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Abstract. We study the long-time behavior of solutions to the nonlinear

Schrödinger / Gross-Pitaevskii equation (NLS/GP) with a symmetric double-

well potential. NLS/GP governs nearly-monochromatic guided optical beams
in weakly coupled waveguides with both linear and nonlinear (Kerr) refractive

indices and zero absorption, as well as the behavior of Bose-Einstein conden-

sates. For small L2 norm (low power), the solution executes beating oscilla-
tions between the two wells. There is a power threshold at which a symmetry

breaking bifurcation occurs. The set of guided mode solutions splits into two
families of solutions. One type of solution is concentrated in either well of
the potential, but not both. Solutions in the second family undergo tunneling
oscillations between the two wells. A finite dimensional reduction (system of
ODEs) derived in [17] is expected to well-approximate the PDE dynamics on

long time scales. In particular, we revisit this reduction, find a class of exact

solutions and shadow them in the (NLS/GP) system by applying the approach
of [17].
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1. Introduction. We study the long-time behavior of solutions to the nonlinear
Schrödinger / Gross-Pitaevskii equation (NLS/GP) with a symmetric double-well
potential in R1. Equations of NLS/GP-type, in one or more spatial dimensions,
arise as models of many physical systems, notably (a) nearly-monochromatic guided
optical beams in weakly coupled waveguides with both linear and nonlinear (Kerr)
refractive indices and no absorption [2, 21], and (b) the time-evolution of a Bose-
Einstein condensate (BECs) confined by a magnetically-induced linear potential [4,
5, 6, 7, 24].

Specifically, we consider NLS/GP in one space dimension

i∂tu(x, t) =
(
−∂2

x + V`(x)
)
u(x, t) + g |u(x, t)|2 u(x, t), u(x, t) : R× R→ C, (1)

where V`(x) denotes a double well potential. In the context of optics, u(x, t) de-
notes the complex-valued slowly varying envelope of the electric field for a nearly
monochromatic stationary beam propagating in the “t” direction. The potential
V`(x) is obtained from the transverse refractive index profile of the two coupled
waveguides and g < 0 is proportional to the Kerr nonlinear coefficient. In the macro-
scopic quantum setting, u(x, t) denotes a macroscopic (mean-field) wave-function,
V`, the magnetic trap and g, which is proportional to the microscopic two-body
scattering length, can be positive or negative, depending on the underlying atomic
species.

A key quantity conserved by solutions of (1) is the squared L2 norm,

N ≡
∫ ∞
−∞
|u(x, t)|2dx =

∫ ∞
−∞
|u(x, 0)|2dx (2)

corresponding in the two systems to (a) the optical power, conserved with propa-
gation distance, and (b) the particle number, conserved under the time evolution.
The aim of this paper is to describe how long term dynamics of specific solutions
of equation (1) vary with N , extending the result of [17].

1.1. Background and prior results.

Linear theory of double wells. We take the double-well, V`(x), to be bimodal, i.e.
the sum of translates of a unimodal potential V0(x),

V`(x) = V0(x− `) + V0(x+ `), ` > 0.

We shall assume that the basic well, V0(x), is spatially localized and even with
respect to x = 0:

V0(x) = V0(−x),

and supports exactly one discrete eigenpair, (Ω?, ϕ?(x)) which solves(
−∂2

x + V0(x)
)
ϕ? = Ω?ϕ?.

Without loss of generality, we assume ‖ϕ?‖L2 = 1.
For ` large and positive, detailed information for the double-well Schrödinger

operator

H` = −∂2
x + V`.

can be deduced from the properties of the basic single well, V0(x) [12]. In particular,
there is a well-separation distance, `0 > 0, such that if ` > `0 (weak-coupling), then
the linear operator H` has two simple eigenvalues, Ω0 = Ω0(`) and Ω1 = Ω1(`),
with

Ω0(`) < W? < W1(`) and Ω1(`)− Ω0(`) = O
(
e−c0`

)
,
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for some c0 > 0. By the symmetry of V`, the corresponding eigenfunctions ψj =
ψj(x; `), satisfying

H`ψj = Ωjψj , j = 0, 1

may be taken to be L2-normalized and possess, respectively, even and odd spatial
symmetry:

ψ0(x) = ψ0(−x), ψ1(x) = −ψ1(−x).

For sufficiently large `, these eigenfunctions are bimodal and satisfy

ψj(x; `) ≈ 1√
2

(
ϕ?(x− `) + (−1)

j
ϕ?(x+ `)

)
, `� 1, j = 0, 1. (3)

Nonlinear standing waves. There has been a great deal of interest in the existence,
stability, and bifurcations of stationary solutions to NLS/GP (1) of standing wave
type:

u(x, t) = U(x)e−iωt.

For fixed value N > 0, U = U(x;N ) and ω = ω(N ) denotes a solution of the
nonlinear eigenvalue problem defined jointly by equation (2) and by(

−∂2
x + V`(x)

)
U + g|U |2U = ωU, U ∈ H1(R). (4)

Questions of both mathematical and physical interest are:

1. Given N > 0, classify the solutions of (4).
2. How does the set of solutions vary as N is increased?

In [15], it is shown that there exist solution branches which are continuations of

the linear solutions as N → 0, i.e. such that for j = 0, 1, Uj(x;N ) ∼
√
Nψj(x)

and ω → Ωj , and that these branches possess the same symmetries as their linear
counterparts. In the case of focusing nonlinearity (g < 0), they find that the “ground
state solution,” the continuation of the linear ground state ψ0(x), undergoes a
symmetry-breaking bifurcation as N is increased. Fix ` > `1 sufficiently large.
Then, there exists a threshold power / particle number, Ncr(`), such that for 0 <
N < Ncr(`), the only solutions to equation (4) are U0(x;N ) and U1(x;N ), but for
N > Ncr, there exists another pair of solutions U±(x;N ), concentrated in the left
or in the right well but not symmetrically in both. As N is increased further, the
solution becomes concentrated more strongly in one well or the other. Moreover, for
N > Ncr, stability is transferred from the ground state U0(x;N ) to the asymmetric
states U±(x;N ).

The analysis of [15] is based on a Lyapunov-Schmidt reduction. For N > 0
small, solutions are decomposed into their projections onto the span of {ψ0, ψ1}
and their projection onto the orthogonal complement. For ` large, one may view
this system as a two-dimensional system of nonlinear algebraic equations, which is
weakly coupled to an infinite dimensional system. The two-dimensional truncated
system has a bifurcation diagram of the type described above and it can be shown
that neglected (infinite-dimensional) corrections are small for ` large. In particular,
if Ncr(`) denotes the approximate symmetry breaking threshold obtained from the
2-dimensional reduction, then we have that

|Ncr(`)−Ncr(`)| ≤ O(|Ω0(`)− Ω1(`)|) ≈ e−κ`, for some κ > 0,

see [15], Equation (1.1).
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Remark 1. Throughout this paper we shall assume g < 0, the case of focusing
nonlinearity. For the defocusing nonlinearity g > 0, an analogous result holds
with one difference. It is the mode U1(x,N ) that undergoes a symmetry-breaking
bifurcation as N is increased; see for example [26].

The standing-wave result has been generalized in several ways. Kirr, Kevrekidis,
and Pelinovsky [14] perform a global bifurcation analysis for the class of symmetric
double well potentials with a non-degenerate maximum. Yang, in [27, 28], studies
the detection and classification of symmetry-breaking bifurcations in NLS equations
with more general nonlinearities. In [13], Kapitula et al. study the richer family of
bifurcations for NLS with triple well potentials.

Time-dependent dynamics. To study the dynamics of solutions to NLS/GP near
the symmetry breaking bifurcation it is natural to express the solution to the initial
value problem as

u(x, t) = c0(t)ψ0(x) + c1(t)ψ1(x) + ρ(x, t), 〈ψj(·), ρ(·, t)〉 = 0, j = 1, 2, (5)

where c0(t) and c1(t) are time-dependent complex-valued amplitudes and ρ(x, t), the
projection of u(x, t) onto span⊥{ψ0, ψ1}. The resulting system consists of ODEs for
c0(t) and c1(t) coupled to a PDE solved by ρ(x, t) and is mathematically equivalent
to NLS/GP.

In [17], the latter two authors pursue the following strategy. First, they derive a
finite-dimensional model by neglecting the terms involving ρ(x, t) in the evolution
equations for c0(t) and c1(t). This is reduced by symmetry to an ODE resembling
the Duffing equation, which is studied by phase-plane methods. Second, they show
that solutions to the full PDE system shadow the ODE solutions on very long
time-scales.

The standing wave solutions Uj(x;N ) and U±(x;N ) correspond to fixed points
of this reduced system. The stability of the standing waves corresponds to that of
these fixed points, as shown in [15]. Since the reduced system is conservative and
two-dimensional, stable fixed points are surrounded by families of nested periodic
orbits. The result proven in [17] is that the periodic orbits sufficiently close to
these stable fixed points are shadowed by solutions to (1) over long but finite times.
The result of the present paper is to extend the shadowing theorem to other periodic
solutions of the ODE that are not confined to small neighborhoods of stable fixed
points. This is explained further using the phase portrait in Section 1.2 below.

In recent related work, Pelinovsky and Phan [23] use a different reduction ansatz
that leads to the standard Duffing oscillator. They control shadowing of a wider
class of orbits than in [17] using only energy-type estimates and Gronwall’s inequal-
ity in large data and arbitrary ` regimes provided there exist two distinct eigenvalues
for H`. On the other hand, in the decomposition (5), the representation of the ini-
tial conditions is more straightforward. In the present work, we furthermore extend
the results of [17] to include orbits outside the separatrix, expanding the class of
orbits we can shadow to be much closer to that of [23].

1.2. Qualitative discussion of results.

The finite-dimensional model. In [17], by neglecting coupling to ρ(t), equation (1) is
viewed as a perturbation of the following two degree of freedom Hamiltonian ODE
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system for the evolution of (c0(t), c1(t)). Under the change of variables [16, 25]

c0(t) = A(t)eiϑ(t),

c1(t) = (α(t) + iβ(t))eiϑ(t),
(6)

the evolution of the overall phase ϑ(t) decouples from the evolution of the other
three quantities, due to the phase invariance of the underlying physical system, to
give 

α̇ =
(
Ω10 + 2α2

)
β,

β̇ = −
(
Ω10 + 2α2 − 2A2

)
α,

Ȧ = −2αβA,

(7a)

and

ϑ̇ = ω − Ω0 +A2 + 3α2 + β2, (7b)

for

Ω10 = Ω1 − Ω0. (8)

We can assume A ≥ 0 with A = 0 only on the invariant circle α2 + β2 = N .
As a shorthand for these coordinates, we define a four-dimensional vector and

its three-dimensional truncation

χ(t) = (α, β,A, ϑ) and χ̃(t) = (α, β,A).

A direct consequence of (7a) is the conserved quantity

N = A2 + α2 + β2 = |c0|2 + |c1|2 , (9)

corresponding to the L2 invariance of (1). The constraint (9) can be used to further
reduce (7a) to the 2-dimensional system

d

dt

[
α
β

]
=

[
Ω10β

(2N − Ω10)α

]
+

[
2α2β

−4α3 − 2αβ2

]
= J∇HDW, (10)

where

HDW(α, β) =
Ω10

2
β2 +

σ

2
α2 + α4 + α2β2 and J =

[
0 1
−1 0

]
(11)

for

Ω10 = Ω1 − Ω0, σ = Ω10 − 2N. (12)

Note that (11) is a family of Hamiltonian systems parametrized by N .
The Hamiltonian HDW differs from the standard Duffing Hamiltonian,

HDuffing =
1

2
p2 +

σ

2
q2 +

1

4
q4, (13)

by the presence of the mixed term α2β2.
The phase plane of system (10) is displayed in Figure 1. It is topologically

equivalent to that of the Duffing system (13) for either sign of σ. For σ < 0, the
phase plane is foliated by concentric closed curves enclosing the fixed point at the
origin; see Figure 1(a). For σ > 0, the origin becomes unstable and two stable
fixed points appear, one on either side of the origin; Figure 1(b). In this regime,
the dynamics feature two types of periodic orbits. There are two families of smaller
periodic orbits, encircling exactly one of the stable fixed points and a second family
of periodic orbits encircling all three fixed points.



230 ROY H. GOODMAN, JEREMY L. MARZUOLA AND MICHAEL I. WEINSTEIN

α

β

(a)

α

β

(b)

Figure 1. The phase plane of equation (10) with (a) N < Ncr

and (b) N > Ncr. The blue (darker) shaded regions represent the
domain of validity of the proof in [17] and the pink (lighter) shaded
regions, the domains of validity in this paper.

Control of large time behavior for solutions to (1) requires precise estimates of
the period and amplitude of the periodic orbits in the reduced dynamical system.
These estimates are straightforward for separable Hamiltonians of the form

H = p2 + V (q),

such as the Duffing oscillator. Although HDW is not separable, we nevertheless
obtain closed-form periodic orbits in Section 3. These are used to obtain appropriate
estimates on the periods and amplitudes required for the shadowing analysis in
Section 4.

Interpretation of the ODE solutions. Our results describe orbits which have an in-
terpretation in quantum and electromagnetic contexts. In the electromagnetic con-
text, the orbits we study represent nearly monochromatic beams within neighboring
wave-guides exchanging energy.

For quantum settings, by examining the form of the eigenfunctions (3), the solu-
tion ansatz (5), and the reduction (6), notice that when α > 0 and β = 0, the basis
functions ψ0 and ψ1 interfere constructively in the left well, centered at x = −L
and destructively in the right well, centered at x = L, so that most of the optical
power is concentrated in the left well. When α < 0, this is reversed and most of the
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power is concentrated in the right well. Thus, for the two families of periodic orbits
encircling only one of the two fixed points in figure 1(b), most energy stays in one or
the other of the two potential wells. Solutions of this type are called self-trapped
in the Bose-Einstein condensate literature [1].

For the two families of periodic orbits in which α(t) changes sign, both for
N < Ncr and for solutions outside the separatrix for N > Ncr, the location and
magnitudes of the maximum and minimum of the reconstructed solution alternate
with a fixed period. In the subcritical case N < Ncr of Figure 1(a), the phase dif-
ference between c0 and c1 changes slowly due to the closeness of the frequencies Ω0

and Ω1. For small-amplitude periodic orbits, this is a manifestation of the common
beating phenomenon, while for solutions further from the origin, we refer to this as
nonlinear beating. Periodic orbits encircling all three fixed points in Figure 1(b)
are known as Josephson tunneling solutions in the BEC literature, where the
word tunneling refers to the fact that these orbits must cross a local maximum of
the potential energy to travel between the two wells. Note that the nonlinear beat-
ing solutions speed up as they cross α = 0, while the Josephson tunneling solutions
slow down. At large amplitude, there is no practical difference between Josephson
tunneling and nonlinear beating solutions. Both self-trapped and Josephson tun-
neling solutions have been directly observed in Bose-Einstein condensates by Albiez
et al. [1].

It is instructive, also, to construct approximate periodic solutions using equa-
tions (5) and (6) corresponding to the different families of trajectories displayed
in Figure 1. These are shown in Figures 2 and 3. Figure 2 shows two nonlinear
beating solutions in the subcritical regime N < Ncr. The first is a small periodic
orbit around to the origin, in which case the solution stays very close to the sym-
metric mode ψ0. In the second, the values of A and |α(t) + iβ(t)| are close, and the
solution migrates almost completely from the right well to the left well each period.

Figure 2. Nonlinear beating solutions of system (10) in the case
N < Ncr. Top row: A(t) (red), |α(t) + iβ(t)| (blue solid), α(t)
(blue dashed), β(t) (blue dash-dot). Bottom row: absolute value
of reconstructed field, c0ψ0 + c1ψ1, in (5). Subfigure (a) shows a
solution near the stable fixed point, and (b) shows a larger periodic
orbit.

Figure 3 shows four orbits in the supercritical regime N > Ncr. The first two
are self-trapped, and the last two are Josephson tunneling solutions. Subfigure (a)
shows a solution close to the right fixed point, the field makes small oscillations
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about a steady asymmetric profile. Subfigures (b) and (c) show solution trajectories
near the separatrix. Both these trajectories spend long times close to the hyperbolic
fixed point α = β = 0, where the field is nearly symmetric, with short bursts to
asymmetric states. In (b), inside the separatrix, all these bursts move toward
one asymmetric state, but in (c), the field alternates between the two. Finally in
subfigure (d), the solution makes larger swings between the two asymmetric states
without pausing near the symmetric state. The earlier result of [17] essentially shows
the existence of the solutions of type (a) in both the subcritical and supercritical
regimes, while the present result allows for patterns similar to those seen in the rest
of the figures. Direct numerical simulations of NLS/GP can be seen, for comparison,
in [17].

Figure 3. As in figure 2 but for N > Ncr. (a) Near the fixed point

α =
√
−σ/2. (b) Just inside the separatrix. (c) Just outside the

separatrix. (d) Far outside the separatrix. Note the difference in
time scales between the various figures.

We now give a non-technical statement of the main result generalizing Theorem
5.1 of [17], which applies only to periodic orbits lying sufficiently close to stable
equilibria of (7a). A precise statement appears in Sec. 2, Theorem 2.1.
Main Result: Let 0 < |N − Ncr| be sufficiently small. For periodic solutions to
the ODE system (10) of sufficiently small amplitude for N < Ncr or N > Ncr, as
long as the periodic solutions are sufficiently bounded away from the separatrix in
the case N > Ncr, there are corresponding solutions to the NLS equation (1) which
shadow these orbits of the finite dimensional reduction on very long, but finite, time
scales.

The remainder of this paper is organized as follows: Section 2 contains a precise
formulation of the main result, Theorem 2.1. Section 3 presents exact formulae for
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the periodic solutions of (10), from which we derive period and amplitude estimates
in Section 4. These bounds are used to show that the periodic orbits or the finite
dimensional dynamical system satisfy the assumptions of Theorem 2.1. The sec-
tion concludes with a discussion of how to apply these estimates together with the
analysis of [17] to prove the main theorem. Section 5 contains concluding remarks
and a discussion of future directions. The proof in this paper takes advantage of
the exact solutions, which are convenient, but are not an essential feature for such a
shadowing result to hold. Appendix A details the use of Lie transforms to construct
a normal form for system (10). This is a possible first step in completing the proof
in the absence of exact solutions.

2. The main theorem. We begin by describing the regions of parameter space
and phase space in which the results hold. Our results apply to the regime

|N −Ncr| � Ncr � 1.

Recall from [17] that when `� 1, we have

Ncr = O(Ω1(`)− Ω0(`)) = O
(
e−κ`

)
for κ > 0.

Hence, we will define an asymptotic parameter σ such that

Ncr = O(σγ), σ � 1 (`� 1)

with 7/9 < γ < 1 as specified in Theorem 2.1 and take initial N such that

|N −Ncr| ≤ σ.

The 7/9 here is not sharp, but is a remnant of the asymptotic techniques in [17].
The main result of this paper is the following theorem. Note that the key dif-

ference between Theorem 5.1 of [17] and our main result, Theorem 2.1 (below), is
that we now omit Assumption 3 of [17]. We will use the statement and part of the
proof of [17], Theorem 5.1 in Section 4.3.

Theorem 2.1. There exists σ0 > 0 such that for all 0 < σ < σ0 and 7
9 < γ < 1 the

following holds: Let

χ̃∗(t) =
(
Ã(t), α̃(t), β̃(t)

)
,

denote a periodic solution of (7a), satisfying:

(H1) The period of χ̃∗(t), denotedT (σ), satisfies the bound

T (σ) . (|Ncr −N |Ncr)
− 1

2 = σ−
1+γ
2 , (14)

(H2) The fundamental matrix solution M(t) of the dynamics linearized about χ∗(t)
satisfies the norm bound:

0 < s, t < T (σ) implies
∥∥M(t)M−1(s)

∥∥ ≤ C ( N +Ncr

|N −Ncr|

) 1
2

= C σ
γ−1
2 . (15)

Fix ε > 0 sufficiently small. Then, there exist δ0 and δ1 > 0 depending upon ε, γ
such that the following holds. Consider initial data of the form

u0(x) = eiθ(0)
(
Ã(0)ψ0(x) + [α̃(0) + iβ̃(0)]ψ1(x)

)
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with θ(0) ∈ R chosen arbitrarily. Then, there exists solution u(x, t) of (1) shadowing
the periodic orbit of the (7a), of the form

u(x, t) =eiθ(t)
(

(Ã(t) + ηA(t))ψ0(x) +
[
(α̃(t) + ηα(t)) + i(β̃(t) + ηβ(t))

]
ψ1(x)

+R̃(x, t) + w(x, t)
)
.

(16)

Here, θ(t) ∈ C1([0, T∗(σ)]), and the remainder terms ηA, ηα, ηβ , w, and R̃ have the
following properties:

(B1) The function R̃ satisfies ∥∥∥R̃∥∥∥
L∞t,x

. σ1+δ0

and is the solution of

iR̃t = (H − Ω0)R̃+ (Ã2 + 3α̃2 + β̃2)R̃+ PcFb(χ∗), (17)

where Fb is displayed in Equation (2.5) and Appendix A of [17].
(B2) We have η(t) ≡ ( ηA(t), ηα(t), ηβ(t)) ∈ C1([0, T∗(σ)]) and w(t, x) ∈ L∞t H1

x ∩
L4
tL
∞
x with the bounds

‖η‖L∞t [0,T∗(σ)] + ‖w‖L∞t ([0,T∗(σ)];H1
x) + ‖w‖L4

t ([0,T∗(σ)];L∞x ) . σ
1
2 +δ1 ,

for all t ∈ I = [0, T∗(σ)] = [0, T (σ) σ−ε].

Remark 2. The full system we solve in Theorem 2.1 can be found in equations
(2.5) − (2.6) and (2.11) − (2.17), with all error terms written out in Appendix A
of [17]. Up to a phase shift, the phase term θ(t) in equation (16) evolves under
an equation similar to (7b) for ϑ(t) in equation (6), though it differs by a small
interaction term stemming from error terms in the full PDE expansion. This leads
to O(1) differences on the time scales considered. This is discussed in greater detail
in appendix A and Section 3.1 of [17] and revisited in Section 4.3 below. The
variables δ0 and δ1 are sufficiently small, but non-zero constants chosen such that
the bootstrapping arguments of [17] hold. In particular, they arise from the fact
that the error terms must remain of lower order than the dominant dynamics over
the time scale we study.

The proof that there exist periodic orbits of the finite dimensional model that
are shadowed by solutions to NLS is then provided by the following Lemma:

Lemma 2.2. There exists σ0 > 0 and δ > 0 (chosen as in [17]), such that for 0 <

σ < σ0, the system (10) has periodic solutions (α̃, β̃)(t) which through equation (9)
determine a periodic function A(t) such that:

∣∣∣Ã(t)
∣∣∣2 = O(σγ), |α̃(t)|2 +

∣∣∣β̃(t)
∣∣∣2 = O(σ), N > Ncr = σγ ,∣∣∣Ã(t)

∣∣∣2 = O(σγ), |α̃(t)|2 +
∣∣∣β̃(t)

∣∣∣2 = O(σ1+δ), N < Ncr = σγ .

The periods of these orbits satisfy the bound (14) required in Theorem 2.1. Fur-
thermore, the fundamental solution matrix M(t) for the linearized system (see sys-
tems (3.37), (3.39) of [17]) about these periodic orbits satisfies the bound (15) from
Theorem 2.1.
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We next embark on the proof of this theorem, beginning with constructing peri-
odic orbits and bounding their periods.

3. Explicit construction of periodic orbits. To solve the ODE system (10),
we first obtain a simpler form of the equations by the rescaling:

α =

√
Ω10

2
q(τ), β =

√
Ω10

2
p(τ), τ = Ω10t. (18)

In terms of the new variables p, q, the Hamiltonian (up to the addition of a constant)
is given by

HDW(q, p) =
1

2
(1 + q2)p2 +

1

2

(
q2 − ζ

2

)2

≡ T (q, p) + V (q),

ζ = (2N − Ω10)/Ω10 = O
(
σ1−γ) . (19)

The potential energy V (q) has double-well structure in the supercritical case ζ >
0 (N > Ncr). Note that the kinetic energy depends both on the position and
momentum. When ζ > 0, the system has three fixed points, a saddle at q = 0, and

centers at q = ±
√

ζ
2 .

From q̇ = ∂H
∂p = (1 + q2)p, we obtain p = q̇/(1 + q2). By conservation of Hamil-

tonian, a solution with initial condition (q(0), p(0)) = (q0, 0) satisfies

H(τ) = H(0) =
1

2

(
q2
0 −

ζ

2

)2

=
1

2
(1 + q2)p2 +

1

2

(
q2 − ζ

2

)2

=
1

2

q̇2

1 + q2
+

1

2

(
q2 − ζ

2

)2

.

Solving for q̇2 yields

q̇2 =
(
1 + q2

)((
q2
0 −

ζ

2

)2

−
(
q2 − ζ

2

)2
)

=
(
1 + q2

) (
q2
0 − q2

) (
q2 + q2

0 − ζ
)
.

(20)
We now proceed with the exact integration of (20).

Josephson tunneling and nonlinear beating solutions. Let us first analyze orbits
exterior to the separatrix for N > Ncr. By (19), this implies that q0 −

√
ζ > 0.

Define a by

a2 ≡ q2
0 − ζ.

Equation (20) may be rewritten as

q̇2 =
(
1 + q2

) (
q2
0 − q2

) (
a2 + q2

)
.

Separation of variables and integration yields

τ =−
∫ q

q0

dq̃√
(1 + q̃2) (a2 + q̃2) (q2

0 − q̃2)

=
1√

(1− a2)(1 + q2
0)

∫ B

u

dQ√
(A2 +Q2)(B2 −Q2)

,

where we have defined

q̃ =
Q√

1−Q2
, A2 =

a2

1− a2
, B2 =

q2
0

1 + q2
0

, and u2 =
q2

1 + q2
.
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This integral can be found in a table [11, integral 3.152.4] or further simplified by
a trigonometric substitution Q = B sin θ. In either case, we find∫ B

u

dQ√
(A2 +Q2)(B2 −Q2)

=
1√

A2 +B2
F (δ, k),

where F (δ, k) is the incomplete elliptic integral of the first kind given by

F (µ, k) =

∫ µ

0

dt√
1− k2 sin2 t

, 0 ≤ k < 1,

and

k2 =
B2

A2 +B2
=

(
1 + ζ − q2

0

)
q2
0

2q2
0 − ζ

and δ = cos−1 u

B
. (21)

Some calculation yields the formula

ωτ = F (δ, k), where ω =

√
q2
0 −

ζ

2
.

To obtain q as a function of τ requires an identity that inverts the equation
θ = F (δ, k). This inverse defines the Jacobi elliptic function:

sn(θ, k) = sin δ.

An introduction to these quantities in the language of modern dynamical systems
is [19], while a comprehensive handbook is by Byrd and Friedman [3]. The functions
cn and dn are defined in a similar manner. From here, there remains only the
algebra to invert all the above changes of variables, which makes use of the identity
sn2(δ, k) + cn2(δ, k) = 1, and eventually arrives at

q(τ) =
q0 cn (ωτ, k)√

1 + q2
0 sn2 (ωτ, k)

.

The orbit q(t) has period given in terms of K(k), the complete elliptic integral of
the first kind

T =
4F
(
π
2 , k
)

ω
=

4K(k)

ω
=

4

ω
K

(
q0

√
1 + ζ − q2

0

2q2
0 − ζ

)
. (22)

This is a decreasing function of q0 for q0 >
√
ζ and fixed ζ. For the case N < Ncr,

we note that ζ < 0, and hence the analysis follows in an identical fashion.

Self-trapping solutions. The periodic orbits encircling only one fixed point in the
supercritical case ζ > 0 may be found in the same manner. These orbits are of the
form

q(t) = ± q0 dn (ωt, k)√
1 + q2

0k
2 sn (ωt, k)

2
,

with
√
ζ/2 < q0 <

√
ζ, ω2 =

(
1 + ζ − q2

0

)
q2
0

2
, and k2 =

2q2
0 − ζ

q2
0 (1 + ζ − q2

0)
.

Then, once again we have

T =
2F
(
π
2 , k
)

ω
=

2K(k)

ω
=

2

ω
K

(
q0

√
2q2

0 − ζ
q2
0 (1 + ζ − q2

0)

)
.
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4. Bounds on the monodromy matrix and the period for Josephson tun-
neling orbits.

4.1. Verification of Hypothesis (H1) from Theorem 2.1 and amplitude
bounds from Lemma 2.2. We now prove the period estimate (14) from the
expression (22). Each orbit of (7a) has an initial condition of the form

χ̃(0) = (α0, 0, A0),

where α2
0 + A2

0 > Ncr = σγ . The exact solution α(t) and β(t) to system (7a) is
given by equations (18). Then, A(t) is computed from (9). The values of q0 and ζ
in terms of σ are read off from these expressions.

Using the asymptotic parameter σ as set in (12), we have that the parameters
Ω10 = O(σγ) and ζ = O

(
σ1−γ). With this choice of Ω10(σ) and ζ(σ), Hypothe-

sis (H1) of Theorem 2.1 holds for initial values, q0, for which

T =
4K (k(ζ, q0))

ωΩ10
= O

(
σ−

1+γ
2

)
, (23)

where k(ζ, q0) is given by (21).
To satisfy (23), we take

C ≥ q0 ≥
√

3ζ

2
∼
√

3

2
O
(
σ

1−γ
2

)
, (24)

for some C(σ) bounded from above but which we do not attempt to optimize here.

Then, ω =
√
q2
0 − ζ/2 ≈ σ

1−γ
2 . Therefore, ωΩ10 ≈ σ

1+γ
2 . To prove the bound (23)

it suffices to show K (k(ζ, q0)) = O(1).
The complete elliptic integral has the asymptotic behavior K(k)→∞ logarith-

mically as k2 → 1, where k2 − 1 in effect encodes the distance of the exact solution
from the separatrix. Hence, we must choose q0 sufficiently far from the separatrix
such that K(k) is uniformly bounded with a computable constant dependent upon
k0 when |k| < k0 < 1. Indeed, we observe via a Taylor expansion of k in the
parameter ζ/2q2

0 in equation (21) that

k ≤ 7

8
for q0 ≥

√
3

2
σ

1−γ
2 .

More specifically, given the scaling
√
ζ � q0 � σ, equation (21) yields the approx-

imation

k ≈ 1

2
+

ζ

4q2
0

,

which for q0 as in (24) and σ sufficiently small implies

k ≤ 1

2
+

∞∑
j=1

ζ

4q2
0

+O(σ
1−γ
2 ) ≤ 3

4
+O(σ

1−γ
2 ) <

7

8
.

It follows that

T <
4K(7/8)

ωΩ10
= O

(
σ−

1+γ
2

)
∼ Tshadow, using ω =

√
q2
0 − ζ/2, Ω10 = 2Ncr.

At this stage we note that since K is a decreasing function as k → 0, orbits that lie
sufficiently close to the separatrix violate the period bound (14). Also, the choice
of 7/8 is not sharp, but suffices to bound the term 3(1 +σ)/4 arising as the leading
order of the Taylor expansion of k using (24).
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To verify the amplitude bounds from Lemma 2.2 for q0 satisfying estimate (24),
we directly evaluate (18) and observe

|α|, |β| . σ
1
2 (25)

which, using the conservation equation (9), where N − α2 − β2 ∼ σγ gives

|A| . σ
γ
2 . (26)

4.2. Verification of hypothesis (H2) from Theorem 2.1. Equations (3.36)–
(3.39) of [17] discuss the linearization of system (7) about an arbitrary periodic
solution,

χ∗ = (α∗, β∗, A∗, θ∗)

with period T∗. Separating the linearized evolution component into the coupled
(α, β,A) system (7a) and the independent θ evolution equation yields

d

dt

δαδβ
δA

 =

 4α∗β∗ 2(Ncr + α2
∗) 0

−(Ω10 + 6α2
∗ − 2A2

∗) 0 −4α∗A∗
−2A∗β∗ −2α∗A∗ −2α∗β∗

δαδβ
δA

 ≡ B(t)

δαδβ
δA

 ;

(27a)

d

dt
(δθ) =

[
6α∗ 2β∗ 2A∗

]
·

δαδβ
δA

 . (27b)

Floquet’s theorem says that there exists a matrix-valued T∗-periodic function P (t)
and a constant matrix B∗, such that the fundamental solution matrix of subsys-
tem (27a) with initial condition M(0) = I is

M(t) = P (t)eB∗t with P (0) = P (T∗) = I.

In [17], Section 3.3, the authors construct M∗ = eB∗t at a stable equilibrium
point and then restrict their analysis to nearby periodic orbits, for which they could
prove bounds on M(t) perturbatively. Here, we explicitly construct the matrix M
at any periodic orbit using the exact solution derived in Section 3. The linearly
independent column vectors generating the matrix M are found by differentiating
equation (7a) with respect to the canonical system parameters ζ, q0 and t. These
represent translation in the mutually orthogonal directions through energy space
(translation perpendicular to the phase plane through energy space), within the
energy plane onto a nearby orbit (translation in the normal direction to an orbit)
and along a heteroclinic orbit respectively (translation in the tangential direction
to an orbit).

To proceed, we evaluate the periodic solution χ(t) and then its derivatives ∂tχ,
∂q0χ, and ∂ζχ using the exact solution. Each of these vectors solves equation (27b).
A matrix whose columns are given by these three vectors, or, in fact by any three
independent linear combinations of these solutions, defines a fundamental solution
matrix. Of these three vectors, the first is T -periodic in time, while the second and
third exhibit linearly-growing oscillations.

We first compute

∂tχ =

 σ
1
2 q̇(σγt)

σ
1
2 ṗ(σγt)

−(αα̇+ ββ̇)
(
N − α2 − β2

)− 1
2

 .
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At t = 0, only the second component is nonzero, so we can define the renormalized
vector

χ ren
t (0) =

0
1
0

 .
The vectors ∂q0χ and ∂ζχ can be computed similarly. As the expressions for

them in general is rather long, we display here only their values at t = 0:

∂q0χ|t=0 =

 1√
2
Ω

1
2
10

0
−q0Ω10A

−1(0)

 and ∂ζχ|t=0 =

 0
0

1
2 (1− q2

0)A−1(0)

 .
Using from Section 4.1 that A(0) = O

(
σ
γ
2

)
, these may be renormalized to

χ ren
q0 (0) =

 1
0

−C σ
1−γ
2

 and χ ren
ζ (0) =

0
0
1

 ,
where C is a positive O(1) constant. We can then define the fundamental solution
matrix

M̃(t) =
[
χ ren
q0 (t) χ ren

t (t) χ ren
ζ (t)

]
, (28)

and the matrix

M(t) = M̃(t)M̃−1(0). (29)

Note, since M(0) = I, M(T ) is the monodromy matrix for the Floquet system (27a).
To prove (15) for the fundamental solution operator M(t), we prove first that the

growth over one full period is bounded. Then, we prove that the variation within a
single period is bounded.

Lemma 4.1. The eigenvalues of the monodromy matrix M(T ) are λ1 = λ2 = λ3 =
1. As a consequence the eigenvalues of B∗ are all zero. In addition, M(T ) has at
least two linearly independent eigenvectors, so that

∥∥eB∗T∥∥ < 1 + cT .

Proof. This lemma is essentially Proposition 3.3 in [17], but we recall the proof here

for completeness. It is clear that χ̇ = (α̇(t), β̇(t), Ȧ(t)) is a solution to (27a), giving
at least one Floquet multiplier λ1 = 1. Similarly, differentiation with respect to the
period gives a similar result, implying λ1 = λ2 = 1.

The exact solutions α and β, satisfy the symmetries α(t) = α(T − t) and β(t) =
−β(T − t). Hence ∫ T

0

α(s)β(s)ds = 0. (30)

In Floquet theory, Liouville’s formula provides the determinant of the mon-
odromy matrix ML for the system

Ẋ = L(t)X

for L(t+ T ) = L(t). It states

detML(T ) = e
∫ T
0

Tr(L)(s)ds.

Hence, given tr(B(t)) = 2α(t)β(t), equation (30) implies λ1 · λ2 · λ3 = 1 and, as a
result, λ3 = 1.

Note, using a similar approach to above, there exist at least two linearly inde-
pendent vectors by using differentiation in t and T .
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The above lemma shows that the n-times iterated monodromy operator satisfies
the bound

‖M(nT )‖ ≤ 1 + C(nT ) = O
(
nσ−

1+γ
2

)
for some positive constant C. To show that the solution to (1) stays close to the
finite dimensional orbit χ∗ on the time scale of shadowing, we require that the
norm of M(t) for 0 < t < T does not grow too large to prevent us from applying
the bootstrapping arguments in the proof of the main theorem from [17]. Hence, we
require slightly better control on the growth of M than we have currently shown.
Indeed, we require the following lemma bounding the operator within a the evolution
of a single period.

Lemma 4.2. Let M(t) be the fundamental solution matrix defined by (29), then

for 0 < t < T ∼ σ−
1+γ
2 , ‖M(t)‖ = O

(
σ
γ−1
2

)
.

Proof. Note, it suffices to prove this theorem for M̃ in (28). To prove this, we may

simply calculate the entries in M̃(t) and find the maximum magnitude of each as
a function of time over all values of 0 ≤ t < T . To begin, we recall the functional
form the exact solution for α(t):

α(t) =

√
Ω10

2
q0

cn(ωΩ10t, k)√
1 + q2

0 sn2(ωΩ10t, k)
.

There are similar expressions for β(t) and A(t). We will make use of the fact that
cn(z, k), sn(z, k), and their z-derivatives are bounded functions for all k and z, and
that derivatives with respect to k exhibit linearly-growing oscillations for fixed k
and increasing z. These bounds take advantage of the extensive literature on Jacobi
elliptic functions [3, 22].

Since we have chosen q0 and ω such that k, K and K ′ = dK
dk are uniformly

bounded, we can find similar bounds for β and A but must be mindful of the
dependence on the asymptotic parameter σ in constructing the fundamental solution
matrix. We observe that the fundamental solution matrix can be represented in
terms of the column vectors defined in (29). Note, under such a choice

M̃(0) ≡ I − Cσ 1
2−

γ
2

0 0 0
0 0 0
1 0 0


and

M̃−1(0) ≡ I + Cσ
1
2−

γ
2

0 0 0
0 0 0
1 0 0

 .
For t > 0, the implicit differentiation in the columns of M(t) introduces terms

that are purely periodic as well as terms that have linear growth as observed in the
orbits in citeMW, Proposition 3.3. This calculation relies upon boundedness of cn,
sn and their derivatives in k.

The terms without linear growth have coefficients of the form:
√

Ω10q0

T
,
−
√

Ω10q0

k

∂k

∂ζ
,
−
√

Ω10q0

K(k)

∂k

∂ζ
,
−
√

Ω10q0

k

∂k

∂q0
,

and
−
√

Ω10q0

K(k)

∂k

∂q0
,
√

Ω10q0κ
′(k)

∂k

∂ζ
,
√

Ω10q0κ
′(k)

∂k

∂q0
,

(31)



SELF-TRAPPING AND JOSEPHSON TUNNELING SOLUTIONS TO NLS 241

and have bounds maximum bounds given by

∂k

∂q0
= O

(
σ
γ−1
2

)
,
∂k

∂ζ
= O

(
σγ−1

)
. (32)

The terms that do grow linearly in t are of the form:

Ω
3/2
10 q0

K(k)

∂ω

∂q0
t,

Ω
3/2
10 q0

K(k)

∂ω

∂ζ
t,

Ω
3/2
10 q0K

′(k)

K2(k)

∂k

∂q0
ωt, and

Ω
3/2
10 q0K

′(k)

K2(k)

∂k

∂ζ
ωt. (33)

Noticing that

‖M(t)‖ ≤
∥∥∥M̃(t)

∥∥∥∥∥∥M̃−1(0)
∥∥∥ ,

on the time scale of interest and keeping track of the renormalization constants, we
observe the fundamental solution bound is given by, for instance, the largest of the
time-dependent terms. Hence,∥∥∥M̃(t)

∥∥∥ . Ω
3
2
10q0ωt∂ζk

(
K−2(k)K ′(k)

)
. σ

3γ
2 σ

1−γ
2 σ

1−γ
2 σ−

1+γ
2 σ−1+γO(1)

. O
(
σ
γ−1
2

)
,

using

Ω10 ∼ σγ , ω ∼ σ
1−γ
2 , t < T = σ−

1+γ
2

in addition to (32). This is the desired bound for M(t) given 0 ≤ t ≤ T .

4.3. Brief recap of the perturbative methods from [17]. Lemma 4.2 implies
that the evolution within one period is also bounded, hence the Duhamel evolution
operator, M(t)M−1(s) for 0 < t − s < T , used in the perturbation theoretic ar-
guments from [17] has the same bound. Coupling this implicit Duhamel evolution
bound, the period bound from (23), and the amplitude bounds from (25) and (26)
shows that assumptions (14), (15) from Theorem 2.1 and the amplitude bounds in
Lemma 2.2 all hold for the exact solution. Hence, the dynamical solutions satisfy
the assumptions of Theorem 5.1 in [17] for proving shadowing of the dynamical
system for orbits outside the separatrix in (10) and large orbits can be shadowed
for long times in (1)!

Following the analysis in [17], we now write the system (27) with the orbit χ∗
given by an exact periodic orbit of the finite dimensional truncation:

χ(t) = χ∗(t) + η,

≡
(
Ã(t) + ηA(t), α̃(t) + ηα(t), β̃(t) + ηβ(t)

)
,

where the ηA, ηα and ηβ will account for the error terms in gluing the finite dimen-
sional model equations into the full infinite dimensional model. This corresponds
to a solution of the form:

u(x, t) = eiθ(t)
(

(Ã(t) + ηA(t))ψ0 + [(α̃(t) + ηα(t)) + i(β̃(t) + ηβ(t))]ψ1 +R(x, t)
)

with initial conditions

u0(x) = eiθ(0)
(
Ã(0)ψ0(x) + [α̃(0) + iβ̃(0)]ψ1(x)

)
.
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Centered about χ∗, equation (1) becomes the system:

~̇η = DχFFD (χ∗(t)) ~η + ~FFD(χ∗ + ~η)− ~FFD(χ∗)−Dχ
~FFD(χ∗)~η

+ ~GFD(χ∗, ~η;R, R̄)

iRt = (H − Ω0)R+ (Ã2 + 3α̃2 + β̃2)R+ Fb (χ∗ + η) + FR
(
χ∗ + η;R, R̄

)
+
(
A2 − Ã2 + 3(α2 − α̃2) + β2 − β̃2

)
R

(34)

with

θ̇ = −Ω0 +A2 + 3α2 + β2 +Gθ(R, R̄;A,α, β).

Here, ~FFD and Fb represent the finite dimensional and infinite dimensional pro-
jections of the terms dependent only upon χ(t) in the ansatz. Also, GFD and Gθ
represent the interaction terms in the finite dimensional between R and χ, as given
by the terms ErrorA, Errorα, Errorβ , Errorθ from Appendix A of [17]. The term
FR is the interaction term in the infinite dimensional evolution, as it is in Appendix
A of [17]. In particular, the evolution equations for ~η are similar to those for the
finite dimensional linearization (δα, δβ, δA) in (27a) but now with an additional
forcing term given by GFD. See Appendix A of [17] for full details.

The estimates∣∣∣ ~FFD(χ∗ + ~η)− ~FFD(χ∗)−DχFFD(χ∗)~η
∣∣∣ = O

(
Ã |η|2 + |η|3

)
are derived in [17]. We decompose R = R̃ + w, where R̃ the leading order part of
R, driven by the periodic solution χ∗(t) as defined in (17), and w is a correction.

Introducing M̃(t), a fundamental solution matrix for the system of ODEs with
time-periodic coefficients

∂tη = DχF (χ∗(t)) η.

allows system (34) to be written as a system of integral equations for η(t), w(x, t),
and θ(t):

~η(t) =

∫ t

0

M̃(t)M̃−1(s)

×
[
~FFD(χ∗ + η)− ~FFD(χ∗)−Dχ

~FFD(χ∗)~η + ~GFD(χ∗, ~η;R, R̄)
]
ds,

w(x, t) =

∫ t

0

eiH(t−s)−iΩ0(t−s)+i
∫ t
s

(Ã2+3α̃2+β̃2)(s′)ds′

× Pc
[
(Fb(χ∗ + ~η)− Fb(χ∗)) + FR(χ∗, ~η;R, R̄)

]
ds,

θ = θ0 +

∫ t

0

[
−Ω0 +A2 + 3α2 + β2 +Gθ(R, R̄;χ∗, ~η)

]
ds.

We view a solution, (~η, w), of this system of integral equations as fixed point of
a mapping M:

(~η, w) =M(~η, w). (35)

Given the bounds proven above in the proof of Theorem 2.1,M is a contraction
map in a particular Banach space in both x and t designed to optimally measure
the dynamics of both η and w. To that end, we recall the Strichartz space

LptW
k,q
x = Lp([0, T ∗];W k.q(R)),
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where 2
p + 1

q = 1
2 and T ∗ is given in Theorem 2.1. Following [17], we define the

space

X(I) = X([0, T∗(σ)])

=
{

(~η, w) : η ∈ L∞t ([0, T∗(σ)]), w ∈ L∞t ([0, T∗(σ)];H1
x) ∩ L4

t ([0, T∗(σ)];L∞x )
}

equipped with the natural norm

‖(~η, w)‖X(I) = ‖~η‖L∞t (I) + ‖w‖L4
t (I;L

∞
x ) + ‖w‖L∞t (I;H1

x),

where I = [0, T∗(σ)].

We define Bσ(I) ⊂ X(I) such that (~η,R) ∈ Bσ(I) if and only if

‖(~η, w)‖X(I) ≤ σ
1
2 +δ1 ,

where δ1 > 0 must be chosen in the course of the analysis.
Then the following proposition makes the desired contraction mapping precise.

Proposition 1. The mapping M : X(I)→ X(I), defined in (35), has the proper-
ties

1. M : Bσ(I)→ Bσ(I).
2. There exists κ < 1 such that given (~ηj , wj) ∈ Bσ(I) for j = 1, 2,

d(M(~η1, w1),M(~η2, w2)) ≤ κ d((~η1, w1), (~η2, w2)).

Thus, there exists a unique solution (~η, w) in Bσ(I).

The main result then follows by applying the asymptotic analysis from Section 5
of [17] to prove for example bounds of the form

‖~η‖L∞t =
∥∥∥ ∫ t

0

M(t)M−1(s)
[
~FFD(χ∗ + ~η)− ~FFD(χ∗)−Dχ∗

~FFD(χ∗)~η

+ ~GFD(χ∗ + ~η;R, R̄)
]
ds
∥∥∥
L∞

and

‖w‖L∞t H1
x∩L4

tL
∞
x

=
∥∥∥ ∫ t

0

eiH(t−s)eiΩ0(t−s)ei
∫ t
s

(Ã2+3α̃2+β̃2)(s′)ds′

× Pc
[
(Fb(χ∗ + ~η)− Fb(χ∗)) + FR(χ∗, ~η;R, R̄)

]
ds
∥∥∥
L∞H1∩L4L∞

,

the proofs of which rely heavily upon the bounds presented in Sections 4.1 and 4.2
above.

5. Discussion, further problems, and a remark. We consider NLS/GP with
a symmetric double well potential having sufficiently separated wells. We have
shown that there are periodic solutions of NLS/GP which, on a long time scale,
shadow periodic orbits of the finite dimensional ODE model both inside and outside
the separatrix. An obvious question is whether similar behavior can be shown in
systems with multiple potential wells. It is shown in [9, 10] that periodic orbits and
a class of quasi-periodic orbits arise due to a Hamiltonian Hopf bifurcation. Work
is underway to show that these periodic orbits are shadowed in the full PDE model.

Remark 3. The extension of the proof of [17] to the more general class of peri-
odic orbits considered here was facilitated by a closed-form solution of the reduced
system. It is instructive to consider how this was used:
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1. Bounds on the solution’s period are needed in order to obtain bounds on a
Duhamel operator in the proof of [17], Page 21, Equation (4.4). The necessary
bounds follow from the explicit solution. In the case where there is no explicit
solution, for trajectories near the separatrix the dominant contribution to the
period can be computed by an asymptotic analysis near the saddle fixed point
at the origin.

2. In Lemma 4.1, the symmetries of the exact solution are used to show that the
monodromy matrix has an eigenvalue λ = 1 of algebraic multiplicity three and
geometric multiplicity two. This information is obtainable from the symmetry
of the equation and does not require the exact solution.

3. The exact solution simplifies the estimate of the bounds of the various terms
in the fundamental solution operator, equations (31)-(33). In the absence of
exact formulas, these bounds require terms beyond first-order in the expansion
of M(t). An alternate way to determine them is to first put the Hamiltonian
system (10) into normal form up to some order, which agrees with the Hamil-
tonian of the Duffing oscillator to leading order. This is demonstrated in the
Appendix using the method of Lie Transforms. Truncation in the normal form
transformation introduces a secondary source of error that must be controlled
carefully in any estimates.

Appendix A. Outline of approach using Hamiltonian normal forms. A key
ingredient in the proof of shadowing is prove bounds on the fundamental solution
matrix operator for a reduced system. While these can be studied via the explicit
solutions of the reduced system arising for double wells, more generally explicit
solutions are unavailable and therefore a different approach must be taken. For
example, in the case where V (x) is a triple well potential, the orbits can only be
calculated via perturbative methods [9, 10]. In this appendix we give a brief sketch
of the general normal form method and the results of its implementation for (10),
in the regime where σ is a small parameter; see [18] for details.

Consider a general Hamiltonian of the form

H(Q,P ) = H0(Q,P ) + σf(Q,P ;σ), (36)

where σ � 1, H0 is quadratic (so that the associated differential equations are
linear and thus integrable) and f has a finite or convergent power series. A normal
form for the Hamiltonian (36) is an equivalent but simpler Hamiltonian obtainable
by a suitable canonical change of variables (Q,P ) = Φ(q, p) = (q, p) + . . . under
which new Hamiltonian K(q, p) = H(Φ(q, p)) = H0(q, p) + σg(q, p;σ). Roughly,
the function g(q, p;σ) should contain as few terms as possible at each order in
perturbation theory. It is well-known [18, §10.4] that for a Hamiltonian like (11)
with leading-order part H0 = Ω10

2 P 2, the normal form Hamiltonian is

K(q, p) =
Ω10

2
p2 + σg(q;σ).

That is, the normal form equation is separable, with p-dependent kinetic and q-
dependent potential energy.

Using perturbative technique based on the Lie transform, we can calculate the
change of coordinates and the transformed Hamiltonian to arbitrary order using
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Mathematica:

α = Q =

(
1 +

q2

3Ω10
+

q4

30Ω2
10

+
q6

630Ω3
10

+O
(
q8
))

q;

β = P =

(
1− q2

Ω10
+

5q4

6Ω2
10

− 61q6

90Ω3
10

+O
(
q8
))

p;

K(q, p) =
Ω10

2
p2 − σ

2
q2 + q4 +

−σq4 + 4q6

3Ω10
+

4
(
−q6σ + 9q8

)
45Ω2

10

+O
(
σq8, q10

)
.

The three leading terms ofK(q, p) are equivalent to the Duffing Hamiltonian (13),
which has well-known solutions involving Jacobi elliptic functions [22]. These so-
lutions then form the leading order parts of Poincaré-Lindstedt approximations to
true periodic orbits of K(q, p), which can be computed to arbitrary order using
computer algebra.

While the asymptotic series defining a normal form change of variables does
not generally converge, there exist, in some cases, useful error estimates for finite
truncations of the series, for example Giorgilli and Galgani [8], who prove an es-
timate of Nekhoroshev type [20]. By truncating the series to order r, they show
that the error due to the normal form approximation can be controlled to within
O(σ) for times of O(σ−r). Further, as σ, the order r can be chosen in order to
control the error over exponentially long time scales in 1/σ. Using the normal form
approximation introduces approximations into the fundamental solution operator
of the finite-dimensional system, which must be controlled in order to verify the
bounds (14) and (15) which are discussed in Section 4. The time scales on which
these estimates are proven must be reconciled with the time scales on which the
normal form approximation is valid.
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