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Abstract. Gap solitons are localized traveling waves that exist in Bragg grat-
ing optical fibers. We demonstrate a family of grating defects that support

linear and nonlinear standing wave modes, and show numerically that these
defect modes may be used to trap the energy from a gap soliton. A mechanism

involving a nonlinear resonance is proposed to explain why trapping occurs in

some situations and not in others.

Solitons, traveling waves which propagate without distortion, have long been
considered candidates for the carriers of information in long distance optical fibers.
Bragg grating fibers are specialized optical fibers in which the index of refraction
is a periodic function in the direction of light propagation. They support a family
of traveling waves known as gap solitons first described in [1, 3]. These have many
properties that make them attractive as carriers of information in optical data
processing units, such as multiplexer/demultiplexers or buffers. For a survey of gap
solitons in Bragg gratings, see [4].

1. Nonlinear Coupled Mode Equations and Gap Solitons

The evolution of the electric field in the fiber may be modeled by a one-
dimensional Maxwell’s equation

(1) ∂2
t

[
n2(z)E(z, t)

]
= ∂2

z E,

nondimensionalized to make the speed of light c = 1 and the refractive index n is:

(2) n = 1 + ε

(
1
2
W (εz) + ν(εz) cos (2kBz + 2Φ (εz)) + |E|2

)
.

If W ≡ Φ ≡ 0 and ν ≡ 1, then the grating is uniform—these terms represent,
respectively, local variations in the index of refraction, the grating phase, and the
grating strength. The Bragg wavenumber kB is chosen to match the wavenumber
of laser light propagating through the fiber.

We now make a multiple scales ansatz [8, 9], choosing the carrier wavenumber
in Bragg resonance with the medium:

(3) E =
√

ε
(
E+(εz, εt)ei(kB(z−t)+Φ) + E−(εz, εt)e−i(kB(z+t)+Φ)

)
+ O(ε3/2).
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Then the method of multiple scales yields equations for the evolution of the
wave envelopes E+ and E− in terms of the slow variables Z = εz and T = εt:

i∂T E+ + i∂ZE+ + κ(Z)E− + V (Z)E+ + Γ(|E+|2 + 2 |E−|2)E+ = 0

i∂T E− − i∂ZE− + κ(Z)E+ + V (Z)E− + Γ(|E−|2 + 2 |E+|2)E− = 0,
(4)

The functions κ(Z) and V (Z) are defined in terms of the modulations W , ν and Φ,
and the nonlinearity strength Γ may be set equal to one by a rescaling of E± [7].
The κ term arises due to the existence of the grating and couples the forward and
backward traveling components of the electric field to each other.

In the absence of modulations κ(Z) ≡ κ̄, a constant, and V (Z) ≡ 0. This
system is known as the nonlinear coupled mode equations (NLCME). The linearized
constant coefficient equations have solutions have solutions of the form(

E+(Z, T )
E−(Z, T )

)
=

(
e+

e−

)
ei(kZ−ωT )

where k and ω satisfy the linear dispersion relation ω = ±
√

κ̄2 + k2, implying a
band gap in the spectrum of the linearized equation with no frequency ω ∈ (−κ̄, κ̄).

The (constant coefficient) NLCME support a family of traveling pulses called
gap solitons [1, 3], parameterized by a velocity v and a detuning parameter δ
( |v| < 1 and 0 ≤ δ ≤ π):

(5) E± = ±∆∓1α

√
κ̄

2
sin δei(η+σ)sech(θ ∓ iδ/2) ;

where:

∆ =
(

1− v

1 + v

) 1
4

; α =

√
2(1− v2)
3− v2

; eiη =
(
−e2θ + e−iδ

e2θ + eiδ

) 2v
3−v2

;

θ =
κ̄√

1− v2
(sin δ)(z − vt) ; σ =

κ̄√
1− v2

(cos δ)(vz − t).

The equations show gap solitons may move at any velocity v below the speed of
light, although this has been difficult to achieve in the lab. Experiments in fibers
have produced pulses as slow as half the speed of light, and theorists estimate that
this could be reduced to c/10 [2, 6]. Of special interest are stationary (v = 0)
pulses which could be used as bits in an optical memory system.

We define the total intensity of a pulse by its squared L2 norm,

(6) Itot =
∫ ∞

−∞
(|E+|2 + |E−|2) dZ =

4(1− v2)δ
(3− v2)

.

Gap solitons with v = 0 form a family of nonlinear standing waves. From (5), these
have internal frequency ω = κ̄ cos δ. Figure 1 shows Itot as a function of frequency
for stationary solitons. As δ varies from zero to π, the frequency varies from the
right to the left edge of the band gap.

2. Linear and Nonlinear Defect Modes

The variable coefficient terms κ(Z) and V (Z) in (4) may serve as a potential.
We may construct potentials that support defect modes, localized solutions to the
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Figure 1. Intensity as a function of frequency for the stationary
gap soliton (thick line) and for the nonlinear defect mode of the
defect with parameters ω = −1, k = 4, n = 1 (thin line).

linearized form of (4) (obtained by setting Γ = 0) of the form

(7)
(

E+(Z, T )
E−(Z, T )

)
=

(
E+(Z)
E−(Z)

)
e−iωT .

In [7], we construct a three parameter family of defects of the form

κ(Z) =
√

ω2 + n2k2 tanh2 (kZ); V (Z) =
ωnk2sech2(kZ)

2(ω2 + n2k2 tanh2 (kZ))
.

for which standing wave solutions exist of the form:

(8) E± = e±
i
2 arctan

nk tanh (kZ)
ω sechn(kZ)e−iωt.

It was found numerically that for n > 1, the defect supports additional eigenmodes
with eigenvalues given by

(9) ω±r = ±
√

ω2 + (2nr − r2)k2; 1 ≤ r < n.

In appendix A, the eigenvalues, and their associated eigenfunctions are derived.
In the nonlinear eigenvalue problem, the linear solution applies in the limit as

Itot → 0. As the intensity is increased, the frequency moves toward the left edge of
the band gap, as is seen in the numerical calculation pictured in figure 1.

3. Numerical Experiments in Gap Soliton Capture

Away from the defect at Z = 0, the variable coefficients satisfy κ(Z) → κ̄ and
V (Z) → 0. Therefore, away from the defects, gap solitons may propagate. Given
the difficulty of creating low speed or stationary pulses, we performed a series of



4 R. H. GOODMAN, R. E. SLUSHER, M. I. WEINSTEIN, AND M. KLAUS

15 20 25 30 35 40 45 50 55 60

−6

−4

−2

0

2

4

6

t

x ce
nt

er
 o

f m
as

s

v=.257 
v=.2565

Figure 2. The positions of solitons which are transmitted (solid)
and reflected (dashed) at speeds close to the critical speed.

numerical experiments in which gap solitons were initialized far from, and propa-
gating toward, the defect, attempting to capture gap solitons using the defects. An
interesting and unexpected phenomenon was seen in these experiments, depend-
ing on the parameters used to define the defects and pulses. In certain parameter
regimes, the soliton was either coherently reflected or transmitted, depending on
the velocity v of the incoming soliton; see figure 2. In these cases, the pulse remains
remarkably intact following the interaction, so only its position has been shown. In
other parameter regimes, much of the soliton’s energy is captured at the defect at
slow velocities, while at larger velocities the soliton largely passes the defect, albeit
with reduced speed; see figure 3. As the soliton’s speed is increased, the fraction
of captured energy is decreased. A larger set of numerical experiments as well as
estimates of the physical dimensions of the pulses and defects is presented in [7].

The hypothesized explanation for the difference between the two cases outlined
above is shown figure 1. The two cases are pictured schematically along with the
labels “Nonresonant” and “Resonant”. In both cases the defect is defined by the
parameters (ω, k, n) = (−1, 4, 1). The difference lies in the parameter δ which is 1 in
the first (reflection/transmission) case labeled “Nonresonant” and 2 in the second
(capture/transmission) case labeled “Resonant.” In all cases, the velocity of the
incoming soliton is initialized to v � 1, so its internal frequency is approximately
ω = κ̄ cos δ and its total intensity is approximately Itot = 4δ/3. For δ = 0, this
is represented by a point in the lower-right corner of the upper curve, moving up
and to the left along the curve as δ is increased. We compare the point on the gap
soliton curve with the defect mode curve below it. Trapping is then well predicted
by the following principle.
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Figure 3. A soliton with higher intensity has some energy cap-
tured at the same speed at which the soliton is reflected in the
previous example

Principle governing soliton-defect interactions: Consider a
gap soliton incident on a defect with sufficiently low incident veloc-
ity. The gap soliton will transfer its energy to a nonlinear defect
mode, and thereby be trapped, if there exists a nonlinear defect
mode of the same frequency (resonance) and lower total intensity
(energetic accesibility). Otherwise, the gap soliton energy will be
reflected and/or transmitted.

It should be stressed that this principle is approximate and that figure 1 is a
schematic. The defect mode that is captured may oscillate with frequency higher
or lower than that of the incoming soliton.

As evidence for this principle, the numerically computed solution is projected
onto the linear defect mode. The amplitude of this projection is plotted in figure 4
for both the reflected (nonresonant) and a captured (resonant) incoming soliton. In
the upper picture both the L2 norm of the computed solution and of its projection
onto the linear defect mode are computed. The defect mode is weakly and briefly
excited, but quickly returns its energy to the soliton. In the lower curve, the same
quantities are plotted for the case of capture. The L2-norm, which is conserved by
the PDE dynamics, is reduced via loss of energy at the endpoints of the computa-
tion. By the end of the run, however, almost all of the solution can be accounted
for by its projection onto the linear defect mode. This demonstrates that capture
takes place via a resonant transfer of energy to the nonlinear defect mode, rather
than via a slowing of the soliton.
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Figure 4. The L2 norms of the computed solutions (solid) and
of their projections onto the linear defect modes (dashed) for the
nonresonant reflected soliton (top) and resonant captured soliton
(bottom).

4. Further Experiments and Conclusion

Two difficulties remain with the above results. First, figure 1 shows that only
solitons with a large δ parameter—and thus fairly intense light—can be captured by
the defect used in that experiment. This may be addressed by altering the defect in
two ways. First, by simply changing the defect parameter from ω = −1 to ω = 1,
the defect mode bifurcation curve moves significantly to the right, solitons with
lower intensities (further to the right on the upper curve) to be captured, as shown
in the left image of figure 5. Solitons of even smaller intensity can be captured by
using the multi-mode defect modes with n > 1 described in section 2. The defect
defined by the parameters (ω, k, n) = (−1, 2, 2), which has the same value of κ̄ and
thus the same spectral gap, but posesses 3 defect modes. This defect can capture
energy from soltions of even lower intensity, as shown in the right image of figure 5.
Of course when multiple modes are able to interact, the set of possible behaviors
becomes much richer. A second difficulty is that energy continues to radiate from
the defect after it is captured. This is a more fundamental issue.

Gap solitons in Bragg gratings are a fertile subject in nonlinear fiber optics
and all-optical communications system. We have investigated how such nonlinear
traveling waves may be made to transfer their energy to localized modes at spec-
ified defect locations. We have performed numerical experiments and formulated
a principle whereby solitons are trapped by transferring their energy to a defect
mode when they are resonant with an appropriate nonlinear defect mode.
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Figure 5. Bifurcation curves for the defects with parameters
(ω, k, n) = (1, 4, 1) (left) and (−1, 2, 2) (right). In the right graph,
solitons on the darkened portions of the gap soliton curve may be
trapped by the nonlinear defect modes beneath them.
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Appendix A. Calculation of additional eigenvalues and eigenfunctions

We seek solutions of the form (7) to the linearized (Γ = 0) form of NLCME (4).
Letting ~F =

(E+(z)
E−(z)

)
and

u(z) = −iκ(z) exp
(
−2i

∫ z

0

V (ζ) dζ

)
= −kn tanh kz − iω n ≥ 1; k, ω ∈ R

rewrite (4) as a Zakharov-Shabat eigenvalue problem:

(10) ∂z
~F =

(
iΩ u(z)

ū(z) − iΩ

)
~F .

In [7], one eigenvector, with eigenvalue Ω = ω is constructed. If n > 1, ad-
ditional eigenvalues given in (9) discovered found numerically. Here we find these
eigenvalues and their corresponding eigenvectors explicitly.

First, rewrite (10) as

(11) H ~F ≡
(
− i∂z iu
− iū i∂z

)
~F = Ω~F .

The operator H is self-adjoint, and thus has real spectrum. Then

(12) H2F = Ω2F

where

(13) H2 =
(
− ∂2

z + |u|2 uz

ūz − ∂2
z + |u|2

)
=

(
− ∂2

z + |u|2 uz

uz − ∂2
z + |u|2

)
since uz = −k2n sech2kz is real.

Diagonalize equation (12) by letting ~G = U ~F ≡
(

1 1
1 − 1

)
~F . Then

(14) A~G ≡
(

A+ 0
0 A−

)
≡

(
− ∂2

z + |u|2 + uz 0
0 − ∂2

z + |u|2 − uz

)
~G = Ω2 ~G,

where A = UH2U−1. The spectrum is simply the union of the spectra of the two
diagonal terms, i. e. of − ∂2

z + |u|2 ± uz. Thus we may study separately the two
equations:

−∂2
zG1 − k2n(n + 1)sech2(kz)G1 = (Ω2 − ω2 − k2n2)G1;(15a)

−∂2
zG2 − k2n(n− 1)sech2(kz)G2 = (Ω2 − ω2 − k2n2)G2.(15b)

The spectrum of the Schrödinger equation with a sech2 potential is well known [5].
For equation (15a),

Ω2 − ω2 − k2n2 = −k2(n + 1− p)2, p = 1, . . . , n

and for (15b),

Ω2 − ω2 − k2n2 = −k2(n− r)2, r = 1, . . . , n− 1.

When p = 1, only the first equation has a solution, corresponding to Ω2 = ω2. For
r = p−1, the eigenvalues of (15a) and (15b), coincide, yielding a pair of eigenvalues

Ω = ±
√

ω2 + k2n2 − k2(n− r)2 = ±
√

ω2 + k2(2nr − r2)

of (10) in agreement with the numerical observation (9).
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In order to determine the correct signs for the eigenvalues of H, we need to
look closely at the eigenfunctions of (15). For equation (15a), the solution is

G1,p =

{
coshn+1 (kz)F (a, b, 1

2 ,− sinh2 kz) p odd,

coshn+1 (kz) sinh (kz)F (a + 1
2 , b + 1

2 , 3
2 ,− sinh2 kz) p even

where a = p
2 , b = n + 1 − p

2 , and F (a, b, c, z) is the hypergeometric function. For
equation (15b), the solution is

G2,r =

{
coshn (kz)F (ã, b̃, 1

2 ,− sinh2 kz) r odd,

coshn (kz) sinh (kz)F (ã + 1
2 , b̃ + 1

2 , 3
2 ,− sinh2 kz) r even

where ã = r
2 , and b̃ = n− r

2 . If n is an integer, this can be simplified using Legendre
functions [5].

Note that from (10), it follows that:

F ′1(0) = iΩF1(0)− iωF2(0);

F ′2(0) = iωF1(0)− iΩF2(0),

so that
G′1(0) = i(Ω + ω)G2(0);

G′2(0) = i(Ω− ω)G1(0).
(16)

Now let’s look at the various eigenvalues: First consider the eigenvalue of equa-
tion (15a) with p = 1 so that Ω2 = ω2,then

G1 = coshn+1 (kz)F (
1
2
, n +

1
2
,
1
2
,− sinh2 kz)

= coshn+1 (kz)(1 + sinh2 kz)−n− 1
2

= sechnkz,

as F ( 1
2 , n + 1

2 , 1
2 , z) = (1− z)−n− 1

2 . Then, as G2 = 0 for this case, we have

F1 = F2 =
1
2
G1 =

1
2
sechnkz.

Note that G1 is even with G1(0) = 1. Thus, by the second equation of (16),
(Ω− ω) = 0, or Ω = ω.

Now if p > 1 and p is even, and let r = p− 1, then,

G1 = coshn+1 (kz) sinh (kz)F (a +
1
2
, b +

1
2
,
3
2
,− sinh2 kz)

G2 = coshn (kz)F (ã, b̃,
1
2
,− sinh2 kz)

and vectors of the form
(
αG1
βG2

)
span the eigenspace corresponding to the eigenvalue

Ω2 = ω2 + k2n2 − k2(n + 1− p)2 = ω2 + k2n2 − k2(n− r)2

of A. Let Ω± = ± |Ω|. Then either of Ω± may be an eigenvalue of (11). Since G1

is odd and G2 is even, the first equation of (16) yields:

αG′1(0) = αk = i(Ω± + ω)G2(0) = i(Ω± + ω)β.

Setting β = k and α± = i(Ω± + ω) yields the eigenfunction

~F± =
(

α±G1

βG2

)
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corresponding to eigenvalue Ω±. A similar computation may be performed for p > 1
odd.
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