ite. By a shift
of contour and a change of variablesztoi\(t-iT), this can
be replaced by an integral over the Hankel contguwhich
starts at <= below the real axis, circles zero once in the
positive direction, and returns toe-along (and abovg the
real axis[38]:
C. Evaluation of critical velocity using complex analysis o1
Since \ is large andG(X) is analytic, the calculated I\, T,p) = )
change of energyl5) is exponentially small. In a calculation
for a similar system, we were able to calculate the analogo
integrals explicitly becaus&g(t) was known in a simple
closed form[26]. In the present case, we are forced insteal
to expand the integrand of E¢L5) about a certairfbranch I\, T,p) = (- 1) P22 sid(p+ )7 |T(p + 1)e A=Y,
pole. Given the form of the potentigh), F has a pole when- (22)
ever sinlX=0 and the numerator df is nonzero or has a
zero of order less than 3. The nearest polXtd occurs at  Using Eq.(22) and standard trigonometric and gamma func-
X=i. Along the separatrix tion identities, we evaluate the integral in EG5)

)\p+ e f e2°dz

UWhich forms part of a familiar representation of Euler’s
Ogamma function and yields the exponentially small term
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1 -
0.8[-
FIG. 8. The critical velocity of
the ODE systen(6) computed via
direct numerical simulatiorisolid
>© 06} line), the first-order asymptotic
approximation (doty, and the
second-order asymptotic approxi-
mation (dashed ling from Eg.
041 (24), and via numerical evaluation
of integral (15).
0.2
G 1 1 1 1 1 1 1 1 1
0 002 004 006 008 0[31 012 014 016 0.8 0.2
o " (= 1)152455515 (2\ 24 a5 solution. A “pass” will occur each tim&=0, when the two
f G(Xg(n)erdr= TF g Jsing A solitons pass each other and energy is transferred between
- the translation and vibration modes.Mf,<V,, then the en-
(- D)8z 4\  Am . ergy is negative after one pass, and the solitons reverse di-
51/5 I 5 sin—="A rection, setting up the second pass. On the first pass, the

change of energy was shown in EG5) to be negative, but
+ O()\‘3’5)]e‘”. (23) on subsequent passes, it may take either sign, by(Ef).

On the second, and subsequent, passes the solitons may es-
cape if the energy is positive, or may be reversed again. We
will focus primarily on the case that the solitons interact
twice before escaping.

Following [26], we construct two-pass solutions by a
matched asymptotic expansion. The solution consists of se-
quences of nearly heteroclinic orbits connected to near
saddle approaches 4t +. The change in energy from one
(24) saddle approach to the next is approximated by the Melnikov

integral calculated in Sec. IV. The two-bounce solution can
where 6(x)=sin mx I'(x) and o= 72/%24/552/5 ysing Eqs.(8)  be constructed from the following five pieces:
and(10), as well as the two integrals above. Figure 8 shows (1) A near saddle approach t&X=-o with energy
Fhat _the crmcal velocity is poorly predicted by the first term Eo:%Vﬁn such thatX — V,, <V, ast\,~=;
in this serles,_but WeII—predlcteq up to ab(ﬁ.’to'l When the (2) a heteroclinic orbit with dX/dt>0 such that
second term is addeg. The series expansion of the mtegrag&tl)zol with energy changAE, given by Eq.(16):
of Eq. (15 aboutt=t" contains one more integrable term . .
which does not lead to a visible improvement of the approxi- 3 a nleag saddle approagh 0= *_'oo W'th_ negatlve*en—
mation tov.. In order to improve the approximation, one €'Y E=—3M?, such thaiX achieves its maximum att ;
would have to calculate expansions about the additional sin- (4) @ heteroclinic orbit with dX/dt<0 such that
gularities of G(X(t)) further off the imaginaryt axis. X(tz)=0, with energy changaE, given by Eq.(17);

(5) and a near saddle approach Xe—c with positive
V. MATCHED ASYMPTOTIC CONSTRUCTION 12 :
OF SOLUTIONS energyE=35Vg, suchX— -V, ast 7.

The timest;, t,, andt”, as well as the energy levels, remain to

) be determined below. In the language of matched asymptot-
If Vi,>V,, then X remains positive for all time an&X ics, the approximations at steps 1, 3, and 5 are the “outer

— +o0 monotonically. We can call this a one-pass transmittedsolutions” and steps 2 and 4 are the “inner solutions.”

As the integrand is real, we choose the bragemh)/>=-1
above. Using thaﬁE:vﬁlz and the scaling relation given
before Eq.(7), we arrive at the expansion for the critical
velocity in physical variables:
_ 83 ~T/m\B; 1/5 2 n2/5
Vo= ?e [6(2/5) B> = 6(4I5) a" B>+ -],

A. The expansion framework
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A comment about the last step is in order. For general el*C 1 1
initial velocity Vi,, the energy at step 5 will not match the t-t= =&+ _<(1-y)&+0| | |+0O(1).
. \V8C 2C C
energy at step 1. If these two energies match exactly, then we
say the solution is a two-pass resonance. If the energy at step (28)

5 is positive but less thak? /2, then the solution is in the
two-pass window, and may be called an incomplete reso- C. Asymptotic description of the saddle approach near
nance. Physically, the solitons reflect off each other, but with X=

reduced speed and with significant energy remaining in their As the width perturbation\/(t) remains small, we may

width oscillation. The outer edges of the window will be ) luti f uti

iven by velocities where the energy at step 5 is identicaIIyC(.)nStrUCt approximate solutions from solutions to Ecp)
9 : ; ) 4 with W=0. SinceF(X) — 0 as|X|—x, (»,0) is a degenerate
zero. This defines the width of the windows. If at step 5, thef8<ed point and is of saddle-type. First we compute the near-
energy is instead negative, then the solution remains trappe Lddle approach at= +2, under the approximation that the

for another step, alternating between negative energy near- . ;
saddle approaches ¥=-~ andX=« until enough energy is solution has small constant energy given by
returned toX such thaE=V? /2, andX— . Nonresonant M2
solutions and higher resonances are explained in Sec. V E. E=- 2
For the simpler sine-Gordon system, we wrote down a
general asymptotic formula far-pass solutions, calculated with M<1. So that, using Eq27), the near-saddle expan-
the location of three-pass windows, and calculated the widthsion satisfies
of the two-bounce windowg26]. Analogous results are pos- 1. M2
sible in the present situation and are discussed below in Sec. =72 4226 =- —.
V E, although in less detail than in the previous paper. 2 2
We use the method of matched asymptotic expansions, age make the expansiafi=C+y, whereC> 1 is determined
in [26,39,4Q. The heteroclinic orbits along the separatrix arejp Eq. (29) and showy=0(1). Then
matched(forward and backward in timeto the finite time
singularities associated with the near- saddle approaches. We }yz — 4672(C+y)e e =
will not make use of the two positive energy expansions, so 2
we will not compute them. They enter the analysis when th
energy change calculated over the heteroclinic orbits in th
above section will then be used to connect the positive and 8Ce %= M? (29
negative energy expansions.

2

2
e defineC by

and letT=Mt, which gives the simplified equation

2
B. Asymptotic description of heteroclinic orbit for large X (d_y) _ (1 + X)e-zy =—1. (30)

We first construct an expansion of the “inner solution,” dT c

given by the heteroclinic orbit. Along the heteroclinic orbit,
X2/2=F(X). SettingX=0 att=t,, the trajectory is given as
the solution to

D. The matching procedure for near and exact two-pass
resonances

1. The simplest asymptotic approximation

ft dt’ fx dx IXO X + fx dx I ing the t /C in Eqg. (30) C>1, th
=| == — — gnoring the termy/C in Eq. (30), as C>1, the near
t 0 V2F(X") Jo V2FR(X')  Jx, V2F(X') saddle approach takes the form
(25) &=cogT-T),

for an arbitrary @1) constantX,<X. The first integral is
O(1) and will be asymptotically dominated by the second.
For X>1, we may approximate the potential by

whereT" is the “center time” at which the near saddle ap-

proach comes closest to the degenerate saddl@(é()

=(e,0). This has finite-time singularities forward and back-
F(X) ~ 4(X-1e™>, (26)  ward in time. Backwards in time, this is singular ds

If we let Z=X~1, then -T \,—7/2, and may be asymptotically expanded as

F(X) ~ (4e9)ze'Z, (27) =T-T + 7—27 : (31)
which we substitute into Eq25) and get . o _ )
For largeX, the heteroclinic orbit in Eq(28) is asymptoti-
e e cally approximated using Eq29), to leading order irC™%,
t—tlz?f?dzm(l). cally pp g Eq29) g
V8J VZ
S _ &=T- Tl
We make the substitutior=C+y, where C>1 andy
=0(1), as motivated in the next section, and expand the inwith a similar expression fof,—T along the return hetero-
tegral in powers ofC™%, yielding clinic. The algebraic growth of the heteroclinic orbit matches
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0.25
0.2}
FIG. 9. The resonant velocities, indexed by
0.15} the number of complete oscillations wft), with
c B=0.05. The thick solid curve at the bottom is
> the result of direct numerical simulation. From
o1k top to bottom, the other curves are the asymptotic
’ results of Eqs(34) and(40) and the value involv-
ing numerical calculation of the energy level,
given the resonant period3).
0.05}
0 L L 'l 1 1 J
2 4 6 8 10 12 14

n

the finite time singularities of the near-saddle approach onlymprove its accuracy. After some rearrangement, €9)

if becomes
o
* . d
T-Th=7, 4 = dt. (35)
which, combined with a similar relation for,-T", yields C,
T,—T,=7 as in our analysis of the sine-Gordon model, or, in
the unscaled time variable Scaling the time variable as before, we expand this integral
- in powers of 1C,, and keep the first two terms. This gives
L-t= 1 (32

which shows the energy dependence of the period. The en- Je—1 2C,(-1+e?)%? -
ergies at steps 1 and 3 are related\lﬁy2+AE1=—M2/2.

d 1 ~2d
y Yyt (36)

. for the near saddle approach, which has solution:
2. Exact resonance condition

To this point, the calculation has been valid for general ] 1 y -T
- sin =c (37)

Vin<V.. We now specialize to the case of exact two-pass 2C +1ed -1
resonance. In a resonant solution the second energy jump ntan 1+—
must balance the firskE,=—AE,, a condition for which is 2C,

given in Eq.(19), implying A/(2n+1). Thus the resonant oo\ (1,1/2017/2 on the right-hand side, we find
initial velocity V,, solves ; i - .
y— —oo, Rearranging the expansion of the heteroclinic orbit,

V2 M2 we find Eq.(28
L+ AE, =- " (33) 9.28)
2 2
. . . , (1— 1 )ey— T-T,
Solving this forV,, using thatAE;=-V:/2, 2C. + 1y =T 1
1+-—
- 2 16 2C,

0n= Ve~ Bons 1 (34)
) ) Matching these two approximations give$,—T;=(1
where scaling8) has been used to convert this result back t041/2C. )7 or

the physical variables. Also,,,(8) is given by the smallest

integern that makes, a real number in Eq.34). In Fig. 9, 1

we see that this does a relatively poor job at predicting reso- (1 + z)w

nant velocities. t,—ty= ————— (38)
My ’

3. An improved approximation for resonance

The above calculation showed clearly the procedure used more accurate approximation to the period. Combining this
to find the resonant velocities. Here it is refined slightly towith Eq. (19) yields
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( 1 ) E. Generalizaton to near-resonances and higher resonances
1+— :
2C, (2n + 1) The two-pass resonant solutions are a countable, and thus
M N ' measure-zero, family of initial conditions. Each two-pass
n

window has finite width whose left and right edges can be
This is still not a closed equation &, has yet to be speci- found by imposing the conditions thatE,=M?/2, so that
fied. We may eliminaté,, from this equation and E¢29) to  the output energy is identically zero. It can be shown that the

obtain an implicit relation that defines,: window widths scale as™3 for largen.
b3 5 oG 47 In between the two-pass windows there is a complicated
32m°B(2n+1)°Cy - (2C,+ 1)*&*?=0. (39  structure consisting of many narrower windows. These in-

clude three-pass windows, which can be found as follows. A

three-pass resonant solution has three energy jumps. Just as
W(t) and X(t) are even functions abotit in two-pass solu-

tions, in three-pass solutiong/(t) andX(t) are odd functions

This has exactly two positive roots as long as’@?p(2n
+1)2>[(3+2\3)/9]e\3 with the larger root relevant. Thus
we come to the revised estimate of the resonant velocities

1 about their center time. We can place the three “center times”
16( 1+ E) att=-t,, t=0, andt=t,, and notice that if the solution is odd,
Un= Ug - —”2 (40) thenAE=0 att=0. The change of energy at the second jump
m4(2n+1) is AE=-312,./ 72(3 +cos\t), which implies
Figure 9 shows that this does better than our first estimate. In 1
a similar computation, we found that this analysis in a neigh- 2n+lx_|m
borhood ofX= was enough to determine the resonant ve- to=
locities. We find in the next section that we can do better A
with a numerical criterion based on E.9). and gives three-pass resonant solutions with
4. A numerical condition for resonance v _ L2 16
3nt c” 7/ \2z
In all situations where heteroclinic or homoclinic orbits 712(2n+ 1 11)
are matched to near-saddle approadhes; equals half the

period of Eq.(78) with W set to zero, A corrected formula, as in Eq40), and a more accurate

X-F(X)=0 (41) numerical condition, as in Eq43), may also be derived. A

’ general formula for the locations of higher complete reso-
Let P(E) be the period of the closed orbit of EGl1) with ~ nances can be derived as[@6], but this equation must be
energyE <0. We may solve foP(E) by evaluating the defi- Solved numerically.

nite integral VI. THE EFFECT OF COUPLING TO A WEAKLY
Jxm@ X NONLINEAR OSCILLATOR
P 2 !'_/=, (42) . . . -
%) V2VF(X) +E We briefly discuss the discrepancies between the full

ODE model(4) and the simplified mode{6) in order to
whereX,(E) is the positive root oF (X)+E=0. The period account for the marked difference between the window loca-
P cannot be computed in closed form given the particulations between Figs. 2 and 6. The most obvious is seen by
potential F(X) in this problem. Alternately, one can com- comparing the two graphs of Fig. 10, where the components
pute the period simply by integrating E¢1) with initial ~ W(t) and 1+W(t) are both plotted for the 2-5 resonance with
conditions X=X,.(E), X=0 until reaching the termination B=0.2. It is clear .thalw(t), the fully _nonllnear oscillation,
condition X=-X,(E) at the timeP(E)/2. has a larger amplitude, a larger period, and the mean about
In either case. the above calculation must be inverted ny which it oscillates is displaced upward. As done following
merically to yield the energy as a function of the period, Eq (19), we fit t2—t1 from our numerical simulations and
using the secant method or some variant. In the scaled var‘ nd t,=t;~5. 00n+; )+0'541 wheng=0.05. For the case

ables, we have, from Eq19), B=0.2, careful examlna_tion sh_ows _thgt—tl is not ap_proxi-
mated that well by a linear fit, with the growth iB—t;

P(E,) (@n+1)mw slowing asn increased, anth—t; ~6.38n+3 )+0 327 when

2 = N : (43) the first 10 resonances are used, a@dtl~6 20n+2 )

+1.93 when resonances 11-20 are used, and the error in this
This is solved forE,=-M?2/2, and the resonant velocity is fit is much larger than in the simplified model, especially
found using Eq.(33). This, and the other two approxima- when the leftmost windows are included. We see then that, in
tions, are shown in Fig. 9. All solutions with positiveup to  addition to a large correction to the oscillation frequency, a
n=14 are shown in the figure. Approximatio(84) and(40)  significant phase shift appears in the fully nonlinear dynam-
both predict the existence of a 2-3 window, while the nu-ics.
merical calculation(43) does not, and no such window is  This shift in amplitude, frequency, and mean value can be
found by direct numerical simulation. explained using a strained coordinate or Poincaré-Lindstedt
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161 (a) .

1+W

1 FIG. 10. The solutions components of the 2-5
resonance ofa) 1+W(t) of the simplified equa-
tion (6) and (b) w(t) of the full ODE (4).

30 -20 -10 0 10 20 30

expansiorf41]. We assume that=W+ 1 satisfies the homo- expand both the functiow and the frequency of oscillations

geneous part of Eq4b) Q in powers ofe,
d°w >\2< 1 ) -
—=—|—-1], 44 =
a2~ wP\w 44 W= eWey(T),
where we have used scaling) and have again s&K=1. .
Expanding this as a power seriesWw) we find
panding P W) 0=3 &, 47
W W= 302 - WP + oW -
— +ANW=A[3W -6W+ O . 45
dt? [ (W] 49 whereT=QOt, and assume that the solution has periedi2
o ) o - T. The equation is satisfied at each orderejrwith the Q,
We look for periodic solutions with initial conditions chosen to suppress secular growth terms. We find that
= / = 3
W(0) = e andW(0) =0, (46) Qy=): 0,=0; QZ:_E)\

noting that these initial conditions are somewhat arbitrary,
and leavinge positive and small, but for now undefined. We and
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Wy = cos(t, VIl. CONCLUSION

3 1 We have explained many of the phenomena seen in the
W, = 57 cos(t — 5 cos At collision of vector solitons in CNLS. First we derived and
justified a simplified version of a model derived by Ueda and
Kath. Using a Melnikov integral, we estimated the critical
W,=-3 +1_3 cosOt + cos Dt + 3 cosA. (49 velocity,. and using matched asymptotic expansions near
separatrices, we explained how to connect subsequent passes
to construct an approximate solution. Imposing the condition
that the total energy change after two passes is zero allowed
us to find the locations of the exact two-pass resonant veloci-
ties, the centers of the two-pass windows. It remains to be
seen if this phenomenon can be produced in physical experi-
ments, but the experimental setup would appear to be fairly

Thus the period of oscillation is decreased at larger ampliz
tudes, as found from the least-squares fits.

It remains to determine a suitable value eoin Eq. (46)
and its effect on the resonance. The full ODE mo¢®l
conserves the Hamiltonian

1., W2 1 2\ 168 simple
H=oXrwir ol v -0 " w T\ More importantly, we have elucidated the mechanism un-
derlying two-pass and two-bounce resonance phenomena in

(49) general. The important elements of an ODE model are the
not written here in canonical variables. We see from Fig. sollowing:
thatv,, and hence\E, is approximately the same for the full (1) @ “position” modeZ(t) that moves in a potential well
and simplified ODE systems. Expanding this in powers ofV(Z), which is localized neaZ=0, so that the force ap-
W=w-1, we obtain the approximate Hamiltonian proaches zero at large distances;
2 (2) a secondary oscillator mod#&/(t) that acts as a tem-
H~ —X2 2—\/\/2 + o (Wz WA+ 3WH + -+ ) — 168F(X) porary energy reservoir; and
2 (3) a termC(Z,W) that couples the two modes together,
- 168G(X)W+ -+ (50) also localized neaZ=0, so that coupling decays at large
distances.

As t——x, all of the energy is stored as kinetic energy in Trapping takes place on the initial interaction if enough en-
the soliton modes1=3v3. At the symmetry time, which we  ergy leaks from the position moda) to the energy reservoir
can set tot" =0, X= 0, andw=0, and X=Xy, is given, if  (W). In that case, the first mode crosses a separatrix curve in
G(X)W is small enough to be ignored, by the solution tojts unperturbed phase space. The energy change on subse-
évé ;vg——lﬁﬂF(XmaX) Plugging this back into the energy quent interactions may be positive or negative, depending

(49 and using the expansio(60) only for the coupling sensitively on the phase ®¥(t) at the interaction time, even

F(X/w) term, we obtain though W may remain exponentially small. Eventually, in
any Hamiltonian model, enough energy will eventually be
1U§~ §(1 +;2 __2 ) ~ 168G(X ) W. transferred back to the position mode that it returns to the
2 3 (1+W)° 1+W unbounded portions of phase space and escapes. It is trans-

mitted if it escapes to o and reflected if it escapes too-

All the models we have seen are Hamiltonian, but it should
be possible to carry through much of the analysis in the
presence of a simple dissipative term.

For resonant velocities sufficiently close #g or for small
enoughB, 168G(Xhay is negligibly small, and we can solve
the resulting quadratic equation fav(0) and obtain

V3 We believe this mechanism to be present in all the sys-
+—0, = tems which have displayed two-bounce resonance phenom-
V3 . . - . I
W(0)=—F=— =~ = —u,. ena, including the foundational papers on kink-antikink in-
1+Ev 4 teractions in nonlinear Klein-Gordon equatioi8—21. A
- Cc

finite dimensional model for kink-antikink interactions in the
¢* model is presented by Annin@s al.[5]. The model they
For larger values of 18G(Xnmay), the equation is cubic iV derive is essentially of the form described, but the potential
and the roots may be found by a perturbation expansiomnd coupling terms are much more complicated than(&qg.
around the previously found roots. We use this valug/vod) and it would be quite difficult even to find expansions about
as_our value ofe. For $=0.05, it is sufficient to uses  poles in the solution, as was done in Sec. IV of the current
—\300/4 which gives a period 5.00, as was found from thepaper. What is more there is no natural small parameter mea-
linear fit. ForB=0.2, we find that weakly nonlinear theory is suring the coupling and the difference in time scales of the
not useful as the first several terms of the expansion of thewo modes, as we have here. The topology is slightly differ-
Hamiltonian inW of Eq. (50) are all found numerically to ent in the ¢* kink-antikink problem: the separatrix is given
about the same order, so that ignoring W&andWP term in by an orbit homoclinic to infinity, rather than heteroclinic.
the Poincaré-Lindstedt expansion is invalid. This is indeed why the interaction is a “bounce” rather
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