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Abstract

Coupled backward and forward wave amplitudes of an electromagnetic field propagating in a periodic and nonlinear medium at Bragg
resonance are governed by the nonlinear coupled mode equations (NLCME). This system of PDEs, similar in structure to the Dirac equations, has
gap soliton solutions that travel at any speed between 0 and the speed of light. A recently considered strategy for spatial trapping or capture of
gap optical soliton light pulses is based on the appropriate design of localized defects in the periodic structure. Localized defects in the periodic
structure give rise to defect modes, which persist as nonlinear defect modes as the amplitude is increased. Soliton trapping is the transfer of
incoming soliton energy to nonlinear defect modes. To serve as targets for such energy transfer, nonlinear defect modes must be stable. We
therefore investigate the stability of nonlinear defect modes. Resonance among discrete localized modes and radiation modes plays a role in the
mechanism for stability and instability, in a manner analogous to the nonlinear Schrödinger/Gross–Pitaevskii (NLS/GP) equation. However, the
nature of instabilities and how energy is exchanged among modes is considerably more complicated than for NLS/GP due, in part, to a continuous
spectrum of radiation modes which is unbounded above and below. In this paper we (a) establish the instability of branches of nonlinear defect
states which, for vanishing amplitude, have a linearization with eigenvalues embedded within the continuous spectrum, (b) numerically compute,
using Evans function, the linearized spectrum of nonlinear defect states of an interesting multiparameter family of defects, and (c) perform direct
time-dependent numerical simulations in which we observe the exchange of energy among discrete and continuum modes.
c© 2008 Published by Elsevier B.V.
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1. Introduction

In optical fiber communication systems, data is carried as pulses of light. Expensive and rate-limiting steps in these systems come
in processing the data at so-called optical/electrical interfaces. Processing is typically done electronically; signals are converted
to electronic form, read, processed, and retransmitted. A major goal, therefore, is to bypass the optical/electrical interface and
implement “all-optical” processing by using the nonlinear optical properties of the medium. Hence, there has been great interest
in finding novel materials and optical structures (arrangements of materials) which effect light in different ways. Among these are
Bragg gratings and Bragg gratings with defects–one dimensional arrangements, as well as higher-dimensional structures such as
photonic crystal fibers in which the grating structure is transverse to the direction of propagation [43], and other two and three-
dimensional structures [16].

In an optical fiber Bragg grating, the refractive index of the glass varies periodically, with period resonant with the carrier
wavelength of the propagating light; see Fig. 1.1. Light propagation through such fibers has several interesting properties that
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Fig. 1.1. Schematic of Bragg resonance condition. Periodic refractive index (lower figure) and electric field envelope with carrier wave in Bragg resonance
(λ = 2 × period).

Fig. 1.2. Instability onset scenario 1: as the amplitude of the nonlinear defect mode is increased from 0 to ε the embedded frequencies ±β0 split into complex
frequencies ±βε ± iγε .

makes them useful in technological applications. The grating structure couples forward-moving light at the resonant wavelength
to backward-moving light of the same wavelength. In the low-amplitude (linear) limit, this makes the fiber opaque to light in
a certain range of wavelengths, the so-called photonic band-gap. When the amplitude of the light is increased, the band-gap is
shifted due to the nonlinear dependence of refractive index on intensity. Thus, a range of wavelengths that are non-propagating
at low intensity are shifted into the range of propagating wavelengths (the pass-band) at higher intensities. This is the mechanism
by which localized pulses known as gap solitons exist; see Section 2.2. In the regime of weak nonlinearity and Bragg resonance,
Maxwell’s equations can be reduced, via multiple scale asymptotic methods, to the nonlinear coupled mode equations (NLCME),
reviewed in Section 2.1 [2,15,19,32].1

Gap solitons may, in theory, propagate (in the stationary reference frame) at any speed between 0 and c/n. Here, c denotes the
vacuum speed of light, n the refractive index of the optical fiber core and c/n is the speed of light in the fiber without the grating.
In [29], we showed via modeling, analysis and numerical simulation, that propagating optical gap solitons, could be trapped at
specially-constructed defects in the grating structure. Trapping and interaction of gap solitons in a number of related structures is
considered in [14,46,47]. Recent experimental advances have made possible the slowing of propagating gap soliton light pulses
from 0.5 × c [23] to 0.16 × c [52].

The focus of the present paper is on the stability and dynamics of such trapped light. Localized defects in a grating appear
as spatially localized potentials in the NLCME model. In the linear (low light intensity) limit, the resulting linear coupled mode
equations with potentials have spatially localized linear defect eigenstates; see Section 2.3. As the intensity is increased from zero,
nonlinear defect modes, “pinned” at the defect location, bifurcate from the zero state at the linear eigenfrequencies; see Section 2.4.

Trapping of a gap soliton by a defect can be understood as the resonant transfer of energy from an incoming soliton to a
pinned nonlinear defect mode. In [29] we demonstrated through numerical experiments such resonant energy transfer/trapping,
for sufficiently slow soliton pulses. The analogous question has also been studied for the nonlinear Schrödinger/Gross–Pitaevskii
(NLS/GP) equation; see [28,34–36] and references cited therein. For the purpose of comparison, we review the stability of and
interactions between nonlinear defect modes of NLS/GP in Section 3.

In order for the energy localized in a defect to remain spatially confined in a nonlinear defect mode, it is necessary that the mode
be stable. Thus, in this paper we consider the stability of nonlinear defect modes for a large class of defects introduced in [29] by

• studying the linearized spectral problem about different families (branches in the global bifurcation diagram) of nonlinear defect
modes; see Sections 4 and 5 for analytical perturbation theory and numerics, and

• studying time-dependent simulations of the initial value problem for NLCME. We consider defects which support multiple
nonlinear linear defect modes. As the time-evolution proceeds these nonlinear bound state families compete for the energy
localized in the defect; see Section 6.

The linearized stability of a nonlinear defect mode is governed by a spectral problem of the form:

Σ3 Hψ = β ψ, Σ ∗

3 = −Σ3, H∗
= H ; (1.1)

see Section 4. Eigenvalues are complex values of β, for which (1.1) has a nontrivial L2 solution, giving rise to a time-dependent
solution of the linearized dynamics φ = ψe−iβt . The self-adjoint operator, H , can be expressed as H = H0 + W , where H0

1 A special case of NLCME (Eq. (2.1) with the self-phase modulation terms omitted) is the massive Thirring system [25], a completely integrable PDE modeling
the interaction of massive fermions. The methods described in this article apply equally well to the massive Thirring system.
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corresponds to the linear (zero intensity) coupled mode equation operator and W tends to zero quadratically in the amplitude
(L2-norm) of the nonlinear defect mode about which we have linearized.

The continuous spectrum of Σ3 H typically consists of two symmetric semi-infinite real intervals with an open gap centered at
β = 0. A priori, since Σ3 H is not self-adjoint, discrete eigenvalues may lie anywhere in the complex plane, subject to constraints
inherited by (1.1) from NLCME, a Hamiltonian system. In particular, if β is an eigenvalue, then so are −β, β∗ and −β∗. Thus, a
necessary condition for linearized stability of the flow i∂tφ = Σ3 Hφ is that the spectrum of Σ3 H be real.

Now Σ3 H0 has stable spectrum and may have real discrete eigenvalues in the spectral gap or real embedded eigenvalues within
the continuous spectrum. Numerous different instability-onset scenarios corresponding to different types of bifurcations arise as
Σ3 H0 deforms to Σ3 H = Σ3(H0 + W ), as the intensity (L2 norm) of a nonlinear defect mode is increased along the bifurcation
branch. We focus on one such scenario here and in more detail in Section 4.2. The other scenarios are discussed briefly in
Section 4.3.

The first scenario occurs when Σ3 H0 has a symmetric pair of real embedded eigenvalues within the continuous spectrum.
Generically these perturb, for ‖W‖ positive and arbitrary, to two pairs of complex conjugate eigenvalues and therefore yield
instability. The mechanism is related to the notion of Krein signature. A detailed perturbation calculation demonstrating this
instability is presented in Section 4.2, showing that the instability is of order ‖W‖

2, or equivalently, of order equal to the fourth
power of the defect mode amplitude. In the particular examples we study numerically, these instability rates are observed, but are
seen in some cases to be quite small.

In Section 6 we explore the temporal dynamics of the initial value problem for NLCME via direct numerical simulation. We
present simulations with various defects supporting one, two and three modes which illustrate both the spectral instability scenarios
explored in Section 4 and the temporal dynamics of energy exchange among defect modes and radiation modes. The mechanisms are
similar to, but more complicated than, those studied by Soffer and Weinstein [67,68] for the nonlinear Schrödinger/Gross–Pitaevskii
(NLS/GP) equation, who consider NLS/GP with a “defect potential” supporting two bound states and thus, two branches of
nonlinear defect modes (ground and excited), which compete for energy confined by the potential; see also [71]. In the NLS/GP
problem, resonance of an embedded eigenvalue, associated with the linear excited bound state, with the continuous spectrum leads
to energy transfer from the excited state to the ground state and to radiation modes. The asymptotic distribution of excited state
energy is also studied; see [67,68,74].

We recap the structure of the paper. In Section 2, we introduce NLCME, its gap solitons, and two families of defects and
their linear and nonlinear bound states. We also summarize the results of a previous paper in which these defects are used to trap
gap solitons. In Section 3 we review some analogous results for the NLS equation with a localized defect. Section 4 discusses
the properties of the linearized operator, outlining several types of instability with particular attention to bifurcations of embedded
frequencies. Section 5 provides a brief introduction to the Evans function, a useful analytical tool for exploring the discrete spectrum
of the linearized operator, as well numerical results using the Evans function to study the spectral stability of nonlinear defect modes.
Section 6 shows time-dependent simulations confirming the stability predictions of the previous section. Section 7 contains a short
summary and discussion. The appendices contain a list of symbols, a derivation of NLCME with potentials from the problem of
wave propagation in a Bragg grating with defects, and a detailed description of the numerical measures that are taken to ensure
accurate computations of both the nonlinear defect modes and the discrete spectrum of the linearization.

2. NLCME and NLCME with defects

2.1. The nonlinear coupled mode equations

Consider an electromagnetic wave-packet, a pulse which is spectrally concentrated about a carrier wavelength, propagating in a
waveguide whose refractive index varies periodically in the direction of propagation. If the carrier wavelength is in resonance with
the waveguide periodicity (Bragg resonance), then backward and forward waves couple strongly.

Envelope equations for these forward and backward wave amplitudes satisfy the nonlinear coupled mode equations. In
Appendix B we show that localized defects in the periodic structure give rise to the following modification of the NLCME, which
we call by the same name, as derived in [29,73]:

i∂T E+ + i∂Z E+ + κ(Z)E− + V (Z)E+ + (|E+|
2
+ 2|E−|

2)E+ = 0

i∂T E− − i∂Z E− + κ(Z)E+ + V (Z)E− + (|E−|
2
+ 2|E+|

2)E− = 0.
(2.1)

The coefficient functions (“potentials”) κ and V are determined from the refractive index profile. Here, Z is the “slow” coordinate
along the direction of propagation, T is a slow time variable and the full electric field is given by

E = E+(Z , T )ei(z−t)
+ E−(Z , T )e−i(z+t)

+ c.c.,

i.e. E+ and E− are complex envelopes of rapidly varying electromagnetic fields, assumed to be of small amplitude and linearly
polarized. The length and time variables (z, t) are chosen such that the wavenumber and frequency are both one, i.e. if in dimensional
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variables (z̃, t̃), the carrier wave has wavelength 2π/λ and period 2πc/(nλ), then we choose z = 2π z̃/λ and t = 2πct̃/(nλ). The
condition that the grating is uniform (exactly periodic) away from the defect region implies that κ(Z) → κ∞, constant, and

V (Z) → 0 as |Z | → ∞. Defining EE =

(
E+

E−

)
, Eq. (2.1) may be rewritten as

(i∂T + iσ3∂Z + V (Z)+ κ(Z)σ1) EE +N ( EE, EE∗) EE = 0, (2.2)

where σ1 and σ3 are the Pauli matrices σ1 =

(
0 1
1 0

)
and σ3 =

(
1 0
0 −1

)
, the superscript asterisk represents complex conjugation,

and N represents the nonlinear term of (2.1),

N ( EE, EE∗) =

(
|E+|

2
+ 2|E−|

2 0
0 |E−|

2
+ 2|E+|

2

)
. (2.3)

A detailed derivation, including careful accounting of the nondimensionalization and scalings, is given in [29,32,73].
The NLCME system (2.1) has two conserved quantities, the total intensity I ( EE) and the Hamiltonian (energy) H( EE). The total

intensity, I ( EE), is defined as

I ( EE) =

∫
∞

−∞

(
|E+|

2
+ |E−|

2
)

dZ , (2.4)

i.e. the square of the L2 norm of the solution. The Hamiltonian is given by

H( EE) =

∫
∞

−∞

(
iE+∂Z E+ − iE−∂Z E− + κ(Z)

(
E+E∗

− + E∗
+E−

)
+ V (Z)

(
|E+|

2
+ |E−|

2
)

+ 2|E+|
2
|E−|

2
+

1
2
|E+|

4
+

1
2
|E−|

4
)

dZ . (2.5)

In the absence of a defect (κ(Z) constant, V (Z) ≡ 0), NLCME also conserves momentum, as a consequence of Noether’s theorem.
The primary focus of this paper is the standing wave solutions of (2.2) of the form

EE(Z , T ) = EE(Z)e−iωT ,

for which (2.2) reduces to the nonlinear eigenvalue problem

(ω + iσ3∂Z + V (Z)+ κ(Z)σ1) EE +N ( EE, EE∗) EE = 0, EE ∈ L2
× L2. (2.6)

2.2. Constant coefficient NLCME—The spectral gap and “gap solitons”

NLCME with a uniform grating has κ(Z) ≡ κ∞, constant, and V (Z) ≡ 0, and has been studied extensively. In the linearization
of Eq. (2.6), setting the cubic terms to zero, one may look for solutions of the form(

E+

E−

)
(Z , T ) = ei(k Z−ωT )

(
e+

e−

)
and find the dispersion relation ω2

= κ2
∞ + k2, so that for frequencies |ω| < κ∞, k is purely imaginary, i.e. there exists a spectral

gap (−κ∞, κ∞). This results in the reflection of light at the resonant frequencies in the gap.
The fully nonlinear coupled mode system was shown in [2,15] to support uniformly propagating bound states called gap solitons,

parameterized by a velocity v and a detuning parameter δ satisfying |v| < 1 and 0 ≤ δ ≤ π :

E± = ±∆∓1α

√
κ∞

2
(sin δ) ei(η+σ)sech(θ ∓ iδ/2); (2.7)

where:

∆ =

(
1 − v

1 + v

) 1
4

; α =

√
2(1 − v2)

3 − v2 ; eiη
=

(
−

e2θ
+ e−iδ

e2θ + eiδ

) 2v
3−v2

;

θ =
κ∞

√
1 − v2

(sin δ)(z − vt); σ =
κ∞

√
1 − v2

(cos δ)(vz − t).

In the Lorenz-shifted reference frame, the term eiσ is responsible for an internal oscillation with frequency κ∞ cos δ which is
inside the spectral gap, the nonlinearity having served to effectively shift the gap. This is also known as self-induced transparency.
A comprehensive introduction to gap solitons is given in the review paper by de Sterke and Sipe [19]. Gap solitons may propagate
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in the laboratory reference frame at any velocity v below the speed of light (here c = 1 by the derivation leading to (B.6)) and thus
are intriguing as possible components of all-optical communications systems. Zero-speed waves, for example, are candidates for
bits in an optical buffer or memory device.

2.3. Defect modes of the linear coupled mode equations

In the zero-intensity limit, we ignore the nonlinear term in (2.6), giving a linear eigenvalue problem(
ω∗ I + hV,κ

)
EE∗ ≡ (ω∗ I + iσ3∂Z + V (Z)+ κ(Z)σ1) EE∗ = 0, EE∗ ∈ L2

× L2. (2.8)

Hereafter, frequencies and vectors with subscript asterisks will refer to solutions of the linear eigenproblem (2.8), and those without
will refer to solutions of (2.6).

Note that hV,κ is self-adjoint on L2
× L2 and therefore has real spectrum. Moreover, we assume V (Z) → 0 and κ(Z) → κ∞

rapidly as |Z | → ∞, and therefore this spectral problem has two branches of continuous spectrum and a finite number of discrete
frequencies given by

spec
(
ω∗ I + hV,κ

)
= speccontinuous ∪ specdiscrete = {ω∗ ∈ R : |ω∗| ≥ κ∞} ∪ {ω j∗ : j = 1, . . . , N },

where the discrete frequencies satisfy −κ∞ < ω j∗ < κ∞.
We consider two families of defects in the current study which we refer to as “even defects” and “odd defects”.

(a) Even defects
If we specify κ(Z) to be even and V (Z) = 0, then it is simple to show that if ω∗ is a real eigenvalue of (2.8), then so is −ω∗. A

simple argument eliminates the possibility of nontrivial null eigenstates. Thus, system (2.8) must have an even number of discrete
eigenvalues with corresponding L2 eigenfunctions. As we do not know of any κ(Z) for which the eigenvalue problem (2.8) may be
solved in closed form, we choose a relatively simple form of κ(·),

κ(Z) = 1 − bsech(k Z). (2.9)

Thus, κ∞ = 1 and the linear operator ω∗ I + h0,κ has continuous spectrum {ω ∈ R : |ω| ≥ 1}. We have found via numerical
simulation that as b is increased with k held fixed, existing frequencies migrate toward the origin, and new discrete frequencies
bifurcate in pairs from opposite endpoints of the band gap at ω = ±1. Such emergence from the edges has been studied for related
problems, for example, in [42,58].

(b) Odd defects
In [29], we construct a three-parameter family2of defects of the form

κ(Z) =

√
ω2 + n2k2 tanh2(k Z); V (Z) =

ωnk2 sech2(k Z)

2(ω2 + n2k2 tanh2(k Z))
(2.10)

with k > 0, n > 0, and ω nonzero.3 Standing wave solutions exist of the form:

EE(0)∗ =

(
eiΘ

−se−iΘ

)
sechn(k Z)e−iω0∗T , ω0∗ = ω, s = signω (2.11)

Θ =

∫ Z

0
V (ζ ) dζ =

1
2

arctan
nk tanh(k Z)

ω
. (2.12)

For n > 1, the defect supports a total of 2bnc − 1 distinct eigenvalues with L2 eigenfunctions, where bnc is the greatest integer less
than or equal to n. Its eigenvalues are the “ground state” eigenvalue ω0∗ = ω and

ω± j∗ = ±

√
ω2 + (2nj − j2)k2; j = 1, . . . , n − 1. (2.13)

The band edges are located at ±
√
ω2 + k2n2. If ω and k are held constant, while n is increased, ω0 remains constant. A new

pair of eigenvalues of the form (2.13) are created in edge bifurcations from the two ends of the continuous spectrum. Note these
eigenvalues increase in amplitude as n increases, although the band-edges recede even faster.

2 By a rescaling of the space and time coordinates, we may set k = 1, so in reality this is a two-parameter family, but the above form makes it easier to create
different defects with the same limiting grating strength κ∞.

3 In the special case ω = 0, then V (Z) = 0 and κ(Z) = nk tanh(k Z). The expressions for the eigenmodes are also altered.
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Fig. 2.1. Intensity as a function of frequency of numerically calculated nonlinear defect modes, with parameter values ω = 1, k = 1, n = 2. The band edges are at
±

√
5 and the linear eigenvalues are ω0 = 1 and ω±1 = ±2. The darker curve depicts the amplitude and frequency of a stationary gap soliton (2.7).

Reference [31] contains the general formula for the eigenfunctions. The solutions can ultimately be expressed in terms of
hypergeometric functions of tanh k Z , which simplify to Legendre functions of tanh k Z when n ∈ Z, and can be expressed as
algebraic combinations of tanh k Z and sech k Z . The general formula is quite complicated.

In much of what follows we specialize to the case n = 2, in which case there are three linear defect modes. The first
eigenfunction, with frequency ω0 = ω, is given by (2.11). The remaining two, with frequencies ω±1∗ = ±

√
ω2 + 3k2, are given

(in a non-normalized form) by

EE(±1)∗ =

(
(k + i(ω±1∗ + ω) tanh k Z)eiΘ(Z)

s (k − i(ω±1∗ + ω) tanh k Z) e−iΘ(Z)

)
sech k Z . (2.14)

2.4. Defect modes of nonlinear coupled mode equation

Consider Eq. (2.6), the nonlinear eigenvalue problem solved by the nonlinear defect modes. In the small amplitude (linear)
limit, we expect solutions to be well-approximated by those of the linear eigenvalue problem (2.8), whose explicit eigenstates are
displayed in Section 2.3.

In [29], we used perturbation analysis to show that in analogy with the NLS/GP case [60], there exist nonlinear defect mode
solutions of (2.6)

EE( j)(Z) = α
(

EE( j)∗(Z)+ O(|α|
2)
)

and (2.15)

ω = ω j∗ + q|α|
2
+ O(|α|

4), α ∈ C, α → 0 (2.16)

q = −
〈E j∗,N (E j∗, E∗

j∗)E j∗〉

〈E j∗, E j∗〉
. (2.17)

Notice that q < 0, due to the focusing character of the nonlinearity. Thus, as the amplitude is increased, the nonlinear frequency is
shifted toward the left edge of the spectral gap.

We aim to compute the nonlinear modes and their associated frequencies as accurately as possible. This is important so that
errors in the numerical solutions contribute as little as possible to errors in their numerically calculated linearized spectrum and
determination of stability. Details of the numerical calculation are provided in Appendix C. Briefly, the derivatives are discretized
using Fourier transforms, while the infinite interval is truncated using a nonuniform-grid method and the resulting algebraic
equations derived are solved using MINPACK routines [53].

Fig. 2.1 shows a typical example of the dependence of the defect mode’s frequency on its amplitude. The frequency of each of
the three defect modes shifts to the left as the intensity is increased; q < 0. At small intensities the frequency depends linearly on
the intensity, and at larger intensities, the curves steepen near the left band edge. We believe that these branches terminate at the left
band edge, but the nonlinear modes decay very slowly as the edge is approached, and thus become difficult to calculate numerically.

2.5. Summary of previous numerical experiments

In [29], we explored the behavior of gap solitons incident on localized defects of the form (2.10). We found parameter regimes
in which the soliton – or at least the energy it carries – can be captured. We hypothesized the existence of a nonlinear resonance
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Fig. 2.2. The projections onto the ω2 (thin solid line) and ω1 (dashed), showing that energy is originally, and quickly transferred from the moving soliton to the
ω2 mode, and then slowly transferred to the ω1 mode. The thick line shows the total L2 norm of the solution, which is not conserved due to absorbing boundary
conditions at the endpoints.

mechanism between the soliton, and a nonlinear defect mode. By (2.7), the gap soliton oscillates with an internal frequency of
about κ∞ cos δ as it propagates. If there exists a nonlinear defect mode of the same frequency and smaller L2-norm, then the solitary
wave may transfer its energy to the defect mode. In particular, as δ is increased from 0 to π this internal frequency decreases from
κ∞ to −κ∞. This is the thickest curve in Fig. 2.1; a family of states of the translation invariant NLCME, which bifurcates from the
zero state at the band edge frequency.

For sufficiently small δ (frequency near the right band edge, marked (a) in the figure), there exists no nonlinear defect mode of
the same frequency and lower amplitude to which the gap soliton can transfer its energy. In this case, the defect behaves as a barrier.
For solitary waves above a critical velocity, the pulse passes by the defect with almost all its amplitude and its original velocity
almost unchanged. Below the critical velocity, the solitary wave is reflected, again almost elastically. If, by contrast, there exists a
nonlinear defect mode resonant with the solitary wave and of smaller amplitude, then the pulse may be trapped, for example points
(b) and (d). In this case there exists a critical velocity, below which solitary waves are transmitted (inelastically) and below which
they are largely trapped. Behavior at the point marked (c) is similar to that at (a)—the defect mode that bifurcates from ω1∗ = 2 is
a larger-amplitude state than the gap soliton, so it cannot be excited, and the defect mode bifurcation from ω0∗ is not resonant with
this frequency.

Similar behavior, namely the dichotomy between the nonresonant and elastic transmit/reflect behavior and the resonant and
inelastic capture/transmit behavior, has also been seen for nonlinear Schrödinger solitons [28,44]. Estimates for vc in several
related problems and an explanation for the existence of a critical velocity are given in [27] and references therein. This trapping
phenomenon was subsequently seen by Dohnal and Aceves for a two-dimensional generalization of Eq. (2.1) [1,21].

Trapping could be more accurately described as a transfer of energy from the traveling soliton mode to a stationary nonlinear
defect mode. This is pictured in Fig. 2.2 reprinted from [29]. This figure describes the evolution of a pulse captured by a wide
defect supporting 5 linear defect modes. Energy initially moves into the mode associated with the frequency ω2 but is subsequently
transferred to the mode associated with frequency ω1. A part of the energy is transferred to radiation modes and is dispersed to
infinity. It is thus important for us to understand the stability of these nonlinear modes, to assess their suitability as long-time
containers for electromagnetic energy, as well as the mechanisms through which energy moves among discrete and continuum
modes.

3. Dynamics and energy transfer for NLS/GP

Many of the phenomena and mechanisms present in the dynamics of NLCME (2.1) are present in the related and more studied
nonlinear Schrödinger/Gross–Pitaevskii (NLS/GP) equation:

i∂tΦ = −∆Φ + V (x)Φ + g|Φ|
2Φ, (3.1)

where Φ = Φ(x, t) is complex-valued, x ∈ Rn , t ∈ R. g > 0 corresponds to a repulsive or defocusing nonlinear potential, while
g < 0 corresponds to an attractive or focusing nonlinear potential. Before embarking on a study of NLCME, we briefly review
results for NLS/GP.

To fix ideas, we take V (x) to be a smooth potential well (V ≤ 0), decaying to zero rapidly as |x | → ∞. NLS/GP is a Hamiltonian
system with conserved Hamiltonian energy

H[U ] =

∫
Rn

(
|∇U |

2
+ V (x)|U |

2
+

g

2
|U |

4
)

dx . (3.2)
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Solitary standing wave solutions are solutions of the form: Φ(x, t) = Ψ(x)e−iΩ t , from which we obtain the nonlinear eigenvalue
problem for u(x)

ΩΨ = −∆Ψ + V (x)Ψ + g|Ψ |
2Ψ ; Ψ ∈ L2. (3.3)

In the low intensity (linear) limit, (3.3) reduces to the the linear eigenvalue problem for the Schrödinger operator −∆ + V .
The operator −∆ + V has continuous spectrum covering the non-negative half-line: Ω ≥ 0 and, in general, a finite number of

negative discrete eigenvalues Ω0∗ < Ω1∗ < · · · < Ωn∗ < 0, with corresponding eigenfunctions ψ j∗, j = 0, . . . , n, ‖ψ j∗‖2 = 1;
recall subscript asterisks denote solutions in the linear limit. The eigenfunction Ψ0∗(x) corresponding to Ω0∗ is the ground state,
a minimizer of the (linearized) energy Hlinear[U ] =

∫ (
|∇U |

2
+ V (x)|U |

2
)

dx , subject to the constraint: ‖U‖2 = 1. Nonlinear
defect mode families, (Ψα j (x),Ωα j (x)), bifurcate from the zero state at the linear eigenfrequencies [60]. The nonlinear ground
state, (Ψα0 ,Ωα0) can also be characterized variationally as a minimum of H[U ] subject to the constraint ‖U‖2 = α. For small
L2-norm we have for j = 0, 1, . . . and α → 0

Ψα j (x) = α
(
ψ j∗(x)+O(|g| |α|

2)
)

Ω j (α) = Ω j∗ + gc2
j∗|α|

2
+ O(g2

|α j |
4), α j ∈ C

where c2
j∗ > 0 is a positive constant.

Soffer and Weinstein [67,68] studied the dynamics of the initial value problem for NLS/GP (3.1) in the case where the potential
well, V (x), supports exactly two eigenstates, “linear defect modes”, (u0∗(x),Ω0∗) and (u1∗(x),Ω1∗). By the above discussion,
there exist two bifurcating branches of nonlinear bound states (Ψα j ,Ωα j ), j = 0, 1. These are used to parameterize general small
amplitude solutions of NLS/GP:

Φ(x, t) ∼ Ψα0(t)(x)+ Ψα1(t)(x)+ Φdispersive(x, t)

and it is shown that generic finite energy solutions of the initial value problem converge as t → ±∞ to a nonlinear ground state:
Φ(x, t) → Ψα±

0
, α±

0 ∈ C, locally in L2. This ground state selection phenomenon has been experimentally observed; see [49].

The very large time dynamics, which involve energy leaving the excited state and being transferred to the ground state and
radiation modes is governed by nonlinear master equations

dP0(t)

dt
∼ Γ P2

1 (t)P0(t)

dP1(t)

dt
∼ −2Γ P2

1 (t)P0(t). (3.4)

Here, Pj (t) ∼ |α j (t)|2 and Γ = O(g2) is non-negative and generically strictly positive, provided an arithmetic condition implying
coupling of the discrete to the continuum radiation modes at second order in g is satisfied:

2Ω1∗ − Ω0∗ > 0. (3.5)

The expression for Γ is a nonlinear analogue of Fermi’s golden rule (see also [66]), which arises in the calculation of the spontaneous
emission rate of an atom to its ground state [17].

The resonance condition (3.5) also appears in a natural way in the linearized (spectral) stability analysis of nonlinear defect
modes. In particular, consider the linearization about a nonlinear excited state. This yields a linear spectral problem of the form:
σ3 HY = βY , where H is a two by two self-adjoint matrix operator and σ3 is the standard Pauli matrix. Now H = H0 + W ,
where W tends to zero quadratically in the nonlinear excited state amplitude. Since W is spatially localized, the continuous
spectrum of σ3 H is given by two semi-infinite intervals, the complement of an open symmetric interval about the origin. Now
under the resonance condition (3.5), σ3 H0 has an embedded eigenvalue within the continuous spectrum. The perturbation theory of
embedded eigenvalues is a fundamental problem in mathematical physics; see, for example, [59,65]. These embedded eigenvalues
can be shown generically to perturb for W arbitrarily small to complex eigenvalues, corresponding to instabilities [18].

In subsequent sections we explore the analogous picture for NLCME. In particular, in Section 4, we obtain an analogous (more
complicated) resonance condition, yielding embedded eigenvalues for a spectral problem, perturbing to instabilities and analogous
dynamics of energy transfer among modes.

We conclude this section by considering numerical simulations for NLS/GP, with a simple family of potentials that support two
linear defect modes

VL(x) = −2sech2(x − L)− 2sech2(x + L).

More detailed numerical simulations and their interpretation in light of [67,68] is given in [62].
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Fig. 3.1. The projections on the ground state (black) and excited state (gray, dashed) of numerical solutions to Eq. (3.1). In (a), the potential is defined with L = 1
leading to a resonance. In (b), the potential is defined with L = 2, leading to no resonance between the two modes. Plotted are not the amplitudes of projections
onto the two modes, but the L2-norm of the even and odd projections of the solution, which are less noisy.

A potential well V = −2sech2x has a single localized eigenfunction u = sechx with frequency Ω = −1. For all values of
L , the potential VL(x) supports exactly two stationary solutions. For L sufficiently large, the normalized ground state is given by

ψ0∗ ≈ 2−
1
2 (sech(x − L)+ sech(x + L)), with frequency Ω0∗ ≈ −1 − ε(L) where ε(L) is positive and exponentially small in L .

The excited state is ψ1∗ ≈ 2−
1
2 (sech(x − L)− sech(x + L)), with frequency Ω1∗ ≈ −1 + ε(L). As L is decreased, Ω0∗ increases

and Ω1∗ increases toward −1. For L < 1.13, condition (3.5) is satisfied.
We have simulated the initial-value problem for this problem with initial conditions given by a linear combination of the two

eigenfunctions, in both the resonant and non-resonant cases. The results of these simulations is shown in Fig. 3.1 and the behavior
in the two cases is strikingly different. Subfigure (a) shows the case L = 1, in which the ground state grows slightly, while the
excited state decays. In addition to this transfer of energy, there is a fast oscillation in the amplitudes of the two modes. Subfigure (b)
shows the nonresonant case L = 2. Here there is a much larger amplitude oscillation between the two modes, but none of the one-
way energy transfer. In Section 6, we perform analogous numerical experiments, which confirm analytical/numerical predictions of
Section 5.

4. Linearized stability analysis of nonlinear defect modes

We now study the linearization of the variable-coefficient NLCME (2.1) about a nonlinear defect mode. In the introduction, we
reviewed one type of instability that may arise. The analysis of Section 4.2 is focused on this scenario—instabilities arising from
perturbations of eigenvalues, embedded within the continuous spectrum. We first discuss the conditions under which, in the limit of
vanishing-amplitude defect modes, the linearization contains discrete eigenvalues embedded in the continuous spectrum, and then
develop a time-dependent perturbation theory that shows when these embedded modes may lead to instability. In Section 4.3, we
discuss other types of instability that may arise.

4.1. Conditions for embedded eigenvalues in the linearization

Letting EE =

(
E+

E−

)
e−iωt be a solution to the nonlinear eigenvalue problem (2.6) constrained to have intensity I , we linearize

about EE by letting

E+ = (E+ + y1(Z , T ))e−iωT E∗
+ = (E∗

+ + y3(Z , T ))eiωT

E− = (E− + y2(Z , T ))e−iωT E∗
− = (E∗

− + y4(Z , T ))eiωT .

Letting yi (Z , T ) = yi (Z)e−iβT yields the eigenvalue problem for β and an L2 function Ey = (y1, y2, y3, y4)
T

: R 7→ C4

β Ey(Z) = −Σ3 ·

(
V (Z)+ ω + i

(
σ3 0
0 −σ3

)
∂Z +

(
σ1 0
0 σ1

)
κ(Z)+ W (Z)

)
Ey (4.1)

where Σ3 =

(
I 0
0 −I

)
is a 4 × 4 Pauli matrix. The matrix multiplication operator W (Z) is given by
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Fig. 4.1. A schematic depicting the spectrum of the linearization about the defect mode at zero amplitude.

W =


2| EE |

2 2E+E∗
− E2

+ 2E+E−

2E∗
+E− 2| EE |

2 2E+E− E2
−

E∗
+

2 2E∗
+E∗

− 2| EE |
2 2E∗

+E−

2E∗
+E∗

− E∗
−

2 2E+E∗
− 2| EE |

2

 . (4.2)

An eigenfunction is a square-integrable solution of (4.1), with corresponding discrete eigenvalue β. Thus if any non-trivial solutions
exist with =β > 0, the nonlinear defect mode is unstable.

As ‖ EE( j)‖ ↘ 0, the spectrum of the linearization about a given defect mode EE( j) approaches

speclinearized = {±(ω j∗ − ω∗) : ω∗ ∈ speclinear}.

In particular, from the form of Eq. (4.1) in the limit of |Z | → ∞, the branches of continuous spectrum must be given by

spec1 =
{
β : |β| ≥ κ∞ − |ω j∗|

}
and

spec2 =
{
β : |β| ≥ κ∞ + |ω j∗|

}
so that spectrum has multiplicity two for |β| ≥ κ∞ + |ω j∗|. In addition the discrete spectrum is given by

specdiscrete = {β±

j,k = ±(ω j∗ − ωk∗) : 1 ≤ k ≤ N }.

This implies that the spectral gap is the interval

gap =
(
−κ∞ + |ω j∗|, κ∞ − |ω j∗|

)
. (4.3)

This is summarized in Fig. 4.1. If for some k ∈ {1, . . . , N },

|β±

j,k | ≥ |κ∞| − |ω j∗| (4.4)

then the discrete eigenvalue β±

j,k is embedded in the continuous spectrum. We will refer to the boundary between the band gap and
the multiplicity-one continuous spectrum as the “primary band edge” and the boundary between multiplicity-one and multiplicity-
two continuous spectrum as the “secondary band edge.”

Example 1. For “even” defects of the form (2.9) with exactly two discrete eigenvalues ω−1∗ = −ω1∗, therefore there will exist an
embedded frequency if ω1∗ − ω−1∗ = 2ω1∗ < κ∞ − ω1∗, i.e. if 3ω1∗ > κ∞. Since κ∞ = 1 in this example, the condition for an
embedded eigenvalue is ω1∗ > 1/3.

A similar calculation shows that for “odd” defects of the form (2.10), the linearization about the “excited states,” E(±1)∗ always
produces embedded frequencies, while the linearization about the “ground state” E(0)∗ has an embedded frequency if ω/k ≥ 1/

√
56.

Under perturbation, the frequencies in the gap will generically remain real at small amplitude, while the embedded frequencies will
be shown to move off into the complex plane, giving growing modes.

4.2. Perturbation theory of embedded eigenvalues—time dependent approach

In Example 1, we observe that there are cases when the linear spectral problem (4.1), in the limit of vanishing nonlinear defect
mode amplitude, has eigenvalues embedded in the continuous spectrum. In the self-adjoint case, such embedded eigenvalues perturb
to resonances, time-decaying states; self-adjointness precludes instability. In the present non-self-adjoint setting, instability cannot
be precluded.

We sketch a time-dependent approach to the theory of embedded eigenvalues [65,67,68] to study instabilities which arise. A
time-independent approach can also be applied; see [18]. In particular, we sketch a proof of the following

Proposition 1. Consider the linear spectral problem (4.1), associated with a branch of nonlinear bound states, which bifurcates
from the zero solution at frequency ω j . If the linearized operator corresponding to the zero amplitude limit (the operator on the right
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hand side of (4.1) with W ≡ 0) has an embedded eigenvalue in its continuous spectrum (see condition (4.4)), then for arbitrary
sufficiently small nonlinear bound states of order ‖ Eψ‖, the linearized evolution equation has an exponentially growing solution,
with exponential rate eΓ t , where Γ ≥ 0 (generically > 0) is of order ‖ Eψ‖

4 and is given by the expression (4.13).

Recall that the nonlinear coupled mode equations are a system of semilinear evolution equations for complex wave amplitudes
E+ and E−. Using (2.12), the changes of variables E± = e±iΘ(Z) Ẽ± and κ̃(Z) = κ(Z)e−2iΘ

= ω − ink tanh k Z simplify
system (2.2) to(

i∂T + iσ3∂Z +

(
0 κ̃(Z)

κ̃∗(Z) 0

))(
Ẽ+

Ẽ−

)
+N (Ẽ+, Ẽ−, Ẽ∗

+, Ẽ∗
−)

(
Ẽ+

Ẽ−

)
= 0. (4.5)

The linearized evolution equation, governing the perturbation:

φ = Ey = (y+, y−, y∗
+, y∗

−)e
−iωT (4.6)

about a fixed nonlinear defect mode has the form

i∂tφ = Σ3 H φ. (4.7)

Here, H = H0 + W , with H0 and W self-adjoint operators.

H0 =

(
h0 0
0 h∗

0

)
, (4.8)

where the 4 × 4 matrix H0 is naturally expressed in terms of 2 × 2 blocks, where

h0 =

(
ω j − i∂Z −κ̃(Z)
−κ̃∗(Z) ω j + i∂Z

)
(4.9)

and the matrix W is given above in (4.2).
Note that if ψ solves the spectral problem Σ3 Hψ = λψ , then Σ3ψ solves the adjoint spectral problem, HΣ3ψ = λψ . If ψ ∈ L2

we introduce, ψ̃ , the normalized adjoint eigenvector:

ψ̃ =
Σ3 ψ

(Σ3ψ,ψ)
, such that (ψ̃, ψ) = 1,

where (·, ·) denotes the inner product on C4-valued L2 vector functions.
We assume that there is a spectral decomposition associated with the operator Σ3 H . If f ∈ D(Σ3 H), then f can be decomposed

in terms of its bound state and continuous spectral parts:

f = Pb f + Pc f,

where

Pb f =

∑
k

(
ψ̃k, f

)
ψk

Pc f =

∫
σc(Σ3 H)

(
ψ̃λ, f

)
ψλ dλ, (4.10)

where

ψ̃k =
Σ3 ψk

(Σ3ψk, ψk)
, such that

(
ψ̃k, ψk

)
= 1.

An analogous spectral decomposition holds for the operator Σ3 H0.
Consider the situation, in which Σ3 H0 has a simple eigenvalue λ0 embedded in the continuous spectrum and corresponding

eigenvector, ψ0.

What are the dynamics for the perturbed evolution equation i∂tφ = Σ3 H φ?
Following the analysis of [65], we consider the initial value problem with data given by the unperturbed state, ψ0:

Hψ0 = λψ0, λ0 ∈ σc(Σ3 H0). (4.11)

For W small (small amplitude nonlinear defect states), we seek a solution of the perturbed evolution equation

i∂tφ = Σ3 (H0 + W ) φ. (4.12)
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We show the existence of an exponential instability with growth proportional to eΓ t where

Γ = −

π |

(
ψλ̃0

,Wψ0

)
|
2

(Σ3ψ0, ψ0)
. (4.13)

Here ψλ̃0
is a generalized eigenfunction corresponding to the shifted frequency (4.17). Define the Krein signature associated with

the simple eigenpair (λ0, ψ0) to be

K(λ0) = sign (Σ3ψ0, ψ0) . (4.14)

If λ0 is an embedded eigenvalue of Σ3 H0 with negative Krein signature, then Γ > 0.
We seek

φ(t) = a(t)ψ0 + φ1(t),
(
ψ̃0, φ1(t)

)
= 0. (4.15)

Let P#
c denote the spectral projection (with respect to the unperturbed operator Σ3 H0) onto the part of the spectrum which is (i)

continuous, (ii) bounded away from infinity and (iii) from thresholds (endpoints of branches of continuous spectra). In [65] it is
shown that the full dynamics are subordinate to the coupled dynamics of a(t) and φd(t) = P#

c φ1(t), which are approximately
governed by the system

i∂t a(t) = λ̃0a(t)+
(ψ0,Wφd(t))

(Σ3ψ0, ψ0)

i∂tφd(t) = Σ3 H0φd(t)+ a(t)P#
c Σ3Wψ0, (4.16)

where

λ̃0 = λ0 +
(ψ0,Wψ0)

(Σ3ψ0, ψ0)
. (4.17)

Terms neglected in arriving at (4.16) can be treated perturbatively [65]. We consider the system (4.16) with initial data

a(0) = 1, φd(0) = 0

corresponding to the unperturbed embedded state.
We determine the asymptotic (in time) dynamics of (4.16) by solving for φd(t) as a functional of a(t) and then substituting the

result into the equation for a(t). To facilitate this, we first extract the rapidly varying time dependence of a(t) by setting

A(t) = eiλ̃0t a(t). (4.18)

Then, the system (4.16) can be equivalently rewritten as

∂t A(t) = −i eiλ̃0t (ψ0,Wφd(t))

(Σ3ψ0, ψ0)
(4.19)

i∂tφd(t) = Σ3 H0φd(t)+ e−iλ̃0t A(t) P#
c Σ3Wψ0, (4.20)

Now solving for φd(t) with the initial condition φd(0) = 0, gives by duHamel’s principle

φd(t) = −ie−iλ̃0t
∫ t

0
e
−i
(
Σ3 H0−λ̃0 I

)
(t−s)

A(s) P#
c Σ3Wψ0 ds. (4.21)

Substitution of (4.21) into (4.19) yields the closed nonlocal equation for A(t):

(Σ3ψ0, ψ0) ∂t A(t) = −

(
Wψ0,

∫ t

0
e
−i
(
Σ3 H0−λ̃0 I

)
(t−s)

A(s) P#
c Σ3Wψ0 ds

)
. (4.22)

Denote by σ #
c ⊂ σc(Σ3 H0) the spectral subset onto which the operator P#

c projects. We now use the spectral representation of Σ3 H0
to compute the dominant and local contribution of (4.22).

(Σ3ψ0, ψ0) ∂t A(t) = −

(
Wψ0,

∫ t

0

∫
σ #

c

(
Σ3ψλ, e

−i
(
Σ3 H0−λ̃0 I

)
(t−s) Σ3Wψ0

)
ψλ dλ A(s) ds

)

= −

(
Wψ0,

∫ t

0

∫
σ #

c

(
e

i
(
Σ3 H0−λ̃0 I

)
(t−s)Σ3ψλ, Σ3Wψ0

)
ψλ dλ A(s) ds

)
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= −

(
Wψ0,

∫ t

0

∫
σ #

c

(
ei(λ−λ̃0)(t−s)Σ3ψλ, Σ3Wψ0

)
ψλ dλ A(s) ds

)

= −

(
Wψ0,

∫ t

0

∫
σ #

c

(
ei(λ−λ̃0)(t−s)ψλ, Wψ0

)
ψλ dλ A(s) ds

)

= −

(
Wψ0,

∫
σ #

c

ei(λ−λ̃0)t
∫ t

0

(
e−i(λ−λ̃0)sψλ, Wψ0

)
ψλ A(s) ds dλ

)

= − lim
ε→0

(
Wψ0,

∫
σ #

c

ei(λ−λ̃0)t
∫ t

0

(
e−i(λ−λ̃0+iε)sψλ, Wψ0

)
ψλ A(s) ds dλ

)
. (4.23)

By the calculation of Appendix D,

(Σ3ψ0, ψ0) ∂t A(t) ∼ − lim
ε→0

(
Wψ0,

∫
σ #

c

(
1

−i(λ− λ̃0 + iε)
ψλ, Wψ0

)
ψλ dλ

)
A(t)

= − lim
ε→0

(
Wψ0,

∫
σ #

c

(
ψλ,

1

i(λ− λ̃0 − iε)
Wψ0

)
ψλ dλ

)
A(t)

= − lim
ε→0

(
Wψ0,

∫
σ #

c

(
ψλ,

1
i
λ− λ̃0 + iε

(λ− λ̃0)2 + ε2
Wψ0

)
ψλ dλ

)
A(t)

= i P.V.
∫
σ #

c

(
ψλ,

1

λ− λ̃0
Wψ0

)
(Wψ0, ψλ) dλ A(t)

−π

∫
σ #

c

(
ψλ, δ(λ− λ̃0) Wψ0

)
(Wψ0, ψλ) dλ A(t)

= i P.V.
∫
σ #

c

1

λ− λ̃0
|(ψλ,Wψ0)|

2 dλ A(t) − π

∣∣∣(ψλ̃0
,Wψ0

)∣∣∣2 A(t). (4.24)

This last line,

(Σ3ψ0, ψ0) ∂t A(t) = i P.V.
∫
σ #

c

1

λ− λ̃0
|(ψλ,Wψ0)|

2 dλ A(t)− π

∣∣∣(ψλ̃0
,Wψ0

)∣∣∣2 A(t), (4.25)

is precisely the conclusion of Proposition 1. The first term on the right hand side of (4.25) contributes anO(W 2) = O(‖ EE‖
4
2) phase

correction, while the second term determines the stability or instability of the dynamics. An explanation of the ε− regularization
in (4.24) is given in Appendix D.

If the Krein signature, defined in (4.14), is positive, then the solution to (4.25) decays exponentially for t > 0 and the dynamics
are stable. If the signature is negative, then the solution to (4.25) grows exponentially with O(W 2) = O(‖ EE‖

4
2) growth rate and the

dynamics are unstable. These two cases correspond to the time-independent perturbation theory, which gives that positive signature
embedded states perturb to resonances and negative signature embedded states perturb to genuine finite energy unstable eigenstates
of σ3 H ; see [18].

The scenario discussed here is generic; if Γ ≡ 0, then for typical small perturbations of the potentials κ and V it will be non-zero.
Since the continuum eigenmode ψλ̄0

is not easily computed, it is difficult to estimate the constant C in the formula

Γ ∼ C‖ Eψ0‖
4
2.

Depending on the magnitude of this growth rate and the appearance of other instability mechanisms, discussed next, this may or
may not be the most important instability of a nonlinear defect state.

4.3. Other scenarios for instability onset

We here discuss four additional scenarios under which a defect mode may lose stability. Unlike scenario one, these transitions to
instability arise at nonzero amplitude, and cannot be determined immediately from a condition such as (4.4) derived entirely from
quantities known exactly in the zero-amplitude limit. In the first two scenarios, instability arises due to bifurcations involving the
continuous spectrum while in the last two, instability arises from bifurcations involving only frequencies in the discrete spectrum.

Discrete-continuum edge collsion: In a second scenario, see Fig. 4.2(a), Σ3 H0 has a symmetric pair of eigenvalues in the gap,
and as ‖W‖ is increased the corresponding pair of eigenvalues of Σ3(H0 +W ) collide, for some critical positive amplitude, with the
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Fig. 4.2. (a) Instability scenario 2. (b) Instability scenario 3. (c) Instability scenario 4. (d) Instability scenario 5.

symmetrically located spectral band/gap edges. As ‖W‖ is further increased, each collision gives rise to a pair of complex conjugate
eigenvalues. Those in the upper half plane correspond to solutions which grow exponentially as time increases, and have a growth
rate given by the imaginary part of β.

Embedded edge bifurcation: In a third scenario, see Fig. 4.2(b) as ‖W‖ is increased, a quartet of complex eigenvalues (the four
values ±β and ±β∗) bifurcates from the secondary band edges on both sides of the spectral gap, resulting in two growing modes
and two decaying modes with growth rate given by the imaginary part of β.4

Hamiltonian pitchfork bifurcation: In a fourth scenario, see Fig. 4.2(c), Σ3 H0 has a symmetric pair of eigenvalues within the gap,
and as ‖W‖ increases, the associated discrete eigenvalues of Σ3 H = Σ3(H0 +W ) collide at zero at some critical positive amplitude
and then symmetrically ascend/descend the imaginary axis as ‖W‖ is further increased. This scenario is usually associated with
Hamiltonian pitchfork bifurcations in finite dimensions.

Hamiltonian Hopf bifurcation: A fifth scenario—see Fig. 4.2(d)—is related to Hamiltonian Hopf bifurcations. Suppose that at
small values of ‖W‖, the linearized operator Σ3(H0 + W ) has two pairs of real frequencies ±β0 and ±β1 in the spectral gap,
such that they collide pairwise at some critical amplitude. Then above this critical amplitude, the two pairs of real frequencies are
replaced by a quartet of complex frequencies, two of which lead to exponential growth. As we did not investigate any defects that
have more than three linear modes, this scenario was not observed.

5. Numerical computation of the discrete spectrum of Σ3 H via the Evans function

We now turn to numerical computation of the eigenvalues of Eq. (4.1) to confirm the above analysis and estimate the growth
rates predicted by Eq. (4.25). The simplest approach to numerically solving the eigenvalue problem (4.1) would be to discretize
the derivative and to approximate the solution (4.1) by the solution to the large system of linear equations so derived. This requires
truncating to a finite domain and applying artificial boundary conditions, usually Dirichlet or periodic.

Barashenkov and Zemlyanaya performed such a calculation using a Fourier representation in considering the closely-related
question of stability of the gap solitons of (2.7) without defect [5,6]. This produced a significant number of spurious unstable
eigenvalues with relatively large (O(10−2)) imaginary parts, and these errors were found to decay rather slowly as the number of
modes used in their calculation was increased, possibly due to artificial boundary conditions. Sandstede and Scheel have analyzed
the effect that such boundary conditions has on the spectrum of linear operators [61]. Another approach was taken by Malomed
and Tasgal, who studied the problem using averaged Lagrangian techniques to derive ordinary differential equations governing the
evolution of perturbations to the gap solitons [48], although they, too, found that their method could yield spurious growing modes.
Stability of nonlinear defect modes is studied by [46], who report simulations of the initial-value problem, showing that certain
nonlinear defect modes localized at a point (Dirac delta) defect are “semi-stable.”

A better way to test for instability is to use the Evans function, the analog of the characteristic polynomial for the linear
operator (4.1). It was introduced by Evans [24] and generalized by Alexander, Gardner, and Jones [3]. Evans functions have since
become a standard tool in both the analytic [26,39,45,56] and numerical [9,11–13,45,54,55] study of wave stability. Derks and
Gottwald have applied the Evans function numerically to the problem of gap solitons and were able to avoid finding spurious
unstable eigenvalues [20].

5.1. Definition of the Evans function

The Evans function is the analog of a characteristic polynomial for a class of infinite-dimensional operators. It is an analytic
function whose zeroes and their multiplicity correspond to eigenvalues of the operator and their multiplicities. To construct the

4 Closely related to this is an instability scenario described by Kapitula and Sandstede for a different system of coupled-mode equations. An edge bifurcation may
occur when the primary and secondary band-edges coincide, i.e at the value of ‖ EE(i)‖ for which ωi = 0; see Eq. (4.3) [39]. This was not observed in our numerical
simulations.
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Evans function, it is convenient to rewrite the eigenvalue problem (4.1) as:

d
dZ

Ey(Z) =


i (V(Z)+ β) i

(
κ(Z)+ 2E+E∗

−

)
iE2

+ 2iE+E−

−i
(
κ(Z)+ 2E∗

+E−

)
−i (V(Z)+ β) −2iE+E− −iE2

−

−iE∗
+

2
−2iE∗

+E∗
− −i (V(Z)− β) −i

(
κ(Z)+ 2E∗

+E−

)
2iE∗

+E∗
− iE∗

−

2 i
(
κ(Z)+ 2E+E∗

−

)
i (V(Z)− β)

 Ey (5.1)

where V(Z) = V (Z)+ ω + 2(|E+(Z)|2 + |E−(Z)|2).
The Evans function D(β) is constructed from the stable and unstable manifolds of the trivial solution Ey = 0 to Eq. (5.1) for fixed

β and |Z | → ∞. First, rewrite (5.1) in the general form

d
dZ

Ey = A(Z , β)Ey (5.2)

for y ∈ Cn and A(Z , β) an analytic n × n matrix-valued analytic function of Z and β which approaches a constant value A∞(β)

as |Z | → ∞. Each discrete eigenvalue of (4.1) corresponds to a solution of (5.2) that decays as |Z | → ∞. Solutions that decay
as Z → −∞ must approach zero in a direction tangent to the unstable subspace of A∞(β) (the span of the eigenvectors whose
eigenvalues have positive real part), which we may assume has dimension k, while solutions that decay as Z → ∞ approach
zero tangent to the (n − k)-dimensional stable subspace of A∞(β) (corresponding to eigenvalues with negative real part). An
eigenfunction of (5.2) exists if the stable and unstable manifolds have nontrivial intersection.

The Evans function D(β) is defined as follows. Assume the matrix A∞(β) has eigenvalues satisfying

Rλ1 ≥ Rλ2 ≥ · · · ≥ Rλk > 0 > Rλk+1 ≥ · · · Rλn (5.3)

with corresponding (generalized) eigenvectors Evi . For j = 1, . . . , k, define η+

j (Z) to be a solution to (5.2) satisfying the asymptotic

condition η+

j (Z) ∼ Ev j exp λ j Z as Z → −∞. For j = k + 1, . . . , n, define η−

j (Z) to be a solution satisfying the asymptotic

condition η−

j (Z) ∼ Ev j exp λ j Z as Z → ∞. Note that λ j , and η±

j all depend on the frequency parameter β.

If a discrete eigenmode exists with complex frequency β, then it must approach the space spanned by {η+

j (Z) : j = 1, . . . , k}

as Z → −∞ and analogously to {η−

j (Z) : j = k + 1, . . . , n} as Z → ∞. Thus these two subspaces must be linearly dependent,
which will cause the Wronskian determinant

W (Z;β) = det
[
η+

1 (Z) . . . η+

k (Z) η−

k+1(Z) . . . η−
n (Z)

]
(5.4)

to vanish for all Z . The eigenvectors Ev j of A∞ depend analytically on β, up to a constant multiple. We define the Evans function
by the Wronskian evaluated at some point Z0 which may be taken to be zero:

D(β) = W (0;β). (5.5)

The domain of the Evans function consists of the set of complex frequencies β for which the asymptotic eigenvectors η±

j can be
defined analytically and the condition

Rλk > Rλk+1

is maintained. That is, the ordering of the other eigenvalues may change, so long as the (k, n − k) splitting is preserved. The
eigenvectors may be normalized analytically such that

lim
|β|→∞

D(β) = 1

when the limit is taken along any path inside the domain of D(β).

5.2. Numerical experiments

The principal way Evans functions are used numerically takes advantage of their analyticity—for a given closed curve γ , the
winding number of D(γ ) equals the number of zeros, counting multiplicity, of D(β) inside γ . Since D(β) → 1 as |β| → ∞ in
the domain of D(β), the number of zeros of D(β), counting multiplicity, above a given line in the half-plane C+

β is equal to the
winding number of its image under β 7→ D(β).

We have used winding number calculations to count eigenvalues, followed by root-finding to trace the evolution of these
eigenvalues as the amplitude of a defect mode is increased. We discuss here some numerical results for defects with one, two,
or three bound states in the linear regime. We looked at a variety of defects beyond those discussed here, with similar results,
although no thorough attempt has been made to thoroughly explore the parameter space.
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Fig. 5.1. (i): The amplitude vs. frequency of the single nonlinear defect mode of the “odd defect” of Eq. (2.10) with ω = k = n = 1. The stability of this mode is
analyzed in Experiment 1 and Fig. 5.2. (ii): The “resonant”, “even” defect analyzed in Experiment 2.1, with curve (a) analyzed in Figs. 5.3 and 5.4 and curve (b)
analyzed in Fig. 5.5. (iii): The “nonresonant”, “even” defect analyzed in Experiment 2.2, with curve (a) analyzed in Fig. 5.6 and curve (b) analyzed in Fig. 5.7.

Fig. 5.2. Experiment 1: The eigenvalues of the linearization about the nonlinear defect mode of a one-mode defect. (i): The real part of the frequency, showing three
modes, marked (a), (b), (c) bifurcating from the edge of the continuous spectrum. These lines are drawn dash-dot if the frequency is purely real and solid if it has a
nonzero imaginary part (growth rate). The dashed lines mark the band edges and the light and dark shaded regions the multiplicity-one and multiplicity-two regions
of continuous spectrum. (ii): The growth rates of the three instabilities, labeled as in (i).

Experiment 1: A defect supporting one bound state

The defect defined in Eq. (2.10) with n = 1 supports a single linear bound state. To discuss the system at zero amplitude, we
refer to Fig. 4.1. The only discrete eigenvalue is given by β = ω0 − ω0 = 0 given by a ‘×’ sign in the figure. Modes like those
marked with the ‘•’ and ‘+’ are absent for this particular defect. As the amplitude is increased, the eigenvalue at zero does not
move. The spectral gap is given by formula (4.3) with ω0∗ replaced by ω0, the frequency of the nonlinear bound state. As seen
in Fig. 5.1(i), the frequency moves toward the left band edge as the amplitude is increased. In Fig. 5.2, we plot the numerically
calculated eigenvalues of this defect with ω = k = 1. Figures like this one are repeated in this section, so it is worth spending some
time dissecting it. As the defect mode’s amplitude is increased, its frequency decreases from ω = 1 to ω = −

√
2 = −κ∞, the left

band edge. Note that Eq. (4.3) implies that the width of the gap approaches zero as ω0 ↘ −κ∞. The spectrum is symmetric across
the real and imaginary axes, so only the first quadrant and its boundary are plotted. In the left figure, the mode’s amplitude is plotted
on the x-axis, and the real part of the spectrum on the y-axis. The region of multiplicity-one continuous frequencies is shaded light
gray and multiplicity two in dark grey, with dashed lines indicating their boundaries – the band-edges – moving according to (4.3)
and cross when ω0 = 0.

The linearization has no discrete modes of non-zero frequency at zero amplitude. Since zero remains an eigenvalue for all
amplitudes of EE0, instabilities may only develop from edge bifurcations. Two discrete modes, labeled (a) and (b), bifurcate from the
primary band edge. At higher amplitude, each collides with the band edge to produce an instability, as described by scenario 2. A
third instability, marked (c) arises due to an edge bifurcation from the secondary band edge, in accordance with scenario 3. Mode
(b) is the first to become unstable and develops the largest growth rate of the three modes. Below the large intensity 1.2, there is no
instability. It is worth noting that edge bifurcations only take place on the band edge that moves away from the origin as ‖ EE0‖ is
increased and not from the other edge. This same pattern is seen in all the simulations.

Experiment 2: Defects supporting two bound states

We consider two defects in the family (2.9), with k = 3 and different values of the parameter b. Because these defects support two
linear bound states, the linearization has a discrete spectrum consisting of the zero eigenvalue and of another family eigenvalues that
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Fig. 5.3. Experiment 2.1, annotated as in Fig. 5.2. The frequency (i) and growth rates (ii) for the linearization about the left nonlinear defect mode with b = 1.
The embedded frequency develops a small instability as the amplitude is increased. A second slightly unstable mode (b) bifurcates from the band edge at higher
amplitude.

Fig. 5.4. Experiment 2.1: Verification that the growth rate scales as ‖ EE‖
4
2 as predicted following Eq. (4.25).

bifurcate from β = ±2ω0∗ which we track as ‖ EE±1‖2 from zero. In experiment 2.1, this eigenvalue is embedded in the continuous
spectrum like the mode marked • in Fig. 4.1. According to scenario 1, detailed in Section 4.2, we expect an exponential instability
for any ‖ EE±1‖2 > 0. In experiment 2.2, the eigenvalue is in the gap, like the mode marked + in Fig. 4.1. Surprisingly, a much
stronger instability is found in the second case.

Experiment 2.1: A defect with an embedded eigenvalue in its linearization
In this case, we set b = 1 in Eq. (2.9) and find the linear frequencies are ω±1∗ = ±0.76, embedded in the continuous spectrum.

We look first at the “left mode,” for which ω−1∗ = −0.76, the left branch Fig. 5.1(ii). The real and imaginary frequencies of the
linearization are given as functions of the amplitude in Fig. 5.3. As the mode’s norm increases, its frequency approaches −1, so
the band gap closes and the edges of the secondary bands go to ±2. The mode labeled (a), which is embedded in the continuous
spectrum (like the eigenvalues marked by ‘•’ in Fig. 4.1) develops an instability in the manner of scenario 1 (Fig. 1.2). The real part
of the frequency does not change significantly: from 1.52 to 1.505. A second frequency (b) bifurcates from the secondary band edge
at ‖ EE−1∗‖2 = 0.88 under scenario 3. Fig. 5.3(ii) shows that =β for mode (a) is never larger than.004 and for (b) is never larger than
1.6 × 10−6, so no large instabilities arise. Fig. 5.4 shows via a log-log plot hat the growth rate scales as ‖ EE‖

4
2 for small amplitudes,

in agreement with Eq. (4.25) (recall ‖W‖ = O(‖ EE‖)2).
Fig. 5.5 shows the real and imaginary parts of the frequency for the mode with linear frequency ω1∗ = +0.76 (the right branch

in Fig. 5.1). In this case, the frequency ω1 decreases monotonically from 0.76 to −1.0 and thus the band gap widens until ω1 = 0
and then contracts. This allows for some more interesting behavior. The discrete eigenvalue marked (a) begins in the continuous
spectrum at ‖ EE1‖2 = 0 and its imaginary part grows in accordance with scenario 1. At larger amplitude it is subsequently absorbed
in the band edge at ‖ EE−1∗‖2 ≈ 0.88 (essentially scenario 3) in reverse. A second mode, marked (b) bifurcates from the primary band
edge soon after. This frequency must be real unless it collides with another eigenfrequency or band edge. However it soon collides
again with the primary band edge and picks up a nonzero imaginary part, as in scenario 2. At even higher intensity, a third discrete
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Fig. 5.5. Experiment 2.1, annotated as in Fig. 5.2: The frequencies (i) and growth rates (ii) for the linearization about the right nonlinear defect mode with b = 1.

Fig. 5.6. Experiment 2.2, annotated as in Fig. 5.2: The frequencies (i) and growth rates (ii) for the linearization about the left nonlinear defect mode with b = 3.

mode (c) bifurcates from the secondary band edge with nonzero imaginary part (scenario 3). The growth rates for this defect mode
all remain relatively small, with the largest growth rate arising from branch (c) at larger amplitudes.

Experiment 2.2: A defect with no embedded eigenvalue in its linearization
For the linear defect defined by (2.9) with b = 3 and k = 1, the linear frequencies decrease to ω±1∗ = ±0.221 which puts the

frequencies of the linearization inside the gap, as discussed in Example 1; see Fig. 5.1(iii). The one discrete eigenfrequency (and
its mirror image) present in the limit of zero amplitude is now in the gap (cf. the eigenvalues marked by ‘+’ signs in Fig. 4.1), and
Hamiltonian symmetries prevent it from developing a nonzero imaginary part without colliding with another frequency or band
edge. We first look at the linearization about the mode EE(−1) with negative eigenvalue; see Fig. 5.6. In this particular example the
defect mode loses stability in a collision; frequencies labeled (a) at β = ±0.442 move toward zero and collide at amplitude 0.81,
and, as described by scenario 4, split into a pair of complex conjugate pure imaginary eigenvalues, leading to an instability which
reaches a maximum growth rate of about 0.66. This is the most significant instability seen in the three example defects explored.
Two further instabilities, labeled (b) and (c), arise from (scenario 3) edge bifurcations from the secondary band edge.

Finally, we look in Fig. 5.7 at the stability of the mode whose frequency in the linear limit is +0.221. In this case the eigenvalue
(a) in the gap moves toward the band edge, and eventually disappears in an edge bifurcation, moving to another “sheet” and
becoming a resonance frequency with negative imaginary part and corresponding resonance mode (non-L2) with exponential decay
in t . Another instability (b) arises due to an edge bifurcation when the nonlinear mode has norm about 1.25 and reaches a maximum
growth rate of about 0.0065.

Experiment 3: A defect supporting three bound states

In the previous subsection, we were able to verify that the growth rate of nonlinear modes bifurcating from embedded frequencies
scales as the fourth power of the L2 norm, as was found analytically for scenario 1. In all the examples cited above the constants in
front of the ‖ EE‖

4 term was small, meaning that at small amplitudes, energy does not move quickly from one mode to another. Here
we show an example where the constant of proportionality is significantly larger.
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Fig. 5.7. Experiment 2.2, annotated as in Fig. 5.2: The frequencies (i) and growth rates (ii) for the linearization about the right nonlinear defect mode with b = 3.

Fig. 5.8. Experiment 3, annotated as in Fig. 5.2: The frequency (left) and growth rate (right) of discrete modes of the linearization about the mode EE1 of (2.6).

We consider the odd defect of the form (2.10) with ω = 1, k = 1, n = 2. The linear problem has discrete eigenfrequencies
ω0∗ = 1, ω1∗ = 2, and ω−1∗ = −2. The nonlinear modes for this defect are described by Fig. 2.1 The linearizations about all three
modes at zero amplitude possess embedded frequencies, so all three modes are unstable. We will consider the instability of the
mode EE1, that with frequency ω1∗ = 2 in the linear limit (refer to Fig. 2.1), whose roots are plotted in Fig. 5.8. The mode labeled
(a) bifurcates from β+

1,−1 = ω1∗ − ω−1∗ = 2 − (−2) = 4 moves to the other sheet in an edge bifurcation at L2-norm about 0.84.
The mode labeled (b) bifurcates from β+

1,0 = ω1∗ − ω0∗ = 2 − 1 = 1 and develops a large growth rate with a maximum value of
about 0.67, the one example we have found of an embedded mode leading to a large instability. The mode labeled (c) appears in an
edge bifurcation from the primary band edge and, as in scenario four, collides with its mirror image at the origin when ‖ EE‖ ≈ 1.43,
becoming a pair of pure imaginary eigenvalues, which collide and become real again at amplitude 2.5 (not shown). This instability
is of the same order of magnitude as branch (b).

6. Dynamics of competing discrete modes: Time-dependent numerical simulations

In the previous two sections, by studying the spectral problem (4.1), we provided analytical estimates and numerical
approximations to the rate at which perturbations to given nonlinear defect modes grow. Since the total intensity (squared L2

norm) of a solution is preserved, growth of perturbations can be expected to lead to decay of the defect mode. We expect to
observe a variant of the ground state selection scenario of [67], outlined in Section 3; energy of an unstable mode is transferred to a
preferred or selected discrete mode and to radiation modes. This scenario for NLCME is supported by simulations in [29], reprinted
in Fig. 2.1. We now present further numerical evidence for this scenario.

At zero amplitude, the linearization about the mode EE( j)∗ has an eigenvalue β+

j,k = ±(ω j∗−ωk∗)whose eigenvector corresponds

to a perturbation of the mode EE( j)∗ in the direction of the mode EE(k)∗; see Section 4. If this frequency is embedded in the
continuous spectrum of Σ3 H –condition (4.4)–and thus perturbs to one with positive imaginary part, then by Eq. (4.25), we expect
the projection of the solution on the mode EE(k)∗ to grow. Most of our simulations will begin with an initial profile described
by a linear combination of linear defect modes. We plot, as time series, the projections of the numerical solution onto these
modes. In Section 4.2, it was shown that embedded frequencies in the linearization generically perturb to isolated frequencies
having nonzero imaginary parts. In particular, Eq. (4.25) shows that the amplitude of the perturbation grows at the exponential
rate π |(ψλ̃0

,Wψ0)|
2/|(Σ3ψ0, ψ0)|. We note that since the operator W scales as ‖ EE‖

2, the growth rate is proportional to ‖ EE‖
4,
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Fig. 6.1. Experiment 1: In the defect supporting only one bound state, (a) a perturbed nonlinear defect mode with amplitude 1 is stable, while (b) a perturbed
nonlinear defect mode with amplitude 1.6 is unstable. Note the continued shedding of radiation as well as the “breathing” of the pulse shape.

with an undetermined constant of proportionality. We have no a priori knowledge of the inner product (ψλ̃0
,Wψ0) (its calculation

requires the continuum (non-L2) eigenfunction at frequency λ̃0) and the numerical calculations of Section 5 demonstrate that the
growth rate may in fact be quite small.

With that in mind, we now report on the results of direct numerical simulations of the dynamics of the competition between
defect modes. We verify the analytical and numerical predictions of Sections 4 and 5, and use the results of these sections to explain
the results of [29], summarized in Fig. 2.2.

The PDE is discretized using a sixth-order upwind finite-difference scheme for the spatial derivatives and the fourth-order
Runge–Kutta method is used for time-stepping. The solutions lose energy to radiation through the endpoints of the computational
domain, so outgoing boundary conditions are required, and we implement them using the method of perfectly matched layers
(PML), as introduced by Dohnal and Hagstrom for coupled-mode equations [22]. For large-amplitude solutions, which shed a
large quantity of radiation, the use of PML was absolutely vital to ensuring that the computations were not polluted by numerical
artifacts.

Experiment 1: Dynamics in a NLCME defect supporting one bound state

In experiment 1, the defect supports only one defect mode; there is no second mode to which the solution may transfer energy.
This is analogous to a situation studied in detail for NLS/GP [33,57,63,64]. Our computations with the Evans function show the
sole nonlinear bound state loses stability at an amplitude of just above 1.2 via a collision of discrete real eigenvalues with spectral
gap edges (Fig. 5.2, scenario two).

To test this prediction in a time-dependent numerical simulation, we begin with initial conditions consisting of a nonlinear defect
mode (obtained by the methods described in Appendix C) and a localized perturbation of about 10% of its magnitude. We show the
results of two such experiments, the first with a nonlinear mode of amplitude (L2-norm) 1.0 and the second of a nonlinear mode of
amplitude 1.6 in Fig. 6.1. In the first case, the system quickly sheds a small amount of radiation and then settles down into a stable
spatial profile (with an oscillating phase not shown). In the second case, the initial shedding of radiation is more dramatic and a
very pronounced oscillation in the shape and amplitude of the trapped mode is seen throughout the length of the simulation, along
with a continual shedding of radiation. The perturbation oscillates as it grows, consistent with the quartet of complex eigenvalues
shown in scenario two.

Experiment 2: Dynamics of NLCME defects supporting two bound states

In Evans function Experiment 2, we looked at a family of defects that support exactly two defect modes. In part 1, the
linearization possesses an embedded frequency, while in part 2 all the frequencies of the linearized system are in the gap.

Experiment 2.1: Dynamics of two bound states producing an embedded frequency
In Section 4, we show that frequencies embedded in the continuous spectrum cause nonlinear defect modes to lose stability, but

the numerical calculations summarized in Figs. 5.3–5.5 show that this instability may be very weak. We expect to see very slow
energy transfer in the dynamics of this problem. Using the defect defined by formula (2.9) with k = 3 and b = 1 gives embedded
frequencies in the linearized problem. Fig. 5.3 shows that when ‖ EE(−1)‖ = 0.75, perturbations should grow at a rate on the order
of 10−4. Fig. 6.2(a) shows that the growth of the perturbation (in the EE(1∗) direction) is indeed quite small. The calculations of the
spectrum of the linearization about EE(1) summarized in Fig. 5.5 predicts that when ‖ EE(1)‖ = 1, a perturbation in the direction of
EE(−1∗) should not grow at all (there are no non-zero growth rates at this point.) Fig. 6.2(b) shows that in this case the perturbation
does not grow, and instead decays to zero rather quickly. In Fig. 6.2(c), the two modes are initialized with equal nonzero amplitude,
and both lose energy, with neither appearing to grow at the other’s expense.
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Fig. 6.2. Dynamics experiment 2.1: (a) energy initially mainly in the mode EE(−1) (case of Fig. 5.3). (b) : energy mainly in mode EE(+1) (Fig. 5.5); (c): equal energy

initially in both modes simulated for a longer time. Key: in each figure, the solid line is the amplitude of EE(+1) and the dashed line is the amplitude of EE(−1).

Fig. 6.3. Dynamical simulations illustrating the bifurcation shown in Fig. 5.6. (a): a stable solution (amplitude.6) below the merger of two real frequencies creates
a pair of pure imaginary frequencies and instability. (b) and (c): the evolution of an initial condition with L2-norm 0.9 and 1.0, respectively, above the instability
threshold. Here solid lines give the amplitude of EE(−1) and dashed lines give EE(+1). The insets present the same information with a logarithmic scale on the y-axis,
demonstrating absolutely no growth of the second mode in (a) and exponential growth in (b) and (c).

Experiment 2.2: Dynamics of two bound states with no embedded frequency
Here we verify the scenario four instability (due to a pitchfork bifurcation) described in Experiment 2.2. For that defect, which

supports two bound states, neither of which has an embedded frequency in its linearization. In the linearization about the bound
state EE(+1) with positive frequency, Fig. 5.7 shows that no instabilities exist with significant growth rates. Our numerical simulations
we have confirmed this. The results of these simulations are qualitatively very similar to those provided in Fig. 6.2.

For the defect mode EE(−1) with negative frequency described by Fig. 5.6, all frequencies in the linearization are real and in
the gap for amplitudes below about 0.8. At this point, two real frequencies collide at the origin and develop nonzero growth rates
(scenario four). Fig. 6.3 shows the evolution of the initial condition 0.6 times the normalized linear eigenstate (below instability
threshold) and 0.9 and 1.0 times the normalized linear eigenstate (above the threshold). It is clear that energy flows from EE(−1)

to EE(1) only when EE(−1) is unstable as predicted by experiment 2.2 (Fig. 5.3) and that the rate of energy transfer increases as the
amplitude is further increased.

Experiment 3: A defect supporting three bound states

The spectrum of the linearization about the mode EE(1) of a defect supporting three bound states was discussed in Fig. 5.8. This
mode has frequency ω1 = 2. The other two frequencies of the linear problem are ω0 = 1 and ω−1 = −2. Our arguments show that
the eigenmode of the linearization with frequency β+

1,0 = 1 = ω1∗ −ω0∗ corresponds to perturbations in the direction of EE(0), while

those with frequency β+

1,−1 = 4 = ω1∗ − ω−1∗ correspond to perturbations in the direction of mode EE(−1). Fig. 5.8 shows that the

perturbation in the direction of EE(0), labeled (b) in the figure grows at a much faster rate than the perturbation in the direction of
EE(−1), labeled (a). In this last time-dependent experiment, we aim to test this prediction numerically.

We have performed two simulations. In the first, Fig. 6.4(a), a perturbation of the mode EE(1) in the EE(−1) direction quickly decays,
while in the second simulation, Fig. 6.4(b), a perturbation of the mode EE(1) in the EE(0) direction grows, eventually overtaking the
magnitude of the EE(1) mode. This is consistent with scenario one, as well as with the relative sizes of the growth rates found
numerically in Experiment 3.
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Fig. 6.4. (a): Initially, almost all energy is in the mode EE(1). In the left image, a small perturbation is added in the direction of mode EE(−1) with little transfer of

energy. (b): A perturbation is added in the direction of mode EE(0), which grows in time. This is predicted by Fig. 5.8.

7. Summary and discussion

Wave propagation through a periodic one-dimensional structure at Bragg resonance is governed by NLCME. The introduction
of a defect leads to a generalization of NLCME having spatially varying coefficients (potentials), which are determined by the
defect. The linear coupled mode equations with defect potentials may have localized eigenstates. For a nonlinear medium, these
linear states persist as nonlinear defect modes, which bifurcate from the zero state and the linear (defect) eigenfrequencies. Such
nonlinear defect modes correspond to optical pulse states, pinned at the defect sites. Such periodic structures and the nonlinear
defect states are candidates for optical storage schemes [29,30]. Only stable nonlinear defect states could play this role.

Therefore, we have considered by analytical methods and numerical simulation the stability and instability of such nonlinear
defect modes. We first classify the various scenarios for onset of instability and give examples which arise for a large class of
structures.

We investigate in particular detail the situation of a family of bifurcating states, whose linearization has an embedded eigenvalue
in the continuous spectrum, in the limit of zero amplitude, i.e. at the bifurcation point. Here we find (generically) that for arbitrarily
small amplitudes such states are exponentially unstable with a exponential rate of growth of order the fourth power of the nonlinear
bound state. Although exponentially unstable, we find this growth rate in practice to be quite slow in many examples.

States for which the linearization, at the bifurcation point, exhibits no embedded eigenvalues appear to be stable, at least on
long time intervals, for a range of amplitudes but exhibit instability via a collision of discrete eigenvalues of the linearization or the
collision of a discrete eigenvalue with the endpoint of the continuous spectrum. For a given defect with multiple nonlinear bound
states, different states may follow different scenarios and instability may result in the transfer of energy from one mode to another
and to radiation.

It is instructive to compare the dynamics we have found with those of the NLS/GP equation. In the small-amplitude limit,
the behavior is slightly different because NLCME’s second branch of continuous spectrum makes it harder to find defects which
will produce linearizations without a resonance. At higher amplitudes, we have found a large number of instabilities that arise
due to collisions of discrete eigenvalues with the endpoint of the continuous spectrum. Instabilities due to collisions between
pairs of eigenvalues lead to the strongest instabilities (largest growth rates) observed. A related problem, also with two branches
of continuous spectrum, is a coupled NLS system describing light propagation in birefringent optical fibers, studied by Li and
Promislow in [45]. Using somewhat different methods than those employed here, they also show a solitary wave is unstable due to
bifurcations involving embedded eigenvalues.

Another interesting behavior for the NLS/GP system has been seen by Kirr et al. [41] and some of the numerical experiments
discussed above suggest the same phenomenon exists in NLCME. They consider NLS/GP system with a defect equal to the
superposition of two potentials placed a fixed distance apart and discover a symmetry-breaking bifurcation. At small amplitudes,
the stable ground state solution is given to leading order by the sum of two ground states of the individual potentials, in-phase
and of equal amplitude, a highly symmetric configuration. At higher amplitudes, this configuration loses stability and the stable
solution is concentrated almost entirely at one or the other defect location. This is what is known in dynamics as a supercritical
pitchfork bifurcation. Bifurcation scenario four is precisely the mechanism seen in a generic pitchfork bifurcation, so it is of interest
to numerically locate the stable states that should exist at amplitudes above the critical amplitudes at which bifurcations are seen in
experiments 2.2 and 3.

The symmetry breaking bifurcation could be understood by appeal to a variational principle. In cases where the ground state can
be characterized as a minimum ofH[U ], the NLS-GP Hamiltonian energy, subject to fixed ‖U‖

2
2 = N , it can be shown [4] that for

small N the ground state is symmetric, with peaks situated over the local minima of each well, while for N sufficiently large the
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ground state is strongly localized in one well or the other. Symmetry breaking, if it occurs in NLCME, would be quite interesting
and could be studied by the methods of [41]. Note however that in contrast to NLS-GP, nonlinear bound states of NLCME are
critical points of infinite index, since the linearized energy has continuous spectrum which is unbounded above and below.

Finally, it would be instructive to extend (4.25) – which describes the growth or decay of a single defect mode due to its
interaction with the continuum – to a coupled system of equations describing the interactions of multiple defect modes with each
other and with the continuum. Such a derivation has been carried out rigorously by Soffer and Weinstein for the NLS/GP system
with two defect modes. They show that in the NLS/GP at low amplitude, the ground state is nonlinearly stable and derive a Fermi
golden rule that predicts that half the energy of the excited state will be transferred to the ground state as t ↗ ∞. Immediate
extensions of this are to NLS/GP with 3 or more defect modes [70] and to NLCME, especially in the case of 3 or more modes. Such
models were able to predict the symmetry-breaking bifurcation in [41] and may be able to illuminate the Hamiltonian bifurcation
of our experiment 2.2 in Section 5. We note that Aceves and Dohnal have derived finite-dimensional models in [1], although these
models do not incorporate the coupling to the continuous spectrum seen to be important in Section 4.
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Appendix A. List of Symbols

Complex variables: Rz and =z denote the real and imaginary parts of a complex number z. Its complex conjugate is z∗.

A projection operator: Pc∗ - projection onto the continous spectral part of the self-adjoint operator H .

Inner Product Convention: 〈 f, g〉 =
∫

f̄ (Z) g(Z) dZ

Pauli matrices:

σ1 =

(
0 1
1 0

)
; σ3 =

(
1 0
0 −1

)
; Σ3 =

(
I 0
0 −I

)
, where I =

(
1 0
0 1

)
.

Linear and nonlinear solutions: EE =

(
E+

E−

)
is a solution to the nonlinear eigenvalue problem (2.6) while solutions with subscript

asterisks, i.e. EE∗ are solutions to the linear problem (2.8). Associated to these are frequencies ω (eigenfrequencies ω∗ of Σ3 H in the
linear limit.)

Plemelj identities

(x ∓ i0)−1
= P.V. x−1

± iπ δ(x). (A.1)

Appendix B. Sketch of derivation of NLCME with potentials

Consider light propagation in a fiber with linear polarization and assume that the signal propagates with a constant (given)
transverse profile. The dielectric susceptibility is assumed to possess Kerr (cubic) nonlinearity. Under these assumptions, Maxwell’s
equations for the scalar electric field E(z, t) simplify to

∂2
z E(z, t)− c−2n2(z, E)∂2

t E(z, t) = 0. (B.1)

If the dielectric function is assumed to be constant n(z, E) = n̄, this is the linear wave equation. Seeking plane waves of the
form ei(kz−ωt), leads to the dispersion relation

ω2
− c2k2/n̄2

= 0. (B.2)

For any pair (k, ω) satisfying (B.2), the solution is a Fourier sum of backward and forward propagating plane wave solutions:

E(z, t) = E+ei(kz−ωt)
+ E−e−i(kz+ωt)

+ c.c. (B.3)

where E+ and E− are the complex amplitudes of the forward and backward moving Fourier components at wavenumber k.
Nonlinearity and periodic longitudinal variations in the linear dielectric constant will result in coupling between the forward and

backward plane waves, and slow changes to the periodic profile will result in the creation of a potential. The dielectric constant
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consists of three parts n2
= ñ2

+ n2
grating(z)+ n2

NL where

ñ2
= n̄2

+ εW (εz);

n2
grating(z) = 2εχ (1)(εz) cos(2k0z + 2φ(εz));

n2
NL = χ (3)E2(z, t).

(B.4)

The dimensionless parameter ε is taken to be small and the remaining parameters to be order one. The form of the dielectric
constant (B.4) implies a specific relation between (a) the amplitude of refractive index variations, (b) the spatial scale over which
the uniform grating is modulated (by apodization, introduction of defects etc.), and (c) the nonlinearity. This relation is chosen so
that all these effects enter at the same order in the multiple scale analysis [40], i.e. the maximal balance. This yields an ansatz of
the form:

E =
√
εE0 + O(ε3/2) where

E0 = Ẽ+(z1, t1)ei(k0z−ω0t+φ(z1)) + Ẽ−(z1, t1)e−i(k0z+ω0t+φ(z1)).
(B.5)

Here z1 = εz and t1 = εt . Notice the approximate solution is chosen with twice he wavelength of the underlying grating—this is
the Bragg resonance condition. Inserting this ansatz into (B.1), separating terms by magnitude in ε, and eliminating secular terms
at order ε3/2 in the expansion leads to “slow equations” for the evolution of the amplitudes Ẽ+ and Ẽ−:

i∂z1 Ẽ+ + i
n̄

c
∂t1 Ẽ+ +

[
k0W (z1)

2n̄2 − φ′(z1)

]
Ẽ+ +

ω0χ
(1)(z1)

2n̄c
Ẽ− +

3k0χ
(3)

n̄2

(
2|Ẽ−|

2
+ |Ẽ+|

2
)

Ẽ+ = 0;

−i∂z1 Ẽ− + i
n̄

c
∂t1 Ẽ− +

[
k0W (z1)

2n̄2 − φ′(z1)

]
Ẽ− +

ω0χ
(1)(z1)

2n̄c
Ẽ+ +

3k0χ
(3)

n̄2

(
2|Ẽ+|

2
+ |Ẽ−|

2
)

Ẽ− = 0.

This multiple scale procedure [40] is rigorously justified for a close analog of these equations in [32]; see also Martel [50,51] for
higher-order corrections that can effect the stability.

Introduce dimensionless distance Z = z1/L , time T = n̄Z/c, and electric field E± = Ẽ±/E variables for some characteristic
length scale L and electric field strength E and scaled functions

WL(Z) = W (L Z), φL(Z) = φ(L Z), and χ
(1)
L (Z) = χ (1)(L Z). (B.6)

A sketch of the above scalings and the Bragg resonance condition is given in Fig. 1.1; for a more detailed discussion of the physical
length and time scales see [29]. The above equations become

i∂T E+ + i∂Z E+ + κ(Z)E− + V (Z)E+ + (|E+|
2
+ 2|E−|

2)E+ = 0

i∂T E− − i∂Z E− + κ(Z)E+ + V (Z)E− + (|E−|
2
+ 2|E+|

2)E− = 0,

where we have defined

κ(Z) =
ω0L

2n̄c
χ
(1)
L (Z) =

Lk0

2n̄2 χ
(1)
L (Z), V (Z) =

Lk0

2n̄2 WL(Z)− φ′

L(Z), and E =
n̄√

3k0Lχ (3)

which is precisely (2.1). Note that the coefficient κ(Z) arises entirely due to modulations in the depth of the grating, while V (Z)
may arise entirely due to slow changes to the average susceptibility or else due to local modulations in the wavelength of the grating.

Appendix C. Numerical computation of nonlinear defect modes

Eq. (2.6) is discretized on the Z -interval [−L , L], setting h =
2L
N and Z j = −L + j h, for j = 0, . . . , N − 1. Approximating

E±(Z j ) ≡ e±, j , and defining the N -dimensional vectors of unknowns Ee+ and Ee−, we arrive at the system

ωe+, j + i(DEe+) j + κ(Z j )e−, j + V (Z j )e+, j +

(
|e+, j |

2
+ 2|e−, j |

2
)

e+, j = 0 (C.1a)

ωe−, j − i(DEe−) j + κ(Z j )e+, j + V (Z j )e−, j +

(
|e−, j |

2
+ 2|e+, j |

2
)

e−, j = 0, (C.1b)

h ·

N∑
j=1

(
|e+, j |

2
+ |e−, j |

2
)

= I (C.1c)

with 2N complex unknowns e±, j and one real unknown ω. D is the discretized derivative operator, which will be discussed further
below. Below we use symmetries to reduce the number of real unknowns from 4N + 1 to N + 1.



R.H. Goodman, M.I. Weinstein / Physica D 237 (2008) 2731–2760 2755

Assuming κ(Z) and V (Z) are even functions, the linear standing-wave solutions to (2.8) all satisfy

E( j)− = sE∗

( j)+

where s = ±1 and the overbar denotes complex conjugation. The nonlinear defect modes are the continuations of the linear defect
modes and preserve these symmetries, although it is possible that these solutions lose stability in symmetry-breaking bifurcations
at higher amplitudes. . . Incorporating this into the scheme (C.1) eliminates 2N complex unknowns.

By phase invariance, E+(0)may be assumed to be real and positive. Then R(E+) is even and =(E+) is odd. Using this symmetry,
we need solve only for R j = R(e+, j ) for j = 0, . . . N/2, and I j = =(e+, j ) for j = 1, . . . N/2 − 1. The remaining values may
be found by symmetry, leaving N + 1 real unknowns. Accounting for the symmetries eliminates a one-dimensional invariant set of
fixed points and speeds the root-finder’s convergence.

The eigenvalue problem is posed on an infinite domain. Solution of a problem on an infinite domain involves balancing two
competing sources of error: truncation and discretization. To eliminate error due to the truncating the computation to an interval
[−L , L], L , and thus dZ should be taken large, but to eliminate discretization error dZ should be taken small. To balance these two
effects, a non-uniform discretization is imposed. The finite interval [−π, π) is mapped to a much larger interval by

ζ = sinh λZ , (C.2)

as proposed by Weidemann and Cloot [72] and summarized by Boyd [8]. The uniform grid Z j = −π + j∆Z is then mapped
to a nonuniform grid ζ j , with points that are closely and almost uniformly spaced near ζ = 0, and sparsely spaced for large ζ .
Boyd provides guidelines for the choice of the stretching parameter λ [7]. Because the Evans function requires an integration from
conditions at ±∞, it is important to resolve the tails well at this stage. We found we could obtain more accurate numerical defect
modes using 256 points on a stretched grid than using 2048 points on a uniform grid, where both grids were of the same width, in
addition to the obvious savings in computation time.

On the periodic domain [−π, π), Fourier collocation is used to derive the discretized derivative operator D in (C.1), which is
then multiplied by a weighting factor W j =

1

λ
√

1+ζ 2
j

to account for the stretching transformation (C.2). As long as the solutions

are sufficiently small at ζmax = sinh λπ , the error introduced into the equations by the assumption of periodicity is small, and
the numerical solutions converge quickly as n, the number of grid points, is increased. What is important is that the exponential
decay rate in the tails is computed accurately and that the numerical solution is computed accurately far enough into the tail so
that |E±| ∼ 10−8, then since the linearized equations will have coefficients depending on |E±|

2
∼ 10−16, any error due to the

truncation will be on the order of that due to using finite-precision arithmetic.
System (C.1) was solved numerically using programs from the MINPACK suite [53]. For the smallest chosen value of I ,

the initial guess for the nonlinear solver was a suitably scaled linear defect mode. For larger values of I , the initial guess was
extrapolated from previously computed solutions. The program continued producing new iterates until it reached the left edge of
the band gap, and was able to find reasonable solutions quite close to the band edge.

Appendix D. Technical details from Section 4.1

We explain the manner in which the limit ε → 0 is taken in Eq. (4.24).∫
σ #

c

ei(λ−λ̃0)t
∫ t

0
ds
(

e−i(λ−λ̃0)sψλ, Wψ0

)
ψλ dλ A(s) ds

= lim
ε→0

∫
σ #

c

ei(λ−λ̃0+iε)t ψλ dλ
∫ t

0
ds A(s)

(
e−i(λ−λ̃0+iε)sψλ, Wψ0

)
= iA(t)

∫
σ #

c

1

λ− λ̃0 + i0
ψλ dλ (ψλ,Wψ0) − iA0

∫
σ #

c

ei(λ−λ̃0)t

λ− λ̃0 + i0
ψλ dλ (ψλ,Wψ0)

+ i
∫ t

0

∫
σ #

c

ei(λ−λ̃0)(t−s)

λ− λ̃0 + i0
ψλ dλ (ψλ,Wψ0) ∂s A(s) ds. (D.1)

The first term on the right hand side of (D.1) contributes to (4.25). We now show that the remaining terms decay. In particular, it
suffices to show that for any smooth and decaying function, f , the term∫

σ #
c

ei(λ−λ̃0)t

λ− λ̃0 + i0
ψλ dλ (ψλ, f )

decays as t ↑ +∞. Let χ(λ) be a smooth function, which is equal to one on σ #
c , vanishes outside a neighborhood of σ #

c and vanishes
near thresholds and infinity. For any k ≥ 1
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σ #

c

ei(λ−λ̃0)t

λ− λ̃0 + i0
ψλ (ψλ, f ) dλ = lim

ε→0

∫
σ #

c

ei(λ−λ̃0+iε)t

λ− λ̃0 + iε
(ψλ, f ) ψλ dλ

= lim
ε→0

− i
∫

∞

t

∫
σ #

c

(ψλ, f ) ei(λ−λ̃0+iε)s ψλ dλ ds

= lim
ε→0

− i
∫

∞

t

∫
(ψλ, f ) ψλ χ(λ) ei(λ−λ̃0+iε)s dλ ds

= lim
ε→0

− i
∫

∞

t

∫
(ψλ, f ) ψλ χ(λ)

(
(is)−1∂λ

)k
ei(λ−λ̃0+iε)s dλ ds. (D.2)

The last expression is bounded by

t−k
∫

∞

t
ds
∫ ∣∣∣∂k

λ [(ψλ, f ) ψλ χ(λ)]
∣∣∣ dλ = o(t−k), t → ∞. (D.3)

Appendix E. Numerical computations with Evans functions

Before describing the numerical method used to compute the Evans function, we first comment on the sources of error in this
calculation. The largest source of error, is a loss-of-significance in the calculation of the Wronskian (5.4). As each column in this
determinant is the image of a solution that grows exponentially as Z moves from ±∞, the norm of each column vector may be
quite large. Near zeros of the Evans function D(Z), there must be large cancelations that arise in evaluating the determinant that
defines it. To mitigate this loss-of-significance, the solutions to the differential equations (5.2) must be extremely accurate. First
that means that the defect modes around which we linearized must be very accurate, and must be well-computed deep into the
exponentially decaying tails, to allow the shooting to start in a region where the linearized problem is very nearly the linearized
differential equation at Z = ±∞. Additional considerations that arise are more technical and are discussed below.

E.1. Numerical computation on exterior product spaces

Numerical calculation of the Evans function is extremely delicate, and there exists a wide literature discussing how to accurately
implement the calculation [10,13,69]. We will summarize briefly and point to the appropriate references. The most straightforward
calculation would be to first find the n vectors η+

j (0) andn η−

j (0) and calculate their Wronskian (5.4) directly. That is, for each of
the k positive eigenvalues, choose L large enough that A(±L) ≈ A∞ and numerically integrate

dη+

j

dZ
= A(Z)η+

j

η+

j |Z=−L = Ev j e−λ j L
(E.1)

from Z = −L to Z = 0 for j = 1 . . . k and

dη−

j

dZ
= A(Z)η−

j

η−

j |Z=L = Ev j eλ j L
(E.2)

from Z = L (backwards) to Z = 0 for j = k + 1 . . . n.
When the stable and unstable subspaces of A∞ are one-dimensional, this strategy works well, but when they are of higher

dimension, this works poorly. Consider the equation

dEy

dZ
= A(Z)Ey (E.3)

Ey ∈ Cn , such that the two largest eigenvalues of A are positive with µ2 > µ1 > 0 and corresponding eigenvectors Ey2 and Ey1. In
attempting to compute the solution Ey ∼ Ey1eµ1 Z , rounding errors will inevitably introduce a small error in the direction of Ey2 which
will grow at the faster exponential rate µ2, which, for the necessarily large values of L , may cause significant errors. One might
hope to correct this error by performing a re-orthogonalization at each step, but this, too, is problematic, as discussed in [13,20].
An algorithm that overcomes these difficulties without resorting to a compound matrix formalism has recently been constructed by
Humpherys and Zumbrun [37]. This is important for computations in Cn with n � 1 since the dimension of the exterior product
space grows very rapidly with n.

A method was proposed by Brin [13] and significantly refined and made mathematically precise by Bridges and
collaborators [10–12], working in various combinations. We briefly introduce the basic features of the method, and refer the reader
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to the cited papers. Let Ee j be a set of orthonormal basis vectors for Cm , then the exterior product (the wedge product) is defined on
the Ee j by the properties of bilinearity:

Eei ∧ (aEe j + Eek) = aEei ∧ Ee j + Eei ∧ Eek

(aEei + Ee j ) ∧ Eek = aEei ∧ Ee j + Ee j ∧ Eek

and antisymmetry:

Eei ∧ Ee j = −Ee j ∧ Eei ,

which implies that Eei ∧ Eei = 0. The exterior product is extended to Cm using (bi)linearity and antisymmetry: if Eu =
∑n

j=1 u j Ee j

and Ev =
∑n

j=1 v j Ee j , then

Eu ∧ Ev =

n−1∑
i=1

n∑
j=i+1

(uiv j − vi u j )Eei ∧ Ee j .

One may easily see that the set {Eei ∧ Ee j } forms the basis for the vector space C(
m
2 ) of 2-forms over Cm . The 2-form Evi ∧ Ev j gives

the complex area of the parallelogram with sides Evi and Ev j . Given an i-form and a j-form with i + j ≤ m, we may define their
wedge product as an (i + j) form using the anticommutativity and bilinearity. This is a binary operation of the form

∧ : C(
m
i ) × C

(
m
j

)
→ C

(
m

i+ j

)
.

Note now that the Evans function can be written in exterior product notation as

D(β) = η+

1 (0) ∧ · · · ∧ η+

k (0) ∧ η−

k+1(0) ∧ · · · ∧ η−
n (0)

= W+(0) ∧W−(0), (E.4)

whereW+(Z) is the k-form given by the wedge product of the η+

j (Z) andW−(Z) is the (n − k)-form given by the wedge product

of the η−

j (Z). In the present case, Ee j : 1 ≤ j ≤ 4 is the standard basis of C4, and the space of 2-forms ∧
2(C4) is six-dimensional

with orthonormal basis vectors:

Ef1 = Ee1 ∧ Ee2, Ef2 = Ee1 ∧ Ee3, Ef3 = Ee1 ∧ Ee4, Ef4 = Ee2 ∧ Ee3, Ef5 = Ee2 ∧ Ee4, Ef6 = Ee3 ∧ Ee4. (E.5)

The essential idea of all the so-called compound matrix methods is to numerically evolve W±(Z) from Z = ∓L to Z = 0,
rather than integrating the individual solutions whose wedge product forms W±. If Ey1 through Eyk satisfy evolution Eq. (E.3) then
Y = Ey1

∧ · · · ∧ Eyk satisfies the linear evolution equation:

dY

dZ
=

k∑
j=1

Ey1
∧ · · · ∧ Ey( j−1)

∧
d

dZ
Ey j

∧ Ey( j+1)
∧ · · · ∧ Eyk

=

k∑
j=1

Ey1
∧ · · · ∧ Ey( j−1)

∧

(
A(Z)Ey j

)
∧ Ey( j+1)

∧ · · · ∧ Eyk .

Using basis vectors for the wedge space ∧
k(Cn), this equation may be rewritten in matrix form as

dY

dZ
= A(k)(Z)Y (E.6)

where A(k)(Z) is a
( n

k

)
×
( n

k

)
matrix. In the present situation, n = 4 and k = 2, then this may be written out, using basis (E.5):

A(2)(Z) =


a11 + a22 a23 a24 −a13 −a14 0

a32 a11 + a33 a34 a12 0 −a14
a42 a43 a11 + a44 0 a12 a13

−a31 a21 0 a22 + a33 a34 −a24
−a41 0 a21 a43 a22 + a44 a23

0 −a41 a31 −a42 a32 a33 + a44

 . (E.7)

If µi and µ j are eigenvalues of A with eigenvectors Evi and Ev j . Then Evi ∧ Ev j is an eigenvector ofA(2) with eigenvalue µ = µi +µ j .
Thus only the solution with fastest growth need be (stably) computed.
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E.2. Integration scheme

A vector Ev ∈ ∧
k(Cn) is called decomposable if it can be written as the single wedge product of k elements of Cn , and not all

such vectors are decomposable. A vector Ev =
∑6

j=1 v j Ef j in ∧
2(C4) is decomposable if and only if the 4-form Ev ∧ Ev = 0, which

gives the algebraic condition

v1v6 − v2v5 + v3v4 = 0. (E.8)

This quantity is the Grassmannian invariant, and the set on which it vanishes is called the Grassmannian manifold. The k-formW+

is by its definition decomposable, and it is important for numerical accuracy that the computed approximation to be so as well.
Therefore we require a numerical integration routine that conserves the Grassmannian invariant. One such family of methods is
the fully implicit Runge–Kutta schemes using the Gauss–Legendre points [12,38]. We use the three-step sixth-order scheme of this
type:

Eyn+1
= Eyn

+ ∆Z
3∑

i=1

b j EKi (E.9)

where ∆Z is the stepsize, and the superscript n denotes points in the spatial discretization. The increments EKi are implicitly defined
by

EKi = A(Zn + ci∆Z) ·

(
Eyn

+

3∑
j=1

ai j EK j

)
(E.10)

and the coefficients are given by:

a =


5
36

2
9

−

√
15

15
5

36
−

√
15

30
5
36

+

√
15

24
2
9

5
36

−

√
15

24
5
36

+

√
15

30
2
9

+

√
15

15
5

36

 , Eb =


1
2

−

√
15

30
1
2

1
2

+

√
15

30

 , Ec =


5

18
4
9
5

18

 .

Since the matrix a has no nonzero elements, all the substeps Ki of the Runge–Kutta algorithm must be calculated simultaneously
by solving (E.10). Thus, although Eq. (5.1), used to construct the Evans function has four dependent variables, the number of
unknowns at each step is increased to six by the wedge product formulation, and then tripled to eighteen by the numerical scheme.
Since Eq. (E.6) is linear, this is still a small amount of work at each step.

E.3. Additional digit-preserving numerical measures

For large values of Z , the matrix in Eq. (5.1), and thus in (E.7) is nearly constant, the solution is not far from the product of the
exponential of this matrix and the initial vector, which is especially simple given that the initial condition is an eigenvalue of A(2).
For most values of β we are interested in, we find that the contribution of the constant part of A dominates the computed solution
so it is useful to solve this part exactly–the growth or rapid oscillation due to the largest eigenvalue.

If Ev is an eigenvector of a matrix M , then it is also an eigenvector of M − cI for any c, so we modify Eq. (E.1) to use

Ã = A(Z)−
λ1 + λ2

2

instead of A. Thus the compound matrix A(2) is replaced in Eq. (E.6) by Ã(2) = Ã ∧ Ã = A(2) − λ1 − λ2, and the Runge–Kutta
algorithm is only used to compute the non-constant part of the evolution. The solution at Z = 0 can then be multiplied by e(λ1+λ2)z

to find the solution. While the integration scheme converges at sixth order in ∆Z with or without this modification, we found
empirically that the error found using the modified method to be much smaller for each fixed value of ∆Z , even for values of β
near zero.

An additional source of error comes from solving (E.6) from ±L to 0, rather than from ±∞. We take L large by working on
the same nonuniform grid as was used in the solution to (C.1). This is especially important if the nonlinear mode is only known
numerically. Another solution to the tail problem is to use a rapidly convergent series form of D(β) to obtain the solution of
equations (E.1) and (E.2) at some finite value z = ±z0, and then solve the odes numerically from ±z0 to 0 [45].

The code was tested by confirming the results of Derks and Gottwald [20] on the stability of gap solitons in NLCME without
defect. We found that using the non-uniform grid for integrating the ordinary differential equation (E.6) in the shooting method
greatly improved the accuracy of D(β), especially in a neighborhood of β = 0, where a zero of high multiplicity decreases the
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Fig. E.1. The winding number (arg(D(β))/2π ) arising from the linearization about a gap soliton with ρ = 0.1, v = 0.9 and δ = 0.9π , with =β = 0.005. The solid
line corresponds to a uniform grid of 2048 points, and the dashed line to a variable grid with 512 points. For both computations, the ODE (E.6) is solved beginning
from Zmax = ±50.05, chosen so that |E±(Zmax)|

2 < 10−16 which makes the error due to tail truncation on the same order of magnitude as the roundoff error.
The uniform grid calculation overcounts the roots of D(β) by two because of numerical errors near β = 0.

accuracy of the computation. In Fig. E.1, we show that the computation on the nonuniform grid with 512 points gives a more
accurate count of the zeros than a uniform grid calculation with 2048 points which predicts two spurious unstable eigenvalues.
Tests also showed that the interval of computation [−L , L] must be taken quite large to properly resolve the tail’s effect on the
computed D(β). Our numerical solutions of (C.1) were not able to resolve the solution for Z this large without using the stretched
grid. The value of L used in the calculations Section 5.2 had to be taken fairly large before the computation converged.
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