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Note

Walter Gröbli’s 1877 doctoral dissertation was the first study of the dynamics of n ≥ 3
interacting vortices in an inviscid incompressible two-dimensional fluid.1 It casts a long
shadow over the field, and his method for integrating the three-vortex problem has been
applied many times.

In studying these problems, I have wanted to see for myself exactly what Gröbli knew
and how his mathematical approach differed from that of modern dynamical systems. Aref,
Rott, and Thomann researched Gröbli’s life and his short mathematical career and have
summarized how he reduced the three-vortex problem to quadratures2 but, as far as I have
determined, no complete English translation exists. Despite being illiterate in German, I
decided to write one. I will include my observations on the text in some upcoming publica-
tions.

This translation was made possible by software. Google has scanned the dissertation and
made it available on the web. I used Mathpix Snip to recognize text and equations in the
scanned PDF. In addition to turning printed math into LATEX, its AI produced meaningful
German text much more reliably than the Optical Character Recognition (OCR) built into
Adobe Acrobat Professional. This text was then copied into Google Translate. I then used
my best judgment to make sense of its returned results.

Some observations and warnings

Correctness While I have spent a lot of time correcting the equations produced by the
OCR, and the English and specialized mathematical grammar of Google’s translation, I have

1W. Gröbli. “Spezielle probleme über die Bewegung geradliniger paralleler Wirbelfäden”. PhD thesis.
Georg-August-Universität Göttingen, 1877.

2Hassan Aref, Nicholas Rott, and H Thomann. “Gröbli’s Solution of the Three-Vortex Problem”. In:
Ann. Rev. Fluid Mech 24 (1992), pp. 1–21.
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not systematically compared the equations produced with those in the original dissertation,
nor have I checked the correctness of most of Gröbli’s computations. I suspect there are
many errors, which would have been harder to find and fix than in today’s computer-based
publishing workflow. Caveat Lector.

Equation numbering Gröbli restarts the equation numbers several times throughout the
text, for reasons I haven’t determined. I have chosen to use the modern LATEX convention
of numbering by section. Many numbered equations are never referenced, but I defer to
Gröbli’s judgment here and number the equations he numbers.

Section names Gröbli doesn’t consistently title his sections. In addition, there are some
bold headings between sections, but these are not formalized into sections or chapters fol-
lowing the current convention. I have left this as is.

Notation I stuck to his notation with one exception I changed the alternate kappa κ to κ
since the former is hard to distinguish from an x. There were a lot of mistakes in the original
where κ was replaced by k here and there. These are fixed.

Starting a sentence with a variable name He does it. I don’t like it. Sometimes, I
rewrite the sentence, and sometimes, I don’t.
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Dedication Dedicated to his loving parents, Isaac Gröbli and Elisabetha Gröbli, née Grob,
from the author.

The present investigations arose from the written work that I had to submit in the summer
of 1875 as a student in the mathematical section of the specialist teaching department of the
Federal Polytechnic to obtain my diploma. In this work, for which I received the topic from
my esteemed teacher, Professor Dr. Heinrich Weber, now in Königsberg, I have reworked
most of it and added several new things.

1

The vortex theory deals with liquid movements in which the individual liquid particles may
also have rotational movements. A line whose direction coincides everywhere with the direc-
tion of the momentary axis of rotation of the water particles located there is called a vortex
line, according to Helmholtz.3 All the vortex lines through the points of an infinitely small
closed curve cut out a thread of vortices from the liquid. A whirlpool continually comprises
the same fluid particles, either returning to itself or terminating at the surface of the liquid;
the product of the rotational speed in the cross sections is the same for all cross sections and
at all times.

In the present work, it is assumed that the liquid is bounded by two planes perpendicular
to the z-axis, extends between them to infinity, and is stationary at infinity, that the motion
is parallel to the xy-plane and independent of the z-coordinate. The vortex threads, the
number of which should be finite, are then parallel to the z-axis. Let df be an element of
the cross-section of one of the vortex threads with the xy-plane and ζ the speed of rotation
of this element; we define a quantity m by the equation

m =

∫
ζdf, (1.1)

where the integration is to be extended over the cross-section of this thread. Since the motion
is the same in all planes parallel to the xy plane, it suffices to determine it in that plane.
Let the orthogonal coordinates of the vortex filaments be

x1, y1; x2, y2; x3, y3, . . .

the values of the associated constants m

m1,m2,m3, . . .

The differential equations, which determine the movement of the vortex threads, are then

3Heinrich von Helmholtz. “Über Integrale der hydrodynamischen Gleichungen, welcheden Wirbelbewe-
gungen entsprechen”. In: J. Reine Angew. Math 55 (1858), pp. 25–55.
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according to Kirchhoff.4

m1
dx1
dt

=
∂P

∂y1
, m2

dx2
dt

=
∂P

∂y2
, . . .

m1
dy1
dt

= − ∂P

∂x1
, m2

dy2
dt

= − ∂P

∂x2
, . . .

(1.2)

where

P = − 1

π

∑
m1m2 log ϱ12. (1.3)

The variable ϱ12 denotes the distance between threads 1 and 2, and the sum is taken over
all combinations of two different indices.

If one introduces polar coordinates (ϱ, ϑ) by means of the equations

x1 = ϱ1 cosϑ1, x2 = ϱ2 cosϑ2, . . .

y1 = ϱ1 sinϑ1, y2 = ϱ2 sinϑ1, . . .
(1.4)

then Eq. (1.2) becomes:

m1ϱ1
dϱ1
dt

=
∂P

∂ϑ1

, m2ϱ2
dϱ2
dt

=
∂P

∂ϑ2

, . . .

m1ϱ1
dϑ1

dt
= − ∂P

∂ϱ1
, m2ϱ2

dϑ2

dt
= − ∂P

∂ϱ2
, . . .

(1.5)

The following four integrals are known from equations (1.2) and (1.5).∑
m1x1 = const.,

∑
m1y1 = const.,∑

m1ϱ
2
1 = const, P = const.

(1.6)

If we think of the rotational speed ζ as the density of a mass spread out on the element
df , the first two of these integrals express the theorem that the center of mass distribution,
which one can call the center of gravity of the vortex threads since only the vortex threads
contribute to it, remains at rest.

If only one vortex thread is present, it remains in its place; if there are two vortex
filaments, they rotate with constant angular velocity

1

π

m1m2

m1ϱ21 +m2ϱ22

around the focus.
In what follows, we shall deal with the movement of three vortex threads, four vortex

threads assuming a plane of symmetry, and finally, 2n vortex filaments subject to n planes
of symmetry.

We will not discuss the determination of the motion of liquid particles a finite distance
from the vortex filaments.

4G.R. Kirchhoff. Vorlesungen über mathematische Physik: Mechanik. Vol. 1. Vorlesungen über mathe-
matische Physik. Teubner, Leipzig, 1876.
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2 Concerning the movement of three vortex threads

We introduce the somewhat more convenient symbols s1, s2, and s3 for the pairwise distances
ϱ23, ϱ31, and ϱ12 between the three vortex threads The differential equations governing the
motion of the system of three vortex filaments are in Cartesian coordinates

π
dx1
dt

= −m2
y1 − y2
s23

+m3
y3 − y1
s22

;

π
dx2
dt

= −m3
y2 − y3
s21

+m1
y1 − y2
s23

;

π
dx3
dt

= −m1
y3 − y1
s22

+m2
y2 − y3
s21

;

(2.1)

π
dy1
dt

= m2
x1 − x2
s23

−m3
x3 − x1
s22

;

π
dy2
dt

= m3
x2 − x3
s21

−m1
x1 − x2
s23

;

π
dy3
dt

= m1
x3 − x1
s22

−m2
x2 − x3
s21

,

(2.2)

and in polar coordinates

π
dϱ1
dt

= −m3ϱ2 sin (ϑ1 − ϑ3)

s23
+
m3ϱ3 sin (ϑ3 − ϑ1)

s22
;

π
dϱ2
dt

= −m3ϱ3 sin (ϑ3 − ϑ3)

s21
+
m1ϱ1 sin (ϑ1 − ϑ2)

s23
;

π
dϱ3
dt

= −m1ϱ1 sin (ϑ3 − ϑ1)

s22
+
m2ϱ3 sin (ϑ2 − ϑ3)

s21
;

(2.3)

πϱ1
dϑ1

dt
= m2

ϱ1 − ϱ2 cos (ϑ1 − ϑ2)

s23
+m3

ϱ1 − ϱ3 cos (ϑ3 − ϑ1)

s22
;

πϱ2
dϑ2

dt
= m3

ϱ2 − ϱ3 cos (ϑ2 − ϑ3)

s21
+m1

ϱ2 − ϱ1 cos (ϑ1 − ϑ2)

s22
;

πϱ3
dϑ3

dt
= m1

ϱ3 − ϱ1 cos (ϑ3 − ϑ1)

s23
+m2

ϱ3 − ϱ2 cos (ϑ2 − ϑ3)

s23
.

(2.4)

Here
s21 = (x2 − x3)

2 + (y2 − y3)
2 = ϱ22 + ϱ23 − 2ϱ2ϱ3 cos (ϑ2 − ϑ3) ;

s22 = (x3 − x1)
2 + (y3 − y1)

2 = ϱ23 + ϱ21 − 2ϱ3ϱ1 cos (ϑ3 − ϑ1) ;

s23 = (x1 − x2)
2 + (y1 − y2)

2 = ϱ21 + ϱ22 − 2ϱ1ϱ2 cos (ϑ1 − ϑ2) .

(2.5)

We first assume that m1+m2+m3 is non-zero. The center of gravity of the three vortex
threads can then be assumed to lie at the origin, and the first two equations of (1.6), which
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state that the center of gravity remains at rest, become

m1x1 +m2x2 +m3x3 = 0;

m1y1 +m2y2 +m3y3 = 0,
(2.6)

or in polar coordinates

m1ϱ1 cosϑ1 +m2ϱ2 cosϑ2 +m3ϱ3 cosϑ3 = 0

m1ϱ1 sinϑ1 +m2ϱ2 sinϑ2 +m3ϱ3 sinϑ3 = 0
(2.7)

It is useful to write the third and fourth of the general integrals (1.6) in the following form

m1ϱ
2
1 +m2ϱ

2
2 +m3ϱ

2
3 = C ′; (2.8)

1

m1

log s1 +
1

m2

log s2 +
1

m3

log s3 = C. (2.9)

We multiply the first of equations (2.7) by sinϑ1, sinϑ2, and sinϑ3, the second by − cosϑ1,
− cosϑ2, and − cosϑ3 and add each time. In this way, three equations result, which can be
written most simply as

sin (ϑ2 − ϑ3)

m1ϱ1
=

sin (ϑ3 − ϑ1)

m2ϱ2
=

sin (ϑ1 − ϑ2)

m3ϱ3
. (2.10)

If one further brings the first term in the equations mentioned on the right side, then
squares it and adds, then one obtains the first of the following equations, from which the
other two result by cyclic permutation of the indices 1, 2, and 3, namely

cos (ϑ2 − ϑ3) =
m2

1ϱ
2
1 −m2

2ϱ
2
2 −m2

3ϱ
2
3

2m2m3ϱ2ϱ3
;

cos (ϑ3 − ϑ1) =
−m2

1ϱ
2
1 +m2

2ϱ
2
2 −m2

3ϱ
2
3

2m3m1ϱ3ϱ1
;

cos (ϑ1 − ϑ2) =
−m2

1ϱ
2
1 −m2

2ϱ
2
2 +m2

3ϱ
2
3

2m1m2ϱ1ϱ2
;

(2.11)

We insert these expressions for cos (ϑ2 − ϑ2), cos (ϑ3 − ϑ1), and cos (ϑ1 − ϑ2) into Eq. (2.5)in
Eq. (2.5), while using Eq. (2.8) and arrive at the following formulas:

m2m3s
2
1 = (m2 +m3)C

′ −m1 (m1 +m2 +m3) ϱ
2
1;

m3m1s
2
2 = (m3 +m1)C

′ −m2 (m1 +m2 +m3) ϱ
2
2;

m1m2s
2
3 = (m1 +m2)C

′ −m3 (m1 +m2 +m3) ϱ
2
3.

(2.12)

We introduce a new constant C ′′, which is related to C ′ by the equation

m1m2m3C
′′ = (m1 +m2 +m3)C

′. (2.13)
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It then follows from the previous equations that

s21
m1

+
s22
m2

+
s23
m3

= C ′′. (2.14)

Equations (2.9) and (2.14) define have two integrals of the differential equations of our
problem, which depend only on the side lengths of the triangle formed by the three vortex
threads. It is, therefore, reasonable to assume that three differential equations can be set up
in a fairly simple manner, which only contain the time and the side lengths of the triangle s1,
s2, and s3, and from which the shape of the triangle can be determined at any moment. To
create these equations, subtract the third equation from the second in Eqs. (2.1) and (2.2),
multiply the first of the resulting equations by x2 − x3 the second by y2 − y3 and add. This
gives

π

2

d (s21)

dt
= m1

s22 − s23
s22s

2
3

(y1 (x2 − x3) + y2 (x3 − x1) + y3 (x1 − x2)) .

We assume that the xy-axis system is chosen so that the positive y-axis is rotated by 90◦

in the negative sense, i.e., clockwise, and lies where the x-axis originally was. The expression
in brackets on the right-hand side of the above equation then represents twice the signed
area of the triangle, depending on whether one must go around the triangle in a negative or
positive sense to visit threads 1, 2, and 3 in sequence. This area can be expressed in a known
way in terms of the side lengths. If we denote the above expression by 2J , then the first of
equations (2.15) results, and from this, the other two follow through the cyclic interchange
of the indices 1, 2, and 3, namely

d (s21)

dt
=
m1

π
4J
s22 − s23
s22s

2
3

;

d (s22)

dt
=
m2

π
4J
s23 − s21
s23s

2
1

;

d (s23)

dt
=
m3

π
4J
s21 − s22
s21s

2
2

.

(2.15)

The variable J is determined by the equation

16J2 = 2s22s
2
3 + 2s23s

2
1 + 2s21s

2
2 − s41 − s42 − s43. (2.16)

The two previously-determined integrals (2.9) and (2.14) result if equation (2.15) is divided
once by m1, m2, m3, then by m1s

2
1, m2s

2
2, m3s

2
3, and the results added together.

Determining the triangle’s shape at each instant requires only eliminations and squaring.
The motion is completely determined if one still has an equation in which one or more coor-
dinates and the time occur. Using (2.11) and (2.12), the equations (2.4) can be transformed
in such a way that apart from one of the derivatives

dϑ1

dt
,
dϑ2

dt
,
dϑ3

dt

8



only contain sides s1, s2, s3. Namely, the following system of equations is obtained

2π (m1 +m2 +m3) ϱ
2
1s

2
2s

2
3

dϑ1

dt
= m2m3

{(
s22 − s23

)2 − s21
(
s22 + s23

)}
+ 2 (m2 +m3)

2 s22s
2
3

2π (m1 +m2 +m3) ϱ
2
2s

2
3s

2
1

dϑ2

dt
= m3m1

{(
s23 − s21

)2 − s22
(
s23 + s21

)}
+ 2 (m3 +m1)

2 s23s
2
1

2π (m1 +m2 +m3) ϱ
2
3s

2
1s

2
2

dϑ3

dt
= m1m2

{(
s21 − s22

)2 − s23
(
s21 + s22

)}
+ 2 (m1 +m2)

2 s21s
2
2

(2.17)
in which the ϱ variables are related to the s variables by the equations (2.12) and are only
kept in these formulas for ease of writing. This group of differential equations only applies
if the center of gravity is at the origin.

The present problem can now be solved in a general way as follows. From the equa-
tions (2.8), (2.9), (2.11), (2.12), and (2.14), the following nine variables

s1, s2, s3,
ϱ1, ϱ2, ϱ3,

cos (ϑ2 − ϑ3) , cos (ϑ3 − ϑ1) , cos (ϑ1 − ϑ2)

can all be represented as functions of a single variable. Substituting the expressions thus
obtained into any of equations (2.3) or (2.15), squaring gives t as a function of τ and inversely
τ as a function of t. Using equations (2.4) or (2.17) one now also obtains the quantities ϑ1,
ϑ2, ϑ3 as functions of time by squaring.

The above calculations can, however, be generalized, i.e., for arbitrary values of the
constant m, and one must, therefore, confine oneself to integrating the differential equations
of the problem only for a few very specially chosen sets of m values. Equation (2.9) is
transcendental in general and algebraic only when the ratios of m1, m2, and m3 are rational
numbers.

The simplest assumptions that can be made about the m are the following three

m1 = m2 = − m3,

m1 = m2 = m3, and

m1 = 2m2 = −2m3,

which we will revisit.
The previous calculation assumed that the center of gravity of the vortex threads coincides

with the origin. This assumption is no longer valid if m1 +m2 +m3 = 0 since the center of
gravity is at infinity.

In this case, it is best to calculate in rectangular coordinates. One of the axes, e.g., the
x-axis, can be chosen to coincide with the direction of motion of the center of gravity so that
instead of equations (2.6), the following equations appear

m1x1 +m2x2 +m3x3 = const.;

m1y1 +m2y2 +m3y3 = 0.

9



By appropriately choosing the coordinates, one can still cause the constant C ′ in Eq. (2.8)
to disappear. However, the simplest conceivable assumption about the constant m, namely

−m1 = 2m2 = 2m3,

also leads to very complicated equations that defy detailed discussion. When we want solely
to determine the shape of the triangle, we will use system (2.15), which is valid for all values
of the quantities m since they are independent of any coordinate system.

We now proceed to the treatment of the special cases mentioned above.

3 The first case m1 = m2 = −m3

Equations (2.5) imply
x3 = x1 + x2, y3 = y1 + y2 (3.1)

and demonstrate the theorem that the vortex threads and their center of gravity always form
the corners of a parallelogram, with thread 3 and the center of gravity at opposite corners.
Instead of the arbitrary constant C ′ in Eq. (2.8), we introduce another constant λ by writing
C ′ = 4m1λ. The above equation becomes

ϱ21 + ϱ22 − ϱ23 = 4λ. (3.2)

It follows from Eq. (2.12) that

s21 = ϱ21, s
2
2 = ϱ22, s

2
3 = ϱ23 + 8λ, (3.3)

and from Eq. (2.9) that
ϱ23 + 8λ

ϱ21ϱ
2
2

= const.

Without loss of generality, one may assign a special value to this constant; such an
assumption only determines a definition of the unit of length. We give the constant the
value 1 so that one obtains

ϱ21ϱ
2
2 − ϱ23 = 8λ, (3.4)

From Eqs. (3.2) and (3.4) and the elimination of ϱ3 results

(ϱ21 − 1)(ϱ22 − 1) = 1 + 4λ, (3.5)

and it follows from this if we assume 1 + 4λ non-zero

ϱ22 =
ϱ21 + 4λ

ϱ21 − 1
. (3.6)

If 1 + 4λ = 0 then from Eq. (3.5)

(ϱ21 − 1)(ϱ22 − 1) = 0

10



In this equation, one can either make both factors or just one of them vanish.
If both factors are set equal to zero at the same time, the result is

ϱ1 = 1, ϱ2 = 1, ϱ3 =
√
3,

s1 = 1, s2 = 1, s3 = 1;
(3.7)

the triangle formed by the three vortices remains equilateral and does not change in size.
From the equations (2.17), it now follows that

dϑ1

dt
=

dϑ2

dt
=

dϑ3

dt
=
m1

π
, (3.8)

and the triangle rotates around the center of gravity with constant speed.
If one only wants to set one of the two factors equal to zero, then it is irrelevant whether

one assumes ϱ1 = 1 or ϱ2 = 1 since swapping threads 1 and 2 is irrelevant; we want to
assume ϱ2 = 1 so that equation (3.5) also remains valid for the case λ = −1

4
. The equation

for ϱ23 results from Eqs. (3.4) and (3.6)

ϱ23 =
ϱ41 − 4λϱ21 + 8λ

ϱ21 − 1
. (3.9)

Using these values, the last two equations of (2.11) merge into the following

cos (ϑ3 − ϑ1) =
ϱ21 − 2λ

ϱ1ϱ3
=
ϱ21 − 2λ

ϱ1

√
ϱ21 − 1

ϱ41 − 4λϱ21 + 8λ
;

cos (ϑ1 − ϑ2) =
−2λ

ϱ1ϱ2
=

−2λ

ϱ1

√
ϱ21 − 1

ϱ21 + 4λ
.

(3.10)

Unless expressly stated otherwise, the quantities ϱ should be positive. Therefore, the
square roots in the previous equations are also to be taken as positive. For sin (ϑ3 − ϑ1),
sin (ϑ1 − ϑ2) the following expressions result

sin (ϑ3 − ϑ1) =
1

ϱ1

√
ϱ41 − 4 (λ2 − λ) ϱ21 + 4λ2

ϱ41 − 4λϱ21 + 8λ
;

sin (ϑ1 − ϑ2) = − 1

ϱ1

√
ϱ41 − 4 (λ2 − λ) ϱ21 + 4λ2

ϱ21 + 4λ
.

(3.11)

The sign of one of the two sines can be chosen arbitrarily; the sign of the other is then
determined by Eq. (2.10).

A special value may also be attached to quantitym1, which we want to assume is positive;
it is through such an assumption that the unit of time is determined. We want to assume

11



m1 = π. Using the formulas developed so far, the first equations of systems (2.3) and (2.4)
now merge into the following

dϱ1
dt

= −(ϱ21 − 1)
3/2

(ϱ41 − 4 (λ2 − λ) ϱ21 + 4λ2)
1/2

ϱ31 (ϱ
2
1 + 4λ)

, (3.12)

dϑ1

dt
=

(ϱ21 − 1) ((1− 2λ)ϱ21 + 2λ)

ϱ41 (ϱ
2
1 + 4λ)

, (3.13)

and from these, it follows by the elimination of time

dϱ1
dϑ1

= −ϱ1 (ϱ
2
1 − 1)

1/2
(ϱ41 − 4 (λ2 − λ) ϱ21 + 4λ2)

1/2

(1− 2λ)ϱ21 + 2λ
. (3.14)

In these equations, one only needs to replace the subscript 1 with the subscript 2 to obtain
the formulas for thread 2.

Before proceeding further with the above equations, let us determine the filaments’
speeds. If w denotes the speed of a moving point whose polar coordinates are ϱ and ϑ,
then

w2 =

(
dϱ

dt

)2

+ ϱ2
(
dϑ

dt

)2

.

The equation for w1 results from Eqs. (3.12) and (3.13)

w1 =
1

ϱ22
, (3.15)

and from this, by swapping the indices 1 and 2

w2 =
1

ϱ21
. (3.16)

The last equations of systems (2.3) and (2.4) become the following with the use of Eqs. (3.6)
and (3.9) etc.

dϱ3
dt

= −ϱ
4
1 − 2ϱ21 − 4λ

ϱ21 (ϱ
2
1 + 4λ)

√
ϱ41 − 4 (λ2 − λ) ϱ21 + 4λ2

ϱ41 − 4λϱ21 + 8λ
; (3.17)

dϑ3

dt
=

2 (ϱ21 − 1) ((1− λ)ϱ41 + 4λϱ21 − 4λ2)

ϱ21 (ϱ
2
1 + 4λ) (ϱ41 − 4λϱ21 + 8λ)

, (3.18)

yielding

w3 =
ϱ3
ϱ1ϱ2

. (3.19)

Equations (3.12), (3.13), (3.17), and (3.18) result in the maxima and minima of the
quantities ϱ and ϑ.
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From (3.12), and (3.14), one obtains t and ϑ by elliptic integrals as functions of ϱ,
specifically if we let

ϱ21 = z (3.20)

and set

t =

∫
z(z + 4λ)

2(1− z)

dz√
(z − 1) (z2 − 4 (λ2 − λ) z + 4λ2)

(3.21)

ϑ1 =

∫
(2λ− 1)z − 2λ

z

dz√
(z − 1) (z2 − 4 (λ2 − λ) z + 4λ2)

. (3.22)

The equation
z2 − 4

(
λ2 − λ

)
z + 4λ2 = 0

has the roots

z1 =
(
λ−

√
λ2 − 2λ

)2
, z2 =

(
λ+

√
λ2 − 2λ

)2
, (3.23)

which are identical for λ = 0 and for λ = 2. In this case, the integrals are then no longer
elliptical but logarithmic. When λ = −1

4
then z1 = 1 and the same reduction occurs. These

are the only three values of λ that lead to logarithmic integrals; the corresponding motions
will be treated in more detail.

In the reduction of the integrals (3.21) and (3.22), one has to distinguish four cases
according to the previous argument, namely

1. −∞ < λ < −1
4
,

2. −1
4
< λ < 0

3. 0 < λ < 2,

4. 2 < λ <∞.

In the four cases, the roots z1 and z2 lie within the following intervals

1. ∞ > z1 > 1, 1 > z2 >
1
4

2. 1 > z1 > 0, 1
4
> z2 > 0

3. z1 and z2 complex

4. 4 > z1 > 1, 4 < z2 <∞.

It suffices to carry out the reduction for one of these cases. We choose the second case.
In descending order, the values for which the third-degree function under the square root
sign vanishes are 1, z1, and z2. The entire function is positive if z lies between z1 and z2 or
z > 1. Only under the first assumption do we continue the calculation. Setting

z = z2 + (z1 − z2) sin
2 ψ, (3.24)

13



then
dz√

(z − 1) (z2 − 4 (λ2 − λ) z + 4λ2)
=

2√
1− z2

dψ√
1− x2 sin2 ψ

,

where

x2 =
z1 − z2
1− z2

means a positive proper fraction. After carrying out some straightforward calculations, one
obtains from Eqs. (3.21) and (3.22)

t =
−1√
1− z2

{
2(1 + 2λ)F (x, ψ)− 2

1 + 4λ

1− z1
E(x, ψ) + (z1 − z2)

sinψ cosψ√
1− x2 sin2 ψ

}
(3.25)

ϑ1 =
−1√
1− z2

{
(1− 2λ)F (x, ψ) +

2λ

z2
Π(x, µ, ψ)

}
(3.26)

where

x2 =
z1 − z2
1− z2

and µ =
z1 − z2
z2

.

The functions F (x, ψ), E(x, ψ),Π(x, µ, ψ) are Legendre’s incomplete elliptic integrals of
the first, second, and third kind:

F (x, ψ) =

∫ ψ

0

dψ√
1− x2 sin2 ψ

, E(x, ψ) =

∫ ψ

0

√
1− x2 sin2 ψ dψ,

Π(x, µ, ψ) =

∫ ψ

0

dψ(
1 + µ sin2 ψ

)√
1− x2 sin2 ψ

;

the constants of integration have been determined such that the quantities t, ϑ1, and ψ
vanish simultaneously. The integral of the third kind is always finite since the parameter µ
is positive.

If one puts ψ−π instead of ψ in the above equations, the quantities t and ϑ1 respectively
increase by

T =
4√

1− z2

{
(1 + 2λ)K − 1 + 4λ

1− z1
E

}
(3.27)

ϑ =
2√

1− z2

{
(1− 2λ)K +

2λ

z2
Π

}
, (3.28)

where K, E, and Π mean the complete elliptic integrals of all three types; the quantities ϱ
and s all remain unchanged. Therefore, The movement is periodic in that at time t + T ,
the threads are no longer in the same place as at time t but in the same mutual position
and state of motion.5 The trajectories of the threads are transcendental curves consisting

5Translator’s footnote: This is called a relative periodic orbit in modern language.
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of infinitely many congruent pieces. Namely, the trajectory of vortex 2 is the same curve as
the trajectory of vortex 1, only rotated through the angle 1

2
ϑ.

For t = 0 we have

ϱ1 = λ+
√
λ2 − 2λ, ϱ2 = −λ+

√
λ2 − 2λ, ϱ3 = 2

√
λ2 − 2λ,

ϑ1 = ϑ2 = ϑ3 = 0,

and for t = 1
2
T ,

ϱ1 = −λ+
√
λ2 − 2λ, ϱ2 = λ+

√
λ2 − 2λ, ϱ3 = 2

√
λ2 − 2λ,

ϑ1 = ϑ2 = ϑ3 =
1

2
ϑ.

The motion for the interval t = 0 to t = 1
2
T is as follows. At the moment t = 0, the

three threads are in a straight line; ϱ1, ϱ3, as well as the velocity w1 are minima, ϱ2 as well
as w2 and w3 are maxima. ϱ1 and v1 are now constantly growing, ϑ1 only decreases until

ϱ1 =
√

2λ
2λ−1

, then also to, at the time t = 1
2
T , ϱ1 and w1 have reached their greatest values,

and ϑ1 has become = 1
2
ϑ, while ϱ2 and w2 decrease continuously, and ϑ2 first increases, then

decreases. At t = 1
2
T , ϱ2 and w2 are minima and v2 =

1
2
ϑ. ϱ3 finally increases w3 decreases,

at time t = 1
4
T ϱ3 is a maximum, = (2 − 4λ − 2

√
1 + 4λ)1/2, ϑ3 = 1

4
ϑ,w3 a minimum. The

triangle of the three vortices is isosceles at this moment. From this point on, ϱ3 decreases
and w3 increases. At t = 1

2
T , ϱ3 and w3 have regained their original values. The three

vortices are now again in the initial mutual position if one only interchanges 1 and 2, and
with the same caveat, the motion for the interval t = 1

2
T to t = T is the same as for the one

just described from t = 0 to t = 1
2
T . Figure 1, which is based on the assumption λ = − 1

12
,

should give an approximate picture of the course of the movement. The associated values of
T and ϑ are for t = 0

T = 0.1068, ϑ = 0.6086;

ϱ1 =
1

3
, ϱ2 =

1

2
, ϱ3 =

5

6

s1 =
1

3
, s2 =

1

2
, s3 =

1

6
w1 = 4, w2 = 9, w3 = 5.

Cases 1, 3, and 4 on page 13 can be treated similarly. However, the movement is no
longer periodic; the time necessary for z to pass from one extreme value to another diverges.
Because either one of the limits of the integral is equal to 1 and for this value, the function
under the integral sign in Eq. (3.21) diverges to order 3

2
, i.e., the integral itself of the order

1
2
, or z = ∞ is one of the limits; for this value of z, dt

dz
becomes zero of order 1

2
and t itself

becomes infinite of this order. The angle ϑ1 only changes by a finite amount as z varies
through all possible values.

We proceed to the borderline cases mentioned above.
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Figure 1: Gröbli’s Figure 1.

4 The first borderline case λ = 0

From (2.14), we have the result
s23 = s21 + s22; (4.1)

the triangle of the three vortices is always right-angled. The integrations indicated in
Eqs. (3.21) and and (3.22) can be carried out very easily. Making suitable choices of in-
tegration constants and again replacing z by ϱ21, one obtains

t =
2− ϱ21√
ϱ21 − 1

(4.2)

ϑ1 = − arctan
√
ϱ21 − 1. (4.3)

We want to assume the function arctangent in the first quadrant. Since dϱ1
dt

is continuously

negative, dϑ1
dt

must be positive, so ϱ1 decreases and ϑ1 increases. From Eq. (4.3) it follows
that

x1 = 1; (4.4)

thread 1 moves in a straight line parallel to the y axis. From Eq. (3.6) it follows that

ϱ2 =
ϱ1√
ϱ21 − 1

.

By introducing rectangular coordinates into this equation and considering that, according
to Eqs. (3.10) and (3.11),

ϑ2 − ϑ1 =
π

2
,

we find
x2 = 1; (4.5)

thread 2 traverses the same straight line as thread 1. Finally, it follows from Eq. (3.1) using
the previous equation that

x3 = 2; (4.6)
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thread 3 also follows a straight trajectory line parallel to the y-axis. Since the motion is
parallel to the y-axis, we introduce orthogonal coordinates, finding

ϱ21 = 1 + y21;

inserting this expression into Eq. (4.2) and taking into account that positive values of t
correspond to negative values of y1, the result is

t =
y21 − 1

y1

and from here

y1 =
t−

√
t2 + 4

2
. (4.7)

For y2 and y3 one obtains the formulas

y2 =
t+

√
t2 + 4

2
(4.8)

y3 = t. (4.9)

Differentiating these equations with respect to t yields these threads’ velocities.
To summarize the obtained results, starting from the moment t = 0, we can describe the

movement as follows. Thread 1 moves in the straight line x1 = 1. At time t = 0 it is at the
location y1 = −1, with speed 1

2
. From this position, it moves parallel to the positive y-axis

with steadily decreasing speed, getting closer and closer to the x-axis without ever reaching
it. Thread 2 moves along the same straight line as 1 and continues from the initial position
y2 = 1 parallel to the positive y axis. Its velocity increases continuously and converges to
the limit 1. Finally, thread 3 moves along the straight line x3 = 2 from the initial position
y3 = 0, with constant speed 1, in the same direction as the other two threads.

5 The second borderline case λ = −1
4

The following equations are obtained by integrating Eqs. (3.21) and (3.22):

t = −1

2

√
4z − 1 +

1√
3
log

(√
4z − 1 +

√
3

√
4z − 1−

√
3

)
+ const.,

ϑ1 = − arctan
√
4z − 1 +

1√
3
log

(√
4z − 1 +

√
3

√
4z − 1−

√
3

)
+ const.

We must distinguish between the two cases

1 < z <∞, and
1

4
< z < 1;
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reintroducing ϱ21 in place of z and suitably determining the constants of integration, one
obtains the equations

t =− 1

2

√
4ϱ21 − 1 +

1√
3
log

(√
4ϱ21 − 1 +

√
3√

4ϱ21 − 1−
√
3

)
, (5.1)

ϑ1 =− arctan
√

4ϱ21 − 1 +
1√
3
log

(√
4ϱ21 − 1 +

√
3√

4ϱ21 − 1−
√
3

)
for 1 < ϱ1 <∞, (5.2)

and

t = −1

2

√
4ϱ21 − 1 +

1√
3
log

(√
3 +

√
4ϱ21 − 1

√
3 +

√
4ϱ21 − 1

)
, (5.3)

ϑ1 = − arctan
√

4ϱ21 − 1 +
1√
3
log

(√
3 +

√
4ϱ21 − 1

√
3 +

√
4ϱ21 − 1

)
for

1

2
< ϱ1 < 1. (5.4)

From Eqs. (3.3), (3.6), (3.9), and (3.15) it results that

ϱ2 = 1, s2 = 1, w1 = 1, s1 = s3. (5.5)

Accordingly, thread 2 moves in a circle whose center is the center of gravity of the three
vortex threads; thread 1 traverses its path at a constant speed; the three vortices form the
corners of an isosceles triangle whose base has constant length. For ϑ2 and ϑ3 the following
equations result from (3.9), (3.10), (3.11), (5.2) and (5.4):

ϑ2 =
1√
3
log

(
±
√
4ϱ21 − 1 +

√
3√

4ϱ21 − 1−
√
3

)
; (5.6)

ϑ3 = − arctan
1

3

√
4ϱ23 − 9 +

1√
3
log

(
±
√

4ϱ23 − 9 +
√
3√

4ϱ23 − 9−
√
3

)
, (5.7)

in which the positive or negative sign is to be taken under the sign of the logarithm, depending
on whether ϱ1 ≤ 1. To discuss these equations further, we must distinguish between the cases
ϱ1 > 1 and ϱ1 < 1.

1) 1 < ϱ1 <∞ Here ϱ3 lies between
√
3 and ∞, ϱ1 and ϱ3 decrease continuously, whereas

ϑ1, ϑ2, ϑ3, w2, and w3 increase; the threads move around the center of gravity in a positive
sense. Equation (5.2) can be written

ϑ1 +
π

2
= arctan

1√
4ϱ21 − 1

+
1√
3
log

(√
4ϱ21 − 1 +

√
3√

4ϱ21 − 1−
√
3

)
.

If one expands the right-hand side to powers of 1
ϱ1
, assuming that ϱ1 is very large and only

keeps the terms of the first order, the result is

ϑ1 +
π

2
=

3

2ϱ1
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or

x1 =
3

2
.

The straight line x1 =
3
2
is an asymptote of the path of thread 1. It also follows from Eq. (5.7)

that the straight line

x3 =
5

2

is an asymptote of the curve traversed by thread 3.
The trajectory of thread 1 is a spiral, which has the line x1 =

3
2
and the circle of radius 1

as asymptotes; the trajectory of thread 3 is a spiral, for which the line x3 =
5
2
and the circle

of radius
√
3 are asymptotes. Both spirals rapidly approach their asymptotic circles.

For t = −∞ we get

ϱ1 = ∞, ϑ1 = −π
2
, ϑ2 = 0, ϱ3 = ∞, ϑ3 = −π

2
,

and for t = ∞

ϱ1 = 1, ϑ1 = −π
3
+ ϑ2, ϑ2 = ∞, ϱ3 =

√
3, ϑ3 = −π

6
+ ϑ2.

Let us assume that threads 1 and 3 are very far from the center of gravity at the beginning
of the movement. Then thread 2 is very close to the point x2 = 1, y2 = 0, the velocity w2 is
very small, and w3 is almost equal to 1. Both velocities now increase rapidly and converge
towards the values 1 and

√
3 without ever reaching them. After thread 2 has traversed its

circle once, threads 1 and 2 move approximately along the circle of radius 1 with speed 1,
while 3 moves approximately along the circle of radius

√
3 with speed

√
3. The triangle of

the three threads is equilateral and rotates about the center of gravity with constant velocity.

2) 1
2
< ϱ1 < 1 Now ϱ3 lies between 3

2
and

√
3. Thread 1 moves along a spiral whose

minimal radius is 1
2
, for which the circle of radius 1 is an asymptotic circle and the x-axis

is the symmetry axis. Thread 2 moves on the circle of radius 1; thread 3 describes a spiral,
which has the x-axis to the axis of symmetry and the circle of radius

√
3 to the asymptotic

circle. The smallest radius vector is 3
2
. Both spirals very quickly connect to their asymptotic

circles. At the moment t = 0, all three threads lie on the x-axis, at the distances 1
2
, 1, and

3
2
from the centroid.
The speeds are 1, 4, and 3 respectively. The angle ϑ1 first decreases, reaches the minimum

for ϱ1 =
1
3

√
3 and then increases steadily. ϱ3, ϑ1, and ϑ3 also increase. Thread 1 moves with

the speed 1, while threads 2 and 3 trace their orbits with decreasing speed and converge
towards the limits 1 and

√
3. When thread 2 has traversed its circle once, which has happened

after a certain finite time, the motion occurs nearly as if the triangle of the three threads
were equilateral and rotating about the center of gravity at speed 1. o

Figures 2 and 3 are intended to give an approximate idea of the course of the movement.
The assumption λ = 2 leads to very similar motions. We omit the details.
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Figure 2: Gröbli’s Figure 2.

Figure 3: Gröbli’s Figure 3.
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6 The Second case: m1 = m2 = m3

Equations (2.8) and (2.9) can be written

ϱ21 + ϱ22 + ϱ23 = 1, (6.1)

s1s2s3 = λ. (6.2)

The unit of length is suitably chosen so that λ means a positive constant; otherwise, it
may be arbitrary.

System (2.12), which conveys the relationship between the variables ϱ and s, becomes

s21 = 2− 3ϱ21, s22 = 2− 3ϱ22, s23 = 2− 3ϱ23. (6.3)

If you add these three equations, you get, using Eq. (6.1),

s21 + s22 + s23 = 3. (6.4)

With the help of Eqs. (6.2) and (6.4), one can already get a general view of the motion,
as far as only the shape of the triangle is considered, and a classification of the various
possible cases can be set up. If we think of s1, s2, and s3 as right-angled coordinates of a
point in space, Eq. (6.4) represents a sphere of radius

√
3 and Eq. (6.2) a third-order surface

which has the coordinate planes as asymptotic planes and is intersected by planes parallel
to them in equilateral hyperbolas. Since the quantities s1, s2, and s3 are positive, we can
limit ourselves to the first octant. The levels

s2 = s3, s3 = s1, and s1 = s2

are planes of symmetry for the sphere and the surface of the third order, and therefore also
for the intersection curve of both, an oval-like figure. Each point of this curve corresponds
to a specific shape of the triangle of the three threads. The oval has a highest and a lowest
point, corresponding to the two extreme values between which s3 must lie. Of course, s1
and s2 lie within the same boundaries. Since the plane s1 = s2 is a plane of symmetry, then
s3 certainly obtains its maximum and minimum when s1 = s2. There are no other maxima
and minima. If we set s1 = s2, we get an equation of the third degree for s3

s33 − 3s3 + 2λ = 0. (6.5)

One root of this equation is always real but cannot be used because it is negative. The
other two roots give the maximum and minimum values of s3, respectively. They can be real
and different, real and equal, or imaginary, depending on whether the two surfaces intersect,
touch, or don’t intersect. The contact occurs for λ = 1 where the intersection curve is
reduced to the point

s1 = s2 = s3 = 1 (6.6)

and the three threads form an equilateral triangle of constant dimension. From Eq. (6.3) it
follows that

ϱ21 = ϱ22 = ϱ23 =
1

3
.
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If we denote the common value of the quantities m1, m2, and m3 by m, then Eq. (2.17)
results in

dϑ1

dt
=

dϑ2

dt
=

dϑ3

dt
=

3m

π
. (6.7)

Therefore, the triangle of three threads revolves at a constant speed around its center.
We now summarize what has been said so far. The sides s1, s2, and s3 of the triangle

of the three vortex threads have to satisfy Eqs. (6.2) and (6.4), in the former λ means a
positive, non-zero constant lying between 0 and 1. Owing to these conditions, each side can
only vary between two definite finite limits, which are the same for all three sides and are
defined as the positive roots of the equation

s33 − 3s3 + 2λ = 0.

When one of the sides has reached its extreme value, the triangle is isosceles.
Now, the following has to be considered. For the triangle to be real, the sum of two sides

must be greater than the third. This condition is certainly met if one of the sides, e.g., s3,
is a minimum because the smaller root of the above equation is less than 1, the associated
values of s1 and s2 are greater than 1 after Eq. (6.4), so s1 + s2 > s3. On the other hand, if
s3 is a maximum, then it is greater than 1, so s1 and s2 are smaller than 1, and it depends
entirely on the value of λ, whether s1 + s2 ⋛ s3. The limiting case s1 + s2 = s3 occurs for

s3 =
√
2; the third degree equation gives

√
1
2
as the associated value of λ. In one border

position, the three threads are in a straight line, one exactly midway between the other two.
The three equations

s2 + s3 = s1, s3 + s1 = s2, and s1 + s2 = s3

represent the planes formed by two of the bisectors of the positive coordinate axes. These
planes intersect the sphere in an equilateral spherical triangle, and the three cases λ2 ⋛ 1

2

are distinguished in that the oval lies entirely inside the triangle or touches it or intersects
it. In the last case, only an isosceles triangle shape is possible; another possible position is
that the three threads are in a straight line, but not one midway between the other two.

We now determine the motion and will use the differential equations (2.15) and (2.17)
for this purpose. Equations (6.2) and (6.4) initially result in

s2 + s3 =

√
−s31 + 3s1 + 2λ

s1
;

s2 − s3 =

√
−s31 + 3s1 − 2λ

s1
;

s22 − s23 =

√
s61 − 6s41 + 9s21 − 4λ2

s1
.

(6.8)

Using these formulas, one obtains from Eq. (2.16)

4J =

√
−4s61 + 12s41 − 9s21 + 4λ2

s1
, (6.9)
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and now from the first equations of systems (2.15) and (2.17) with a suitable choice of the
time unit

d (s21)

dt
=

1

λ2

√
(s61 − 6s41 + 9s21 − 4λ2) (−4s61 + 12s41 − 9s21 + 4λ2); (6.10)

dϑ1

dt
=

2s61 − 9s41 + 9s21 + 4λ2

2λ2 (2− s21)
. (6.11)

By eliminating t from Eqs. (6.10) and (6.11) it follows that

d (s21)

dϑ1

=
2 (2− s21)

√
(s61 − 6s41 + 9s21 − 4λ2) (−4s61 + 12s41 − 9s21 + 4λ2)

2s61 − 9s41 + 9s21 + 4λ2
. (6.12)

From (6.10) and (6.12), we may obtain formulas for t and ϑ1 as hyperelliptic integrals as
functions of s21. In particular, setting

s21 = z (6.13)

yields

t =

∫
λ2dz√

(z3 − 6z2 + 9z − 4λ2) (−4z3 + 12z2 − 9z + 4λ2)
; (6.14)

ϑ1 =

∫
(2z3 − 9z2 + 9z + 4λ2) dz

2(2− z)
√

(z3 − 6z2 + 9z − 4λ2) (−4z3 + 12z2 − 9z + 4λ2)
. (6.15)

In the second of these equations, one only needs to express z in terms of ϱ21 with the help of
Eq. (6.3) to obtain the equation of the trajectory of thread 1.

The above equations are also valid for threads 2 and 3 if e the characters s1, ϑ1 are
replaced with s2, ϑ2, or s3, ϑ3.

The following equations are obtained for the speeds at which the threads move

w1 =
3ϱ1s1
λ

, w2 =
3ϱ2s2
λ

, w3 =
3ϱ3s3
λ

. (6.16)

In Equations (6.14) and (6.15), the function of the sixth degree under the root sign is

f(z) =
(
z3 − 6z2 + 9z − 4λ2

) (
−4z3 + 12z2 − 9z + 4λ2

)
. (6.17)

The equation f(z) = 0 has double roots only if λ2 has one of the values 0, 1
2
, or 1. We

can disregard the case λ = 0 since it leads back to two vortex threads. We have already
dealt with the case λ = 1. Finally, we will consider the case λ2 = 1

2
later. If λ is different

from one of the numbers 0,
√

1
2
, 1, then none of the six linear factors into which f(z) can be

decomposed are equal to each other, and the integrals in (6.14) and (6.15) are hyperelliptic.
The integral in (6.14), therefore, always remains finite. In Eq. (6.15), there is a rational
function of z next to the root of the function of the sixth degree, which becomes infinitely
large for z = 2. But since z can never equal 2, this integral is always finite. The movement
is, therefore, periodic in such a way that after a certain finite time has elapsed, the threads
are no longer in their original place but in the same mutual position and state of motion.
The angle ϑ1 keeps growing. We must now distinguish between the cases λ2 ≷ 1

2
.
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Case 1: λ2 > 1
2
. The equation

z3 − 6z2 + 9z − 4λ2 = 0

has three real positive roots z1, z3, z3 within the following intervals

2−
√
3 < z1 < 1, 1 < z2 < 2, and 2 +

√
3 < z3 < 4. (6.18)

The equation
−4z3 + 12z2 − 9z + 4λ2 = 0

has only one real root between 2 and 3. The values z1 and z2 correspond to the minimum
and maximum of s1, so z must be between z1 and z2.

The time that is necessary for the three threads to return from a certain position to the
same mutual position and the same state of motion, is according to Eq. (6.14),

T = 2λ2
∫ z2

z1

dz√
f(z)

. (6.19)

The angles ϑ1, ϑ2, and ϑ3 have increased during this time by

ϑ =

∫ z2

z1

(2z3 − 9z2 + 9z + 4λ2) dz

(2− z)
√
f(z)

. (6.20)

Let us imagine the movement beginning at the moment when the triangle formed by the
three threads is isosceles with thread 1 at the apex and s1 a minimum. The triangle now
rotates around the center of gravity in a positive sense, changing its shape simultaneously.
Side lengths s1 and s3 increase, ands2 decreases. At the time t = 1

2
T , the triangle is isosceles

again, and now thread 3 sits at the top, with s3 a maximum, so the triangle is less acute than
before. The triangle continues to rotate, s1 increases, s2 and s3 decrease, and at time t = 1

3
T ,

the triangle again has its initial isosceles shape, only now thread 2 is at the top. According to
Eq. (6.3), a maximum or minimum of one of the sides always corresponds to a minimum or
maximum of the distance of the thread opposite the relevant side from the center of gravity.
The threads describe certain curves consisting of an infinite number of congruent pieces. If
one rotates the path of one of the threads by the angle 2π−ϑ

3
forwards and backward, one

obtains the paths of the other two threads. For λ = 1, ϑ = 0, and for λ =
√

1
2
, ϑ = ∞. There

are therefore innumerable values of λ for which 2π−ϑ
3

is a multiple of 2π. In such a case, the
three threads move forward on the same curve, alternately approaching and receding from
one another.

The speed w1 viewed as a function of time is a minimum for t = 0, then increases and
reaches a maximum of

√
3
λ

after a certain time; at this moment s1 = 1; then decreases, is a

minimum for t = 1
2
T , increases again to

√
3
λ
, and finally decreases to reach the initial value

at t = T .

24



Figure 4 corresponds to the assumption λ2 = 243
343

. For this value of λ2 one obtains

T = 2λ2
∫ 24

14

6
14

dz√
f(z)

= 6λ2
∫ 9

14

6
14

dz√
f(z)

≈ 2.1078;

ϑ =

∫ 24
14

6
14

(2z3 − 9z2 + 9z + 4λ2) dz

(2− z)
√
f(z)

;

= 3

∫ 9
14

6
14

(2z3 − 9z2 + 9z + 4λ2) dz

(2− z)
√
f(z)

+ 3 arccos
17

19
− π ≈ 3.5355,

and straightforwardly calculates the data in Table 1, according to which the drawing is made.

6 t
T

6ϑ1 14s21 14s22 14s22 42ϱ21 42ϱ22 42ϱ23
0 0 6 18 18 22 10 10
1 ϑ+ π − 3 arccos 17

19
9 9 24 19 19 9

2 2ϑ+ 2π − 3 arccos 1
10

18 6 18 10 22 10
3 3ϑ 24 9 9 4 19 19
4 4ϑ− 2π + 3arccos 1

10
18 18 6 10 10 22

5 5ϑ− π + 3arccos 17
19

9 24 9 19 4 19
6 6ϑ 6 18 18 22 10 10

Table 1: Numerical values used in the creation of Figure 4.

Figure 4: Gröbli’s Figure 4
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Case 2: λ2 < 1
2

The equation

z3 − 6z2 + 9z − 4λ2 = 0

has three real roots within the following bounds

0 < z1 < 2−
√
3, 2 < z2 < 3, 3 < z3 < 2 +

√
3. (6.21)

The root z1 corresponds to the minimum of s1, at which point the values of z2 and z3 are
incompatible with a real triangle. The equation

−4z3 + 12z2 − 9z + 4λ2 = 0

also has three real positive roots within the bounds

0 < z′ <
1

2
,
1

2
< z′′ <

3

2
,
3

2
< z′′′ < 2, (6.22)

all three of which are compatible with a real triangle. The six roots of the equation f(z) = 0
are, in order of magnitude,

z1 < z′ < z′′ < z′′′ < z2 < z3,

and we may factor

f(z) = −4 (z − z1) (z − z′) (z − z′′) (z − z′′′) (z − z2) (z − z3) ,

which is positive if z is between z1 and z′, or between z′′ and z′′′, or finally lies between z2
and z3. z = z′′′ is the largest value that z can take on, so it must either be that z1 ≤ z ≤ z′,
or z′′ ≤ z ≤ z′′′. The difference between the two cases is that thread 1 has been swapped
with one of threads 2 and 3. Let us assume that z is between z1 and z

′. The time that must
elapse for the three threads to return to their initial mutual position and the same state of
motion is

T = 4λ2
∫ z′

z1

dz√
f(z)

, (6.23)

and during this time, the angles ϑ have increased by

ϑ = 2

∫ z′

z1

(2z3 − 9z2 + 9z + 4λ2) dz

(2− z)
√
f(z)

. (6.24)

The squared side length s21 is bounded between the values z1 and z′, squared lengths s22 and
s23 are within the boundaries z′′ and z′′′. We want to start when the triangle is isosceles,
with thread 1 at the apex and s1 a minimum. Then the lengths s1 and s3 increase, and
s2 decreases, until at time t = 1

4
T , the three threads are in a straight line, with thread 3

between thread 1 and thread 2, closer to thread 2 than to thread 1. The triangle continues
to evolve, returning to its original shape at time t = 1

2
T . At time t = 3

4
T , the three threads

are again in a straight line and indeed in the previous mutual position, only with thread 2
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exchanged for thread 3, and so on. The curves traversed by threads 2 and 3 can be made to
coincide by rotating about the center of gravity.

It remains to treat the case λ2 = 1
2
. The integrals in Eqs. (6.14) and (6.15) can be carried

out easily, one finds

t =
1

6
√
3
log

(√
3 +

√
−s41 + 4s21 − 1

2− s21

)
− 1

3
√
3
log

(√
3s21 +

√
−s21 + 4s21 − 1

1− 2s12

)
; (6.25)

ϑ1 = −1

2
arccos

2− s21√
3

− 1

2
√
3
log

(√
3 +

√
−s41 + 4s21 − 1

2− 821

)
(6.26)

+
1√
3
log

√
3s1

2 +
√
−s41 + 4s21 − 1

)
1− 2s21

 .

The value of s21 must be between 2−
√
3 and 1

2
; both t and ϑ1 vanish when s21 = 2−

√
3. At

the moment t = 0, the triangle is isosceles, and the side lengths are

s21 = 2−
√
3, s22 = s23 =

1 +
√
3

2
.

Over time, the values of s1 and s2 increase, and s3 decreases; only after an infinitely long
time do the three threads lie in a straight line, namely s21 = s23 =

1
2
, s22 = 2, thread 2 is in the

middle between threads 1 and 3. The orbits of all three threads are spirals that approach the

circle of radius
√

1
2
asymptotically in time; moreover, the orbits of threads 1 and 3 approach

the origin asymptotically. If t is reasonably large, the paths of threads 1 and 3 lie very close

to the circle of radius
√

1
2
, diametrically opposite each other, with velocity 3

√
2

2
, while thread

2 is at the origin.

7 Third case: m1 = 2m2 = −2m3

Equations (2.8) and (2.9) can now be written

2ϱ21 + ϱ22 − ϱ23 = 2λ (7.1)

s1s
2
2 = s23. (7.2)

Here, λ means an arbitrary constant, the unit of length having been appropriately imposed.
From Eq. (2.12), it follows that

s21 = 4ϱ21, s22 = ϱ22 − λ, s23 = ϱ23 + 3λ. (7.3)

Putting these equations into Eq. (7.2) yields

ϱ1
(
ϱ22 − λ

)
= ϱ23 + 3λ (7.4)
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From Eqs. (7.1) and (7.4) follows by eliminating ϱ3 that

(ϱ1 − 1)
(
ϱ22 − 2ϱ2 − λ− 2

)
= 2λ+ 2. (7.5)

Assuming that λ+ 1 is non-zero, this equation yields

ϱ22 =
2ϱ21 + λϱ1 + λ

ϱ1 − 1
(7.6)

and then from Eq. (7.1),

ϱ23 =
2ϱ21 − λϱ1 + 3λ

ϱ1 − 1
. (7.7)

If λ = −1, then the right-hand side of Eq. (7.5) vanishes, and the equation can be satisfied
by setting either one or both of the factors on the left equal to zero. The formulas that result
when the second factor is allowed to vanish are given by the general equations (7.6) and (7.7).
Equating the first factor to zero gives

ϱ1 = 1, ϱ22 − ϱ23 = 4

s1 = 2, s2 = s3.

According to these equations, the triangle of the three vortex threads is isosceles and of fixed
dimensions. We do not want to go into this case in more detail since later, in Sec. 11, we
will integrate the differential equations for the motion of three vortex filaments in general,
under the assumption that the triangle of the three filaments is at all times isosceles.

If we assume that both factors vanish at the same time, we get

ϱ21 = 1, ϱ22 = 3, ϱ23 = 7

s1 = 2, s2 = 2, s3 = 2;

the triangle of the three vortices is constantly equilateral and does not change in size. The
motion consists of a triangle rotation around the center of mass at constant speed.

With an arbitrary value of λ we get from Eq. (2.11), with the help of equations (7.6)
and (7.7)

cos (ϑ3 − ϑ1) =
3ϱ21 − λ

2ϱ1

√
ϱ1 − 1

2ϱ31 − λϱ1 + 3λ
;

cos (ϑ1 − ϑ2) = −ϱ
2
1 + λ

2ϱ1

√
ϱ1 − 1

2ϱ21 + λϱ1 + λ
,

(7.8)

and from here

sin (ϑ3 − ϑ1) =
1

2ϱ1

√
−ϱ51 + 9ϱ41 + 2λϱ31 + 6λϱ21 − λ2ϱ1 + λ2

2ϱ31 − λϱ1 + 3λ
;

sin (ϑ1 − ϑ2) = − 1

2ϱ1

√
−ϱ51 + 9ϱ41 + 2λϱ31 + 6λϱ31 − λ2ϱ1 + λ2

2ϱ21 + λϱ1 + λ
.

(7.9)
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The sign of one of the two sines can be chosen arbitrarily, and the sign of the other is then
determined according to Eq. (2.10). Using the above, the following two equations result from
the first of the differential equations (7.3) and (7.4):

dϱ1
dt

= −(ϱ1 − 1)3/2 (−ϱ51 + 9ϱ41 + 2λϱ31 + 6λϱ21 − λ2ϱ1 + λ2)
1/2

4ϱ21 (ϱ
2
1 + λ)

(7.10)

dϑ1

dt
=

(ϱ1 − 1) (ϱ31 + 3ϱ21 − λϱ1 + λ)

4ϱ21 (ϱ
2
1 + λ)

. (7.11)

Eliminating t from Eqs. (7.10) and (7.11) gives

dϱ1
dϑ1

=
−ϱ1 (ϱ1 − 1)1/2 (−ϱ51 + 9ϱ41 + 2λϱ31 + 6λϱ21 − λ2ϱ1 + λ2)

1/2

ϱ31 + 3ϱ21 − λϱ1 + λ
. (7.12)

By quadrature one obtains t and ϑ1 from Eqs. (7.10) and (7.12) through hyperelliptic
integrals as functions of ϱ1. For some values of λ, reductions occur. If λ = −1 or if it satisfies
the equation

λ2 − 35λ− 243 = 0,

then the integrals are elliptic. The simplest calculations are for λ = 0, and we choose to
continue for this value. From Eqs. (7.10) and (7.12) we get for λ = 0

dt =
−4ϱ21dϱ1

(ϱ1 − 1)
√

(ϱ1 − 1) (9− ϱ1)
; (7.13)

dϑ1 =
− (ϱ1 + 3) dϱ1

ϱ1
√

(ϱ1 − 1) (9− ϱ1)
, (7.14)

and by integrating these equations

t =

√
9− ϱ1
ϱ1 − 1

+ 4
√
(ϱ1 − 1) (9− ϱ1) + 24 arccos

ϱ1 − 5

4
; (7.15)

ϑ1 = arccos
ϱ21 − 8ϱ1 + 9

2ϱ1
. (7.16)

The constants of integration have been determined so that for ϱ1 = 9, both t and ϑ1 vanish.
From the moment t = 0 onwards, ϱ1 continuously decreases from 9 to 1 and ϑ1 increases

from 0 to 2π. Eq. (7.16) represents the trajectory of thread 1. This trajectory is a fourth-
order curve whose equation can be written in orthogonal coordinates as follows

y41 + 2
(
x21 + 2x1 − 23

)
y21 + (x1 + 3)2 (x1 − 1) (x1 − 9) = 0. (7.17)

The x axis is the axis of symmetry, and the point (x1, y1) = (−3, 0) is a self-crossing point.
Let us set

x1 + 3 = ϱ cosϑ, y = ϱ sinϑ,
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i.e., by placing the self-crossing point at the origin of polar coordinates, we get from Eq. (7.17)

ϱ = 4 + 8 cosϑ. (7.18)

According to this equation, the trajectory of thread 1 is the pedal locus of a circle of radius
4 in relation to a point at a distance 8 from the center.

From Eq. (7.16), it follows that

cosϑ1 =
ϱ21 − 8ϱ1 + 9

2ϱ1
;

sinϑ1 =
ϱ1 − 3

2ϱ1

√
(ϱ1 − 1) (9− ϱ1),

and also from Eqs. (7.8) and (7.9),

cos (ϑ1 − ϑ2) = −1

2

√
ϱ1 − 1

2
;

sin (ϑ1 − ϑ2) = −1

2

√
9− ϱ1

2
.

Substituting these expressions into the trigonometric identity

cosϑ2 = cosϑ1 cos (ϑ1 − ϑ2) + sinϑ1 sin (ϑ1 − ϑ2) ,

one obtains

cosϑ2 = −2ϱ1 − 9

2ϱ1

√
ϱ1 − 1

2
,

or

x2 = −2ϱ1 − 9

2
.

From Eq. (7.6), it follows for λ = 0 that

ϱ1 =
ϱ22 −

√
ϱ42 − 8ϱ22
4

.

By introducing this expression for ϱ1 into the previous equation and converting this to
rectangular coordinates, one obtains the equation of the path of thread 2, which can be
written in the following form

(2x2 − 7) y22 + (x2 − 3)2 (2x2 + 9) = 0. (7.19)

This equation represents a third-order curve, for which the x-axis is an axis of symmetry,
the point x2 = 3, y2 = 0 is a self-crossing point, the line 2x2 − 7 = 0 is the unique real
asymptote. Real values arise for y2 only if −9

2
< x2 <

7
2
.
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In the same way, as we determined the trajectory of thread 2, the trajectory of thread 3
follows. One first finds

x3 = ϱ21 − 9ϱ1 +
27

2
,

and from here

ϱ1 =
9 +

√
27 + 4x3
2

.

Substituting this expression for ϱ1 in Eq. (7.7) and then introducing rectangular coordinates,
the following equation

(2x3 − 11) y43 + 2 (x3 − 9)
(
2x33 + 3x3 − 81

)
y23 + (2x3 − 27)

(
x23 + 2x3 − 27

)2
= 0. (7.20)

The trajectory of thread 3 is a fifth-order curve, for which the x-axis is the symmetry axis,
the straight line 2x3 − 11 = 0 is the only real asymptote, and the curve crosses itself at the
points

x3 = −1± 2
√
7, y3 = 0.

The coordinate y3 only takes real values for values of x3 between −27
4
and 27

2
. In particular,

four values are real, if x3 is between −27
4
and 11

2
, whereas only two if x3 is between

11
2
and 27

2

is located. The fifth-order curve still has two real self-crossing points. To find them, solve
Eq. (7.20) for y23, which yields

y23 =
− (x3 − 9) (2x23 + 3x3 − 81)± 4 (5x3 − 27)

√
4x3 + 27

2x3 − 11
. (7.21)

The two values of y23 corresponding to each x3 coincide when either 5x3 − 27 or 4x3 + 27
vanish. The two self-crossing points, which correspond to the disappearance of the first
quantity, are thus

x3 =
27

5
, y3 = ±54

5
.

x3 = −27
4
is one of the limits given above for x3, and 4x3+27 = 0 is the equation of a double

tangent.
We still want to determine the speeds at which the threads move. Eqs (7.10) and (7.12)

result, for λ = 0,

dϱ1
dt

= −ϱ1 − 1

4ϱ21

√
(ϱ1 − 1) (9− ϱ1);

dϑ1

dt
=

(ϱ1 − 1) (ϱ1 + 3)

4ϱ31
,

(7.22)

and it follows from this that

w1 =
ϱ1 − 1

ϱ1
√
ϱ1
. (7.23)

31



From the differential equations (2.3) and (2.4) one also obtains

dϱ2
dt

= −ϱ1 − 2

4ϱ31

√
9− ϱ1

2
,

dϑ2

dt
=

(ϱ1 − 1) (ϱ1 + 6)

2ϱ31
, (7.24)

dϱ3
dt

= −2ϱ1 − 3

4ϱ1

√
9− ϱ1
2ϱ1

,
dϑ3

dt
=

(ϱ1 − 1) (2ϱ1 + 9)

2ϱ31,
(7.25)

and from these

w2 =
1

2ϱ1

√
3ϱ1 − 2

ϱ1
; (7.26)

w3 =

√
10ϱ1 − 9

2ϱ1
. (7.27)

For ϱ1 = 3, w1 =
2
9

√
3 is a maximum, for ϱ1 =

9
5
, w3 =

5
6
also a maximum. w2 keeps growing

from t = 0 onwards. We are now able to describe the motion fully.
At time t = 0 all three threads are on the x-axis, with

x1 = 9, x2 = −9

2
, x3 =

27

2
.

The speeds are at this moment

w1 =
8

27
, w2 =

5

54
, w3 =

1

2
.

Thread 1 moves counterclockwise around the center of gravity and approaches it more and
more, at first with increasing speed. After half a revolution, when x1 = −3 and y1 = 0, the
speed has reached the maximum, and from now on, it decreases constantly so that only after
an infinitely long time does the thread in the location x1 = 1, y1 = 0.

Thread 2 also goes around the center of gravity in a positive sense, with constantly
increasing speed, only approaching it up to the distance 2

√
2; at this moment the triangle of

the three threads is isosceles, s1 = s3 = 4, s2 = 2
√
2; but then moves away more and more

and finally moves very approximately with the speed 1
2
on the straight line x2 = 7

2
in the

sense of the increasing y.
Thread 3 also travels clockwise around the origin and initially approaches it with increas-

ing speed. When ϱ3 = 27
10

√
2 the velocity reaches the maximum value 5

6
and from now on

decreases and converges towards the limit 1
2
. The distance from the center of gravity becomes

even smaller and reaches the minimum, 3
2

√
6, at a moment when the triangle is isosceles,

s1 = s2 = 3, s3 = 3
2

√
6, then increases indefinitely. Soon the motion is approximated that

the thread follows the line x3 =
11
2
with of velocity 1

2
. Then y3 = y2. This is summarized in

Fig. 5
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Figure 5: Gröbli’s Figure 5.

8

So far, we have determined the motion of three vortex filaments for some particular value
systems of the constants m. In doing so, we encountered particularly simple motions on
various occasions, corresponding to certain specific solutions of the differential equations.
We now set ourselves to look for some particular solutions of the differential equations,
which determine the motion of three vortex filaments, without assigning specific values to
the quantities m. We will make certain assumptions about the motion, investigate whether
and, if so, under what conditions these assumptions are compatible with the differential
equations, and, in the latter case, integrate the differential equations. First, we assume that
the triangle of the three vortex threads changes neither shape nor size; then, we will assume
that the triangle changes its size but not its shape; finally, we assume that the triangle is
constantly isosceles.

9 Triangles of vortex threads of unchanging shape or

size

For the right-hand sides of differential equations (2.15) to vanish, either the triangle must
be equilateral, or the three threads must lie in a straight line.

In the first case, by choosing the unit appropriate to the length, we may assume

s1 = s2 = s3 = 1. (9.1)
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From the differential equations (2.17), it results

dϑ1

dt
=

dϑ2

dt
=

dϑ3

dt
=
m1 +m2 +m3

π
; (9.2)

thus, the triangle of the three vortex threads rotates at a constant speed around the center
of gravity. The radii of the circles in which the vortex threads move are respectively

ϱ1 =

√
m2

2 +m2m3 +m2
3

m1 +m2 +m3

;

ϱ2 =

√
m2

3 +m3m1 +m2
1

m1 +m2 +m3

;

ϱ3 =

√
m2

1 +m1m2 +m2
2

m1 +m2 +m3

.

(9.3)

If m1 +m2 +m3 = 0, i.e., when the center of gravity sits at infinity, then the three threads
move in parallel straight lines, perpendicular to the direction of the center of gravity, with
the velocity

1

π

√
m2

1 +m2
2 +m2

3

2
.

In the second case, it is advisable to use the differential equations (2.3) and (2.4). If we
place the origin at the center of gravity and also allow the quantities ϱ to assume negative
values, then we can set

ϑ1 = ϑ2 = ϑ3 = ϑ. (9.4)

Since the quantities ϱ1, ϱ2, and ϱ3 are constant according to the assumption, the differential
equations (9.3) are fulfilled; Equations (9.4) merge into the following

πϱ1
dϑ

dt
=

m2

ϱ1 − ϱ2
− m3

ϱ3 − ϱ1
;

πϱ2
dϑ

dt
=

m3

ϱ2 − ϱ3
− m1

ϱ1 − ϱ2
;

πϱ3
dϑ

dt
=

m1

ϱ3 − ϱ1
− m2

ϱ2 − ϱ3
.

(9.5)

We multiply these equations in sequence by the following groups of factors

m1,
1

ϱ2 − ϱ3
, m1ϱ1;

m2,
1

ϱ3 − ϱ1
, m2ϱ2;

m3,
1

ϱ1 − ϱ2
, m3ϱ3,
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and add each time. In this way, the following equations are obtained, which replace the
previous ones in all cases

0 = m1ϱ1 +m2ϱ2 +m3ϱ3;

0 =
ϱ1

ϱ2 − ϱ3
+

ϱ2
ϱ3 − ϱ1

+
ϱ3

ϱ1 − ϱ2
;

dϑ

dt
=

1

π

m2m3 +m3m1 +m1m2

m1ϱ21 +m2ϱ22 +m3ϱ23
.

(9.6)

The first two equations determine the ratios of the ϱ variables and the third results in
the angular velocity. Every set of m values corresponds to three sets of ratios of ϱ values, of
which at least one is real. To every set of ϱ values, which according to the second equation
of (9.6) must not be assumed arbitrarily, there belongs an infinite number of relationships
between the values m1, m2, and m3. A few special cases should also be highlighted.

1) Let two of the quantities m, say m2 and m3, be equal to each other. Then, the first two
equations of (9.6) are satisfied by

ϱ1 = 0, ϱ2 + ϱ3 = 0.

There are also two other sets of values for the ratios of the ϱ, but these need not be real-
valued.

2) Let the sum of two of the constants m equal zero, e.g., m2 +m3 = 0. Then, the above
equations are satisfied if

ϱ1 = 0, ϱ2 = ϱ3;

in this case, however, only one vortex thread remains. There are two additional sets of values
for the ratios of ϱ1, ϱ2, and ϱ3, which can be real or imaginary, depending on the values of
the m parameters.

3) Consider the case
m2m3 +m3m1 +m1m2 = 0. (9.7)

A solution of system (9.6) is

ϱ1 : ϱ2 : ϱ3 =
m2 −m3

m1

:
m3 −m1

m2

:
m1 −m2

m3

dϑ

dt
= 0,

(9.8)

and the three threads remain at rest. The other two sets of ϱ values are solutions if they
satisfy the equations

m1ϱ1 +m2ϱ2 +m3ϱ3 = 0

m1ϱ
2
1 +m2ϱ

2
2 +m3ϱ

2
3 = 0.

(9.9)
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From these, we get if we denote an arbitrary constant by x

xϱ1 = m2m3 (2m1 −m2 −m3) + (m2 −m3)
√
−m1m2m3 (m1 +m2 +m3)

xϱ2 = m3m1 (2m2 −m3 −m1) + (m3 −m1)
√

−m1m2m3 (m1 +m2 +m3)

xϱ3 = m1m2 (2m3 −m1 −m2) + (m1 −m2)
√

−m1m2m3 (m1 +m2 +m3).

(9.10)

The right-hand side of the third equation of (9.6) appears in the indefinite form 0
0
. One

obtains the true value of the angular velocity from any equation from system (9.5). By
combining these, one can easily create symmetric expressions for dϑ

dt
; such an expression is,

e.g.,
dϑ

dt
= −m2m3ϱ1 +m3m1ϱ2 +m1m2ϱ3

π (m1 +m2 +m3) ϱ1ϱ2ϱ3
(9.11)

4) Consider the case
m1 +m2 +m3 = 0. (9.12)

The first two of the equations (9.6) are satisfied for ϱ1 = ϱ2 = ϱ3 and this solution, which
has no meaning for our problem, has to be counted twice. From the first equation (9.6)

ϱ2 − ϱ3
m1

=
ϱ3 − ϱ1
m2

=
ϱ1 − ϱ2
m3

(9.13)

and now the second of these equations becomes

ϱ1
m1

+
ϱ2
m2

+
ϱ3
m3

= 0 (9.14)

From (9.14) and the first equation of (9.6), it now follows that for any arbitrary constant x,

ϱ1 =
m2

2 −m2
3

m2m3

x;

ϱ2 =
m2

3 −m2
1

m3m1

x;

ϱ3 =
m2

1 −m2
2

m1m2

x.

(9.15)

The angular velocity is given by the equation

dϑ

dt
= − 1

πx2
m1m2m3

m2m3 +m3m1 +m1m2

. (9.16)

10 The triangle of the three vortices that changes its

size but not its shape

From equations (2.15), it follows that the following derivatives must be constant

d (s21)

dt
,
d (s22)

dt
,
d (s23)

dt
.
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We have just dealt with the case that these derivatives disappear, so the triangle’s size also
remains fixed. If we use λ1, λ2, λ3 to denote certain constants that still need to be determined
and we have the starting point of time, then we can write

s21 = λ1t, s2
2 = λ2t, s23 = λ3t. (10.1)

If we insert these expressions into the differential equations (2.15) and divide them one
after the other by λ1, λ2, λ3, then the left-hand sides are all equal to 1; by comparing the
right-hand sides, it follows that

m1 (λ2 − λ3) = m2 (λ3 − λ1) = m3 (λ1 − λ2) . (10.2)

This double equation can be represented by the three equations

λ2 − λ3 =
m1 +m2 +m3

m1

µ;

λ3 − λ1 =
m1 +m2 +m3

m2

µ;

λ1 − λ2 =
m1 +m2 +m3

m3

µ,

(10.3)

where µ means an arbitrary constant. Adding these equations results in the condition be-
tween the variables m

1

m1

+
1

m2

+
1

m3

= 0, (10.4)

which also emerges directly from the equation

1

m1

log s1 +
1

m2

log s2 +
1

m3

log s3 = const.

Instead of the quantities λ1, λ2, and λ3 we introduce three new quantities µ1, µ2, µ3 through
the equations

λ1 = µµ1, λ2 = µµ2, λ3 = µµ3 (10.5)

Equations (10.3) thus simplify into the following

µ2 − µ3 =
m1 +m2 +m3

m1

;

µ3 − µ1 =
m1 +m2 +m3

m2

;

µ1 − µ2 =
m1 +m2 +m3

m3

.

(10.6)

Provided that condition (10.4) exists between the constants m,

m1 +m2 +m3

m1

= −m3 −m1

m3

+
m1 −m2

m3

;

m1 +m2 +m3

m2

= −m1 −m2

m3

+
m2 −m3

m1

;

m1 +m2 +m3

m3

= −m2 −m3

m1

+
m3 −m1

m2

,

(10.7)
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and from Eqs. (10.6) and (10.7) the correctness of the following equations becomes clear

µ1 = a− m2 −m3

m1

;

µ2 = a− m3 −m1

m2

;

µ3 = a− m1 −m2

m3

,

(10.8)

for some arbitrary constant a. Since the quantities µ1, µ2, and µ3 all have the same sign,
the constant a must either be larger than the largest of the expressions

m2 −m3

m1

,
m3 −m1

m2

,
m1 −m2

m3

,

or smaller than the smallest of them. Making use of equations (10.1), (10.5), and (10.6), any
one of the equations in system (2.15) results in

µ =
m1 +m2 +m3

π

√
2µ2µ3 + 2µ3µ1 + 2µ1µ2 − µ2

1 − µ2
2 − µ2

3

µ1µ3µ3

. (10.9)

According to Eq. (2.12) the quantities ϱ and s must then satisfy:

(m1 +m2 +m3) ϱ
2
1 = (m2 +m3) s

2
1

(m1 +m2 +m3) ϱ
2
2 = (m3 +m1) s

2
2

(m1 +m2 +m3) ϱ
2
3 = (m1 +m2) s

2
3.

(10.10)

System (2.17) now results in

dϑ1 = dϑ2 = dϑ3 =
x

2

dt

t
, (10.11)

where, for brevity, we have set

x =
m1 +m2 +m3

π

2a2 + (m2−m3)(m3−m1)(m1−m2)
m1m2m3

a− 3

µµ1µ2µ3

. (10.12)

Defining ϑ by the equation

ϑ =
x

2
log t, (10.13)

it follows from Eq. (10.11) that

ϑ1 = ϑ+ α1, ϑ2 = ϑ+ α2, ϑ3 = ϑ+ α3. (10.14)

One of the three constants α1, α2, α3 can be assumed arbitrarily; the other two are then
determined by Equations (2.11) and by the condition that one has to go around the triangle
of the three threads in a positive or negative sense to reach threads 1, 2, 3 one after the
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other, depending on whether one takes the root occurring in Eq. (10.9) with a negative or
positive sign.

From Eqs. (10.1), (10.10), (10.13), and (10.14), we find the equations of the paths traced
by the threads:

ϱ1 =

√
m2 +m3

m1 +m2 +m3

µµ1e
ϑ1−α1

x ;

ϱ2 =

√
m3 +m1

m1 +m2 +m3

µµ2e
ϑ2−α2

x ;

ϱ3 =

√
m1 +m3

m1 +m2 +m3

µµ3e
ϑ3−α3

x .

(10.15)

According to these equations, the orbits are logarithmic spirals, and all three can be made
to coincide with each other by rotating around the starting point.

For given values of the quantities m, since a means an arbitrary constant, infinitely many
triangle shapes are possible. The triangle is right-angled if a is equal to one of the values

−m2 −m3

m2 +m3

, −m3 −m1

m3 +m1

, −m1 −m2

m1 +m2

,

two of which always satisfy the conditions to which a is subject. The isosceles shape of the
triangle is impossible.

Figure 6 corresponds to the choice

m1 : m2 : m3 = 3 : −2 : 6;

a = 2.

With a suitable choice of the time unit one obtains

s21 = 28t, s22 = 21t, s23 = 7t;
ϱ21 = 16t, ϱ22 = 27t, ϱ23 = t;

ϱ1 = 4e
√
3

5
(ϑ1−α1);

ϱ2 = 3
√
3e

√
3

5
(ϑ2−α2);

ϱ3 = e
√
3

5
(ϑ3−α3);

ϑ2 − ϑ3 = α2 − α3 = π
2
;

ϑ3 − ϑ1 = α3 − α1 = −2π
3
;

ϑ1 − ϑ2 = α1 − α2 = π
6

.

11 A constantly isosceles triangle of three vortices

Let’s assume that s2 = s3. From the first equation of (2.15), we get
d(s21)
dt

= 0. One may
choose the unit of length so that

s1 = 1. (11.1)
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Figure 6: Gröbli’s Figure 6

The left-hand sides of the second and third equations (2.15) are equal to each other so that
the right-hand sides are also equal, which requires.

m2 +m3 = 0, (11.2)

This then implies

−m2

π
dt =

s22d (s
2
2)

(s22 − 1)
√
4s22 − 1

. (11.3)

By integrating this equation and suitably determining the integration constants, it follows
that

2m2

π
t =


−
√

4s22 − 1 + 2√
3
log

(√
3+
√

4s22−1
√
3−
√

4s22−1

)
, 1
2
≤ s2 < 1;

−
√

4s22 − 1 + 2√
3
log

(√
4s22−1+

√
3√

4s22−1−
√
3

)
, 1 < s2 <∞.

(11.4)

From equations (2.12), one obtains

ϱ21 =
m2

2

m2
1

;

ϱ22 = s22 +
m2 (m2 −m1)

m2
1

;

ϱ23 = s22 +
m2 (m2 +m1)

m2
1

.

(11.5)

According to the first of these equations, thread 1 moves in a circle whose center coincides
with the center of gravity of the vortex threads.
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The first equation of (2.17) turns into

dϑ1

dt
=
m1

π

1

s22
.

Eliminating t from this equation and from Eq. (11.3) gives

dϑ1 = −m1

m2

d
(
s22
) (
s22 − 1

)√
4s22 − 1, (11.6)

and now by integration and appropriate choice of the x-axis

ϑ1 =


m1

m2

√
3
log

(√
3+
√

4s22−1
√
3−
√

4s22−1

)
, 1

2
≤ s2 < 1;

m1

m2

√
3
log

(√
4s22−1+

√
3√

4s22−1−
√
3

)
, 1 < s2 <∞.

(11.7)

Using the formulas (2.11), the equations for ϑ2 and ϑ3 become

ϑ2 = ϑ1 − arctan

(
m1

2m2 −m1

√
4s22 − 1

)
;

ϑ3 = ϑ1 − arctan

(
m1

2m2 +m1

√
4s22 − 1

)
.

(11.8)

If one replaces s2 by ϱ2 or ϱ3 using Equations (11.5), one obtains the equations for the paths
traced by threads 2 and 3. These orbits are spirals which are asymptotic to the circles

ϱ22 =
m2

1 −m1m2 +m2
2

m2
2

;

ϱ23 =
m2

1 +m1m2 +m2
2

m2
2

.

(11.9)

For s2 > 1 the straight lines

x2 =
2m2

1 −m1m2 +m2
2

m2
1

;

x3 =
2m2

1 +m1m2 +m2
2

m2
2

(11.10)

are also asymptotes. In the case 2m2 = m1; we then have ϑ2 − ϑ1 = −π
2
. The argument in

Sec. 5 for m2 = m1 should suffice for the rest.

12

In what has been said so far, we have twice found solutions of the differential equations for
the motion of three vortex filaments corresponding to a motion of the vortex filaments along
parallel straight lines. These were the cases discussed in Secs. 4 and 9

m1 = m2 = −m3 and m1ϱ
2
1 +m2ϱ

2
2 +m3ϱ

2
3 = 0
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and
s1 = s2 = s3 and m1 +m2 +m3 = 0.

The task of determining all motions in which the paths are parallel straight lines can
easily be done using the differential equations (2.1), and the answer is that these are the
only two such solutions.

Likewise, the question of such solutions of the differential equations can be answered, in
which the triangle of the three vortex filaments remains right-angled for all time. The two
found in Secs. 4 and 10 are the only ones.

Here, we leave the problem of the movement of three vortex threads and proceed to
determine the motions of four vortex threads, assuming a plane of symmetry.

The movement of four vortex threads,
assuming a plane of symmetry.

13

Assume there is an axis of symmetry for movement in the xy plane. We take this to be the
y-axis of a Cartesian coordinate system, arbitrarily assumed to contain the origin. Label the
four threads 1, 2, 3, and 4, with threads 3 and 4 symmetrical to threads 1 and 2. Then

x3 = −x1, x4 = −x2
y3 = y1, y4 = y2.

(13.1)

For the requirement that the y-axis should be the axis of symmetry of the movement to be
compatible with the differential equations (2.1), the quantities m defined by equation (1.1)
must meet the conditions

m1 +m3 = 0, m2 +m4 = 0, (13.2)

and these conditions are also sufficient.
Of the four general integrals∑

m1x1 = const.,
∑

m1y1 = const.∑
m1ϱ

2
1 = const., P = const.,

the two in the middle become irrelevant because the left sides disappear identically. The
first integral becomes

m1x1 +m2x2 = const. (13.3)

and states that the center of gravity of threads 1 and 2 moves parallel to the y-axis. Since
everything that applies to threads 1 and 2 also applies to threads 3 and 4, we will only
discuss threads 1 and 2 in the following. Using equations

ϱ212 = ϱ234 = (x1 − x2)
2 + (y1 − y2)

2 ;

ϱ214 = ϱ223 = (x1 + x2)
2 + (y1 − y2)

2 ;

ϱ213 = 4x21, ϱ224 = 4x22

(13.4)
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The equation results from the last of the above integrals{
(x1 − x2)

2 + (y1 − y2)
2

(x1 + x2)
2 + (y1 − y2)

2

}m1m2

1

xm1m1
1 xm2m2

2

= const. (13.5)

The differential equations

m1
dx1
dt

=
∂P

∂y1
and m1

dy1
dt

= − ∂P

∂x1

become

dx1
dt

= −m2

π
(y1 − y2)

(
1

ϱ212
− 1

ϱ214

)
dy1
dt

= −m2

π

(
x1 − x2
ϱ212

− x1 + x2
ϱ214

)
− m1

π

1

2x1
.

(13.6)

Using equations (13.3) and (13.5), the quantities x2 and y1−y2 can be expressed in terms
of x1 and since, by system (13.6), the quantities y1 and y2 appear only in the combination
y1 − y2, so the evolution equations take the form

dx1
dt

= f1 (x1) ,
dy1
dt

= f2 (x1) . (13.7)

From these, it follows by eliminating t that

dy1
dx1

= f3 (x1) . (13.8)

By integrating Eq. (13.8) and the first equation of (13.7), we obtain y1 and t as functions
of x1. The movement of the first thread is thus determined, as is that of thread 2 according
to Eqs. (13.3) and (13.5).

The execution of all of these calculations in closed form is only possible for special values
of the quantities m1 and m2. The simplest assumption one can make about m1 and m2 is

m1 = m2 (13.9)

We now wish to determine the corresponding movement.

14

For m1 = m2, Eq. (13.3) gives
x1 + x2 = const.

The constant is either zero or nonzero. In the latter case, a suitable choice of the unit of
length can give it a simple value. If the constant is zero, then there is a second axis of
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symmetry parallel to the x-axis. Since we will later determine the general motion for 2n
vortex threads, assuming n planes of symmetry, we can refrain from treating the case where
the constant mentioned disappears. If we now give the constant the value 2, the above
equation can be replaced by the two equations

x1 = 1 + x, x2 = 1− x, (14.1)

in which x means the abscissa of 1 with respect to a coordinate system whose ordinate axis
is the straight line in which the center of gravity of 1 and 2 moves. If λ denotes an arbitrary,
positive or negative constant, equation (13.5) can be written

(y1 − y2)
2 + 4x2

(y1 − y2)
2 + 4

1

1− x2
=

1

λ
;

and from this, it follows

(y1 − y2)
2 = 4

1− (λ+ 1)x2

λ− 1 + x2
;

ϱ212 = 4x2 + (y1 − y2)
2 = 4

(1− x2)
2

λ− 1 + x2
;

ϱ214 = 4 + (y1 − y2)
2 = 4

λ(1− x2)

λ− 1 + x2
.

(14.2)

We want to assume m1 to be positive. By appropriately choosing the time unit, we can also
give the quantity m1 a simple value. We want to assume m1 = m2 = 2π. The first equation
of (13.6) becomes, now that dx1 = dx

dx

dt
= −(λ− 1 + x2)

3
2 (1− (λ+ 1)x2)

1
2

λ(1− x2)2
, (14.3)

and from this, it follows that

t = −
∫

λ(1− x2)2dx

(λ− 1 + x2)
√
(λ− 1 + x2)(1− (λ+ 1)x2)

. (14.4)

The second equation of system (13.6) becomes

dy1
dt

=
x4 + 2(λ− 1)x3 + λ2x+ 1− 2λ

λ(1− x2)2
. (14.5)

Eliminating t from Eqs. (14.3) and (14.5) we obtain

dy1
dx

= −x
4 + 2(λ− 1)x2 + λ2x+ 1− 2λ

(λ− 1 + x2)
3
2 (1− (λ+ 1)x2)

1
2

. (14.6)
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By replacing x with −x, one then finds

dy2
dx

= −x
4 + 2(λ− 1)x2 − λ2x+ 1− 2λ

(λ− 1 + x2)
3
2 (1− (λ+ 1)x2)

1
2

(14.7)

and it then follows from Eqs. (14.6) and (14.7) that

y1 + y2
2

= −
∫

(x4 + 2(λ− 1)x3 + 1− 2λ)dx

(λ− 1 + x2)
3
2 (1− (λ+ 1)x2)

1
2

. (14.8)

From the first equation of System (14.2), we obtain

y1 − y2
2

=

√
1− (λ+ 1)x2

λ− 1 + x2
. (14.9)

So we have obtained y1 and y2 as functions of x, and according to Eq. (14.1), as functions
of x1 and x2 respectively.

The integrals in Eqs. (14.4) and (14.8) are generally elliptic. For the further calculation,
one has to distinguish between the following four cases

∞ > λ > 1, 1 > λ > 0, 0 > λ > −1, −1 > λ > −∞.

The borderline cases are λ = ∞, λ = 0, λ = 1, λ = −1. We can ignore the first two
because they lead back to two vortex threads. In the other two cases, the integrals in
Eqs. (14.4) and (14.8) are logarithmic and algebraic.

15 Case I: ∞ > λ > 1

In order for the fourth degree function of x under the root sign in Eqs. (14.4) and (14.8) to
be positive, x must satisfy the condition√

1

1 + λ
≥ x ≥ −

√
1

1 + λ
.

When the elliptic integrals are reduced to Legendre’s normal integrals, 1
λ
results as a module.

To stick with the usual designation, we put

λ =
1

κ
. (15.1)

The previous condition for x then becomes√
κ

1 + κ
≥ x ≥ −

√
κ

1 + κ
. (15.2)
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Let us set

x =

√
κ

1 + κ
cosψ, (15.3)

so the values ψ = 0 and ψ = π correspond to the limits of x and it becomes

dx√
(λ− 1 + x2) (1− (λ+ 1)x2)

= − κdψ√
1− κ2 sin2 ψ

.

After carrying out some simple calculations, the following equations result from Eqs. (14.4), (14.8),
and (14.9), if the integration constants are determined appropriately

t =
2

κ (1− κ2)
E(κ, ψ)− 2

κ
F (κ, ψ)− κ

1− κ

sinψ cosψ√
1− κ2 sin2 ψ

; (15.4)

y1 = − 2κ

1− κ2
E(κ, ψ) +

(
κ2

1− κ2
cosψ +

√
κ(1 + κ)

)
sinψ√

1− κ2 sin2 ψ
; (15.5)

y2 = − 2κ

1− κ2
E(κ, ψ) +

(
κ2

1− κ2
cosψ −

√
κ(1 + κ)

)
sinψ√

1− κ2 sin2 ψ
, (15.6)

in which F (κ, ψ) and E(κ, ψ) mean the Legendre integrals of the first and second kind.
If we also apply substitution (15.3) to Eqs. (14.3), (14.5) and the equation for dy2

dt
formed

accordingly, we get the equations

dx

dt
=

dx1
dt

= −dx2
dt

= −
√

1 + κ

κ

sinψ
(
1− κ2 sin2 ψ

)3/2(
1 + κ sin2 ψ

)2 ; (15.7)

dy1
dt

= −
2 + κ+ 2κ sin2 ψ − κ3 sin4 ψ − (1 + κ)

√
1+κ
κ

cosψ(
1 + κ sin2 ψ

)2 ; (15.8)

dy2
dt

= −
2 + κ+ 2κ sin2 ψ − κ3 sin4 ψ + (1 + κ)

√
1+κ
κ

cosψ(
1 + κ sin2 ψ

)2 . (15.9)

These solutions are periodic. Replacing ψ instead of ψ + 2π leaves the equations for x
and the velocities unchanged, and additional terms are added to t, y1 and y2. If K and E
denote the complete elliptic integrals of the first and second kind, then t increases by

T =
8

κ

(
1

1− κ2
E −K

)
. (15.10)

per period, and y1 and y2 decrease by

Y =
8κ

1− κ2
E. (15.11)

Here, T is the duration of a period, and Y is the distance by which the threads have shifted
in the direction of the negative y axis during this time. If you put ψ + π in place of ψ, then
x1 becomes x2,

dx1
dt

becomes dx2
t
, dy1

dt
becomes dy2

dt
and vice versa, and t is increased by 1

2
T .
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The path of thread 1 is a periodic curve in the direction of the y axis whose period equals
Y . The trajectory of 2 is the same curve, just shifted by 1

2
Y .

At time t = 0, thread 1 is at point x1 = 1 +
√

1+κ
κ
, y1 = 0; its velocity is parallel to the

y-axis. At the same moment, thread 2 is at the position x2 = 1−
√

κ
1+κ

, y2 = 0; its velocity
is also parallel to the y-axis. The coordinate x1 now decreases while y1 may initially increase
or decrease; we leave it undecided, and x2 and y2 decrease. At time t = 1

4
T both threads

pass the line x1 = x2 = 1 at different points, but with the same speed, and then continue
with swapped speeds until time t = 1

2
T , at which point y1 = y2 = −1

2
Y , x1 = 1 −

√
κ

1+κ
,

x2 = 1 +
√

κ
1+κ

, etc.
To see more clearly the shape of the curves described by the vortex threads, we examine

the behavior of the time derivatives dy1
dt

and dy2
dt
. According to the above, we can limit

ourselves to the values of ψ between 0 and π
2
. From Eq. (15.9), one can immediately see that

in this interval dy2
dt

is consistently negative. For ψ = π
2

dy1
dt

is also negative, for ψ = 0 this
results

dy1
dt

= −(2 + κ) + (1 + κ)

√
1 + κ

κ

and this expression can be positive or negative. To separate the two cases, we determine the
value of κ for which it vanishes. The resulting equation is

κ2 + κ− 1 = 0,

and from this, the one usable root is

κ =

√
5− 1

2
= 0.618 . . .

If κ >
√
5−1
2

then it satisfies

2 + κ > (1 + κ)

√
1 + κ

κ
> (1 + κ)

√
1 + κ

κ
cosψ,

and there
2κ sin2 ψ − κ3 sin4 ψ > 0,

so it follows that dy1
dt

is consistently negative. In this case, y1 and y2 continue to decrease. If

κ <
√
5−1
2

, then dy1
dt

vanishes between ψ = 0 and ψ = π
2
at least once; the associated value of

ψ is determined from the equation

2 + κ+ 2κ sin2 ψ − κ3 sin4 ψ = (1 + κ)

√
1 + κ

κ
cosψ.

As ψ increases from 0 to π
2
, the left side of this equation increases, and the right side decreases.

The equation, therefore, has at most one root. This corresponds to a maximum of y1, and
the path has a self-crossing point. In the limit case κ =

√
5−1
2

this turns into a corner.
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We now determine the inflect points. Using Eq. (14.6),

dy1
dx

= − x4 + 2(λ− 1)x2 + λ2x+ 1− 2λ

(λ− 1 + x2)3/2 (1− (λ+ 1)x2)1/2
,

the condition for the inflection points, d2y1
dx2

= 0, leads to a fifth-degree equation with one
root x = 1. As can be seen from Eq. (14.9), x can never take the value 1; after division by
x− 1, the equation remains fourth degree

f(x) ≡ x4 + (4 + 3λ)x3 − (2− λ)x2 − (4− λ)x+ 1− λ = 0 (15.12)

To investigate the reality of the roots of this equation, we need to determine the values of λ
for which two of them coincide. For this to be the case, the equation

f ′(x) ≡ 4x3 + (12 + 9λ)x2 − (4− 2λ)x− 4 + λ = 0

must also be satisfied. Eliminating x from this and the previous equation results in a sixth-
degree equation in λ. It is easier to eliminate λ, which yield the equation

3x6 + 2x5 + 13x4 + 28x3 − 19x2 + 2x+ 3 = 0,

which has two real roots

x′ = −0.30186 and x′′ = −1.90134. (15.13)

The corresponding values of λ are

λ′ = 1.48732 and λ′′ = −0.65555. (15.14)

The fourth-degree equation that determines the inflection points now has

two real roots if ∞ > λ > λ′,

four real roots if λ′ > λ > λ′′,

two real roots if λ′′ > λ > −∞.

Note that the roots of this equation are the abscissae of the intersection points of the two
curves

y =
(
x2 − 1

) (
x2 + 4x− 1

)
and

y = −λ
(
3x3 + x2 + x+ 1

)
.

From this, one can easily arrive at boundaries within which the roots in the various cases
lie. From Eq. (15.12), one finds

f

(
1√
1 + λ

)
= −

(
λ

1 + λ

)2

(λ−
√
1 + λ);

f(
√
1− λ) = −3λ2

√
1− λ;

f(0) = 1− λ; f(∞) = +∞.
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Using these results, you can now determine the inflection points of the curve traced by
thread 1 and the path of thread 2 if you replace x with −x.

In the present case it results that between ψ = 0 and ψ = π the curve described by
thread 1 has

no real inflection points for 0 < x <

√
5− 1

2
,

one real inflection point for

√
5− 1

2
< x <

1

λ′
,

three real inflection points for
1

λ′
< x < 1.

The expressions

T =
8

κ

(
E

1− κ2
−K

)
, Y =

8κE

1− κ2
, and X = 2

√
κ

1 + κ
,

the last of which indicates the excursion that the threads make in the direction of the x-axis,
obtain the following values for κ = 1

T = ∞, Y = ∞, and X =
√
2.

If κ decreases, all three quantities decrease and converge with κ towards zero, and the latter
two in such a way that the quotient Y

X
also becomes smaller and smaller.

The left and right panels of Figure 7, which correspond to the values κ = 1
4
and κ = 4

5
,

give an approximate idea of the course of the movement.

16 Case II: 1 > λ > 0

When reducing the elliptic integrals, we find λ is a modulus, so we set

λ = κ, (16.1)

where x must satisfy the conditions

1√
1 + κ

≥ x ≥
√
1− κ. (16.2)

Let us set

x =

√
1− κ2 sin2 ψ

1 + κ
, (16.3)

so the values ψ = 0 and ψ = π
2
correspond to the limits of x, the integrand becomes

dx√
(x− 1 + x2) (1− (x+ 1)x2)

= − dψ√
1− κ2 sin2 ψ
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Figure 7: Gröbli’s Figure 7 and 8. These are referred to as the left and right panels of Figure
7 in the English text.
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and from Eqs. (14.4), (14.8), (14.9) etc. the following equations result

t = − 2κ2

1− κ2
E(κ, ψ) +

κ

1− κ
tanψ

√
1− κ2 sin2 ψ; (16.4)

y1 =
2

1− κ2
E(κ, ψ)− 2F (κ, ψ)−

(√
1− κ2 sin2 ψ

1− κ
−
√
1 + κ

)
tanψ; (16.5)

y2 =
2

1− κ2
E(κ, ψ)− 2F (κ, ψ)−

(√
1− κ2 sin2 ψ

1− κ
+
√
1 + κ

)
tanψ; (16.6)

dx

dt
= −κ

√
1 + κ

sinψ cos3 ψ(
1 + κ sin2 ψ

)2 ; (16.7)

dy1
dt

= −(1 + κ)2 − κ2 cos4 ψ − (1 + κ)3/2
√
1− κ2 sin2 ψ

κ
(
1 + κ sin2 ψ

)2 ; (16.8)

dy2
dt

= −(1 + κ)2 − κ2 cos4 ψ + (1 + κ)3/2
√
1− κ2 sin2 ψ

κ
(
1 + κ sin2 ψ

)2 . (16.9)

The integration constants are determined so that the quantities t, ψ, y1, and y2 disappear
simultaneously.

For ψ = 0, it follows from these equations

t = 0, x =
1√
1 + κ

, y1 = 0, y2 = 0,

dx

dt
= 0,

dy1
dt

= −1 + 2κ− (1 + κ)3/2

κ
,
dy2
dt

= −1 + 2κ+ (1 + κ)3/2

κ
,

and for ψ = π
2

t = ∞, x =
√
1− κ, y1 = −∞, y2 = −∞,

dx

dt
= 0,

dy1
dt

= −1−
√
1− κ

κ
,
dy2
dt

= −1 +
√
1− κ

κ
.

The quantities dx
dt
, dy1

dt
, and dy2

dt
are all consistently negative in the interval 0 < ψ < π

2
. The

correctness of this assertion for the first and third of these quantities can be seen directly by
looking at the relevant equations. To prove that dy1

dt
is negative, one has to show that

(1 + κ)2 − κ2 cos4 ψ > (1 + κ)3/2
√
1− κ2 sin2 ψ.

The left side of this inequality exceeds 1 + 2κ, and the right side is less than (1 + κ)3/2, so
that

1 + 2κ > (1 + κ)3/2,

so our claim is proven. From the moment t = 0 onwards, x, y1, and y2 continually decrease.
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At time t = 0, the velocity points along the the negative y-axis and threads 1 and 2 lie
on the x-axis with values

x1 = 1 +
1√
1 + κ

, x2 = 1− 1√
1 + κ

.

Both y1 and y2 are constantly decreasing in Fig. 9; thread 2 leads thread 1 so that the distance
between the threads from each other increases indefinitely. x1 decreases, x2 increases. The
excursion in the direction of the x-axis is = 1√

1+κ
−
√
1− κ. The straight lines

x1 = 1 +
√
1− κ and x2 = 1−

√
1− κ

are asymptotes of the curves described by the two threads. Curve 1 approaches its asymptote
much more quickly than curve 2. Each of the curves has an inflection point for negative y.
Figure 9, which corresponds to the value x = 24

25
, should give an idea of the course of the

movement.

Figure 9: Gröbli’s figure 9.

17 Case III: λ = 1

Setting

x =
cosψ√

2
(17.1)
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results in the following equations

t =
1

2
sinψ +

sinψ

cos2 ψ
− log tan

(
π

4
+
ψ

2

)
; (17.2)

y1 =
1

2
sinψ − sinψ

cos2 ψ
+
√
2 tanψ − log tan

(
π

4
+
ψ

2

)
; (17.3)

y2 =
1

2
sinψ − sinψ

cos2 ψ
−
√
2 tanψ − log tan

(
π

4
+
ψ

2

)
. (17.4)

The remaining formulas are obtained from the corresponding ones in the previous paragraph
by setting x = 1.

18 Case IV: 0 > λ > −1

In this case, x must satisfy the conditions

1√
1 + λ

≧ x ≧
√
1− λ.

Since x > 1, threads 1 and 2 lie on different sides of the symmetry axis. We set the size −λ
as the modulus of the elliptic integrals

λ = −κ, (18.1)

so the conditions on x become

1√
1− κ

≥ x ≥
√
1 + κ (18.2)

above. These conditions differ from those of the case 1 > λ > 0 only in that κ is replaced
by −κ. Therefore, the substitution

x =

√
1− κ2 sin2 ψ

1− κ
(18.3)

can be used, and all formulas can be obtained directly from the previous ones by replacing
κ with −κ. In the equation that results in this way for t, positive values of ψ correspond to
negative values of t. To avoid this, we replace ψ everywhere with −ψ; in other words, we
define the root appearing in equations (14.4) and (14.8) with a negative sign. So we get the
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following equations

t =
2κ2

1− κ2
E(κ, ψ) +

κ

1 + κ
tanψ

√
1− κ2 sin2 ψ; (18.4)

y1 =
−2

1− κ2
E(κ, ψ) + 2F (κ, ψ) +

(√
1− κ2 sin2 ψ

1 + κ
−
√
1− κ

)
tanψ; (18.5)

y2 =
−2

1− κ2
E(κ, ψ) + 2F (κ, ψ) +

(√
1− κ2 sin2 ψ

1 + κ
+
√
1− κ

)
tanψ; (18.6)

dx

dt
= −κ

√
1− κ

sinψ cos3 ψ(
1− κ sin2 ψ

)2 ; (18.7)

dy1
dt

=
(1− κ)2 − κ2 cos4 ψ − (1− κ)3/2

√
1− κ2 sin2 ψ

κ
(
1− κ sin2 ψ

)2 ; (18.8)

dy2
dt

=
(1− κ)2 − κ2 cos4 ψ + (1− κ)3/2

√
1− κ2 sin2 ψ

κ
(
1− κ sin2 ψ

)2 . (18.9)

For ψ = 0, this gives

t = 0, x =
1√
1− κ

, y1 = 0, y2 = 0,

dx

dt
= 0,

dy1
dt

=
1− 2κ− (1− κ)3/2

κ
,
dy2
dt

=
1− 2κ+ (1− κ)3/2

κ
,

and for ψ = π
2
,

t = ∞, x =
√
1 + κ, y1 = −∞, y2 = ∞

dx

dt
= 0,

dy1
dt

=
1−

√
1 + κ

κ
,

dy2
dt

=
1 +

√
1 + κ

κ
.

On the interval 0 < ψ < π
2
, dx

dt
is always negative. Since dy1

dt
is negative at both the

beginning and the end of this interval, the number of values for which it now vanishes must
be even. In order for dy1

dt
= 0, the equation

(1− κ)2 − κ2 cos4 ψ = (1− κ)3/2
√

1− κ2 sin2 ψ

must be satisfied. The left side increases with ψ, and the right side decreases, so there can be
at most one root. It follows that dy1

dt
does not disappear at all, and y1 continually decreases.

For ψ = π
2

dy2
dt

is positive, for ψ = 0 it is positive or negative, depending on whether

x ≷

√
5− 1

2
.

In the first case, dy2
dt

is always positive; in the second, it has a single zero; the curve traversed

by thread 2 has a self-crossing point, and, possibly, for x =
√
5−1
2

, a corner. Curve 1 has an
inflection point, which is also the value of x, while curve 2 only has an inflection point if
x <

√
5−1
2

. Figure 10 corresponds to the value x = 4
5
.
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Figure 10: Gröbli’s Figure 10.

55



19 Case V: −1 > λ > −∞
We set

λ = −1

κ
. (19.1)

Then κ becomes the modulus of the elliptic integrals, and x must meet the condition√
1 + x

x
< x <∞. (19.2)

By applying the substitution

x =

√
1 + κ

κ

1

cosψ
, (19.3)

if the integration constants are determined appropriately, the following equations are ob-
tained

t =
−2

κ (1− κ2)
E(κ, ψ) +

2

κ
F (κ, ψ) +

1

κ

(
1

1− κ
tanψ − 1

1 + κ
cotψ

)√
1− κ2 sin2 ψ;

(19.4)

y1 =
2κ

1− κ2
E(κ, ψ)−

(
1

1− κ
tanψ +

1

1 + κ
cotψ − 1√

κ(1 + κ) sinψ

)√
1− κ2 sin2 ψ;

(19.5)

y2 =
2κ

1− κ2
E(κ, ψ)−

(
1

1− κ
tanψ +

1

1 + κ
cotψ +

1√
κ(1 + κ) sinψ

)√
1− κ2 sin2 ψ;

(19.6)

dx

dt
= (1 + κ)

√
κ(1 + κ)

sin3 ψ
√

1− κ2 sin2 ψ(
1 + κ sin2 ψ

)2 ; (19.7)

dy1
dt

= −
−κ+ 2κ sin2 ψ + κ2(2 + κ) sin4 ψ +

√
κ(1 + κ) cos3 ψ(

1 + κ sin2 ψ
)2 ; (19.8)

dy2
dt

= −
−κ+ 2κ sin2 ψ + κ2(2 + κ) sin4 ψ −

√
κ(1 + κ) cos3 ψ(

1 + κ sin2 ψ
)2 ; (19.9)

For ψ = 0, this is

t = −∞, x =

√
1 + κ

κ
, y1 = ∞, y2 = −∞,

dx

dt
= 0,

dy1
dt

= κ−
√
κ(1 + κ),

dy2
dt

= κ+
√
κ(1 + κ),

and for ψ = π
2

t = ∞, x = ∞, y1 = −∞, y2 = −∞,

dx

dt
=
√
κ(1 + κ),

dy1
dt

=
dy2
dt

= −κ.
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The coordinate y1 constantly decreases, while y2 first increases, then decreases. The
straight lines

x1 = 1 +

√
1 + κ

κ
and x2 = 1−

√
1 + κ

κ
(19.10)

are asymptotes of the trajectories of threads 1 and 2. Each of the curves has a second
asymptote, which is defined by

y1 = −
√

κ

1 + κ
x1 +

2κ

1− κ2
E +

1√
κ(1− κ)

y2 =

√
κ

1 + κ
x2 +

2κ

1− κ2
E − 1√

κ(1− κ)
.

(19.11)

The curve traversed by thread 1 has an inflection point. Figure 11 corresponds to the value
κ = 1

2
.

Figure 11: Gröbli’s Figure 11

20 Case VI: λ = −1

Setting

x =

√
2

cosψ
(20.1)

57



results in the following equations if the integration constants are determined appropriately

t =
sinψ

cos2 ψ
− 1

2 sinψ
+ log tan

(
π

4
+
ψ

2

)
; (20.2)

y1 = − sinψ

cos2 ψ
− 1

2 sinψ
+

1√
2
cotψ + log tan

(
π

4
+
ψ

2

)
; (20.3)

y2 = − sinψ

cos2 ψ
− 1

2 sinψ
− 1√

2
cotψ + log tan

(
π

4
+
ψ

2

)
. (20.4)

The remaining formulas are obtained for κ = 1 from the corresponding ones in the previous
paragraph.

21 On the motion of 2n vortices, assuming n planes of

symmetry

For the movement in the xy plane, there are n symmetry axes, which all have to pass through
the same point and decompose the entire plane into 2n congruent angular spaces. There is
a thread in each of these. We place the intersection of the symmetry axes at the origin and
make one of the symmetry axes the x-axis. From here, going around the starting point in a
positive sense, the threads 1, 2, . . . , 2n should follow one another in sequence. The necessary
and sufficient conditions which must be fulfilled for the assumed movement to be possible
are

m1 = −m2 = m3 = −m4 = · · · = m2n−1 = −m2n. (21.1)

We assume m1 to be positive, and by appropriate scaling of time, we can then set the
collective value of these quantities equal to 2π.

Let ϱ1, ϑ1; ϱ2, ϑ2; . . . ; ϱ2n, ϑ2n be the polar coordinates of the vortex threads and assume
that

ϱ1 = ϱ2 = · · · = ϱ2n, (21.2)

and

ϑ2 =
2π

n
− ϑ1, ϑ3 =

2π

n
+ ϑ1,

ϑ4 =
4π

n
− ϑ1, ϑ5 =

4π

n
+ ϑ1,

· · · · · ·

ϑ2n = 2π − ϑ1, ϑ2n−1 =
(2n− 2)π

n
+ ϑ1.

(21.3)

To determine the movement of the first thread, we use the equations

m1ϱ1
dϱ1
dt

=
∂P

∂ϑ1

, m1ϱ1
dϑ1

dt
= − ∂P

∂ϱ1
.
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Using

P = − 1

π

∑
m1m2 log ϱ12

and Eq. (21.2), we find
∂P

∂ϑ1

= −m1

π

∑
m2 cot

ϑ1 − ϑ2

2
.

The sum is to be understood so that the indices 3, 4 . . . , 2n are placed one after the other in
place of index 2. This equation can be written, taking Eqs. (21.1) and (21.3) into account,
as

∂P

∂ϑ1

= 2π

{
cot
(
ϑ1 −

π

n

)
+ cot

(
ϑ1 −

2π

n

)
+ · · ·+ cot (ϑ1 − π)

}
+ 2π

{
cot

π

n
+ cot

2π

n
+ · · ·+ cot

(n− 1)π

n

}
.

The expression in the second bracket disappears because the terms cancel each other away
from the two ends in pairs, and the middle term, which is present when n is even, disappears
by itself. The row in the first bracket is equal to n cotnϑ1, and therefore we find

∂P

∂ϑ1

= 2nπ cotnϑ1.

From the above equation for P , it also follows that

∂P

∂ϱ1
=

2π

ϱ1
,

and these yield the following equations

ϱ1
dϱ1
dt

= n cotnϑ1, ϱ21
dϑ1

dt
= −1. (21.4)

From these, it follows by eliminating t,

dϱ1
ϱ1

= −n cotnϑ1 · dϑ1

and from this, through integration,

ϱ1 sinnϑ1 = 1, (21.5)

if, as is permitted, we assign a special value to the constant of integration.
This equation represents the trajectory of thread 1 if we let ϑ1 go from 0 to π

n
. If we

give ϑ1 all values from 0 to 2π, then from Eq. (21.5), we get not only the path of the first
thread, but also the paths of all vortex threads if n is even, and those of odd n paths of
threads 1, 3, 5, . . . , 2n − 1. The curves described by the threads 2, 4, . . . 2n are contained in
the equation

ϱ2 sinnϑ2 = −1
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We can, therefore, generally say that the equation

ϱ2 sin2 nϑ = 1 (21.6)

represents the paths of all vortex threads. This equation represents a curve of order 2n,
which consists of 2n congruent branches, and, for an odd n, decomposes into the two curves
of nth order

ϱ sinnϑ = ±1.

The straight lines that bisect the angles between the axes of symmetry of the movement are
the axes of symmetry of the curve. It follows from Eq. (21.6)

y2 =
sin2 ϑ

sin2 nϑ
,

and from this, for infinitesimally small ϑ

y2 =
1

n2
.

Here, ϱ becomes infinitely large, and therefore, the lines parallel to the symmetry axes of
the movement, at a distance 1

n
from them, are asymptotes.

From Eq. (21.5) and the second equation of (21.4), we find, by eliminating ϱ1 and squaring

cotnϑ1 = nt (21.7)

and then from Eq. (21.5),
ϱ21 = 1 + n2t2. (21.8)

The time is measured from the moment ϱ1 = 1 and ϑ1 =
π
2n
. From here, ϱ1 increases and ϑ1

decreases.
The resulting equation for the speed is

w2
1 =

1 + n4t2

1 + n2t2
=

1− n2 + n2ϱ21
ϱ21

. (21.9)

The velocity reaches a minimum value w1 = 1 at t = 0, then increases steadily as it ap-
proaches the limit n as t→ ∞.

Figure 12 corresponds to the assumption n = 2.
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Figure 12: Gröbli’s Figure 12.
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