
July 28, 2011 12:0 WSPC/S0218-1274 02960

International Journal of Bifurcation and Chaos, Vol. 21, No. 7 (2011) 2017–2042
c© World Scientific Publishing Company
DOI: 10.1142/S0218127411029604

HIGH-ORDER BISECTION METHOD
FOR COMPUTING INVARIANT

MANIFOLDS OF TWO-DIMENSIONAL MAPS

ROY H. GOODMAN∗ and JACEK K. WRÓBEL†
Department of Mathematical Sciences,
New Jersey Institute of Technology,

Newark, NJ 07102, USA
∗roy.goodman@njit.edu
†jacek.wrobel@njit.edu

Received July 14, 2010

We describe an efficient and accurate numerical method for computing smooth approximations
to invariant manifolds of planar maps, based on geometric modeling ideas from Computer Aided
Geometric Design (CAGD). The unstable manifold of a hyperbolic fixed point is modeled by a
piecewise Bézier interpolant (a Catmull–Rom spline) and properties of such curves are used to
define a rule for adaptively adding points to ensure that the approximation resolves the manifold
to within a specified tolerance. Numerical tests on a variety of example mappings demonstrate
that the new method produces a manifold of a given accuracy with far fewer calls to the map,
compared with previous methods. A brief introduction to the relevant ideas from CAGD is
provided.

Keywords : Invariant manifold; computer-aided geometric design; numerical algorithm.

1. Introduction

Iterated maps are ubiquitous in the study of dynam-
ics, arising either as models of physical, biological,
or economic systems themselves or as reductions of
continuous-time dynamics, e.g. as Poincaré maps.
Of fundamental importance in understanding these
dynamical systems are invariant manifolds (stable
or unstable) emanating from fixed points and peri-
odic orbits. These manifolds act as barriers between
different regions of the phase space and exert a sig-
nificant influence on the dynamics through their
topology. Except in some rare cases, such a man-
ifold cannot be expressed as a closed form paramet-
ric curve, nor as the level set of some function, and
therefore must be approximated numerically. It typ-
ically forms a so-called “tangle” in which the mani-
fold doubles back on itself repeatedly, with segments
of very high curvature connected to other segments
where the curvature is more modest.

The extreme stretching and folding of these
curves gives rise to chaotic dynamics. For the well-
known Hénon map [Hénon, 1976], a dissipative
and chaotic dynamical system, the strange attrac-
tor is equal to the closure of W u, so construct-
ing it provides a way to approximate the strange
attractor and thus to understand the long-time
behavior of the system. Similar reasoning applies
to other dissipative chaotic systems possessing an
attractor.

Two examples of one-dimensional invariant
manifolds are shown in Fig. 1. Such a manifold is
generally infinite in extent, so any computation will
approximate only a finite portion. In Fig. 1(a), we
consider two regions defined as the areas above and
below the curve apb. In a model of fluid mixing the
four “lobes” L1, . . . , L4, are known as turnstiles, and
can be used to quantify how fluid moves between the
upper and lower regions, according to the theory

2017

http://dx.doi.org/10.1142/S0218127411029604

July 28, 2011 12:0 WSPC/S0218-1274 02960

2018 R. H. Goodman & J. K. Wróbel

a b

W
b

s
W

a

u

p

L

L

L

L

4
3

21

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

X

Y

(a) (b)

Fig. 1. (a) Schematic of stable/unstable manifolds (red/blue). (b) Stable/unstable manifolds (red/blue) of a fixed point
computed using the algorithm of [Carter, 2004].

of phase-space transport as in [Rom-Kedar, 1990,
1994]; see also the work [Meiss, 1997]. More recent
work by Collins, and by Mitchell and Delos has
shown how to use the information contained in
the intersections of the stable and unstable man-
ifolds to construct symbolic dynamics and obtain
a fuller topological understanding of these systems
[Collins, 2002; Mitchell, 2009; Mitchell & Delos,
2006]. Figure 1(b) shows the stable and unstable
manifolds for the map defined in [Goodman, 2008]
and demonstrates the intricacy of such curves in an
area-preserving example.

This paper presents a new numerical method
for computing the one-dimensional unstable mani-
folds of hyperbolic fixed points of smooth maps from
the plane to itself. The method is based on simple
concepts developed in the field of computer-aided
geometric design (CAGD). Several other meth-
ods exist in the literature, which we review in
Sec. 5.1 and in the concluding discussion. These
algorithms are adaptive in the sense that more
points are placed in regions of high curvature than
in those with modest curvature. Our tests found
that these methods placed far more points than
needed in these high-curvature regions, and this led
to slower than optimal convergence, and, in some
cases, failure of the method to terminate. We test
some of these methods against our new ones, using
more stringent tests than we have seen previously
applied, and find significant improvement.

The remainder of this paper is organized as
follows. Section 2 contains more thorough back-
ground information about unstable manifolds. In
Sec. 3, we introduce the model problem of draw-
ing a parametric curve along with a few methods
for parameterizing unstable manifolds. Section 4
gives an introduction to the tools from CAGD that
are at the heart of the algorithms, while a more
technical discussion of these ideas is presented in
Appendix A. Topics covered include piecewise lin-
ear interpolation, Bézier curves, and Catmull–Rom
splines. Section 5 contains descriptions of adaptive
methods for rendering parametric curves. We first
show existing methods due to Hobson and Carter
and then describe two new methods. In Sec. 6, we
perform numerical tests of the geometric tools intro-
duced earlier, especially Catmull–Rom splines, as
well as tests of the proposed methods for render-
ing parametric curves. Section 7 contains a further
description of the implementation of our proposed
methods in the context of computing invariant man-
ifolds. In Sec. 8, we perform various numerical tests
showing convergence of the methods. Section 9 con-
tains a summarizing discussion of the advantages of
the algorithms presented here as well as a partial
road map for future work.

Finally, there are two appendices. The first,
Appendix A, contains a detailed introduction to
the CAGD tools used in this paper. The second,
Appendix B, contains links to supplementary

July 28, 2011 12:0 WSPC/S0218-1274 02960

High-Order Bisection Method for Computing Invariant Manifolds 2019

material, including working MATLAB codes imple-
menting the algorithms described in the paper.

2. Background

A discrete-time iterated map is a dynamical sys-
tem xj+1 = f(xj) where, for simplicity, we assume
f : Rn → R

n is diffeomorphism, and as smooth as
we need. For the present work, we set n = 2. When
considering the system simply as a diffeomorphism
and not as a dynamical system, we write x′ = f(x).
We assume that f has a hyperbolic fixed point x∗,
i.e. f(x∗) = x∗ such that the linearized matrix
Df(x∗) has two real eigenvalues λs and λu satisfying
0 < |λs| < 1 < |λu|. For simplicity assume both are
positive. These assumptions assure that the map is
orientation-preserving and has one-dimensional sta-
ble and unstable manifolds of x∗ in R

2, invariant
under f .

The stable manifold,

W s(x∗) = {x ∈ R
2 : fk(x) → x∗ as k → ∞},

is defined as the set of points which approach x∗ in
forward iterates of the map.1 The manifold is tan-
gent to the stable eigendirection of the linearized
system at x∗ and its global extension can be derived
by applying the inverse mapping f−1 to the local
segment. The unstable manifold,

W u(x∗) = {x ∈ R
2 : f−k(x) → x∗ as k → ∞},

is defined as the set of points which approach x∗
in backward iterates of the map. The assumptions
on the eigenvalues ensure this convergence is expo-
nential. The manifold is tangent to the unstable
eigendirection of the linearized system at x∗ and
its global extension can be derived by applying the
forward mapping to a local segment.

Most numerical methods constructed to com-
pute invariant manifolds use the same basic idea:
the global structure of individual branches of the
unstable manifold is found by repeatedly applying
the mapping to an existing segment of the mani-
fold. The stable manifold can similarly be found by
iterating f−1. Methods also exist for computing W s

when f−1 is not available in closed form [Kostelich
et al., 1996].

Consider two points x,y ∈ W u. Let W u[x,y]
denote the closed segment of W u connecting x to
y. For any given point x0 ∈ W u, the set of its images
{xn = fn(x0) : n ∈ Z} partition W u into a family of
finite curve segments disjoint except for their end-
points. We refer to the closed connected component
of W u between xn and xn+1 as the nth primary
segment Un, i.e.

Un = W u[xn, f(xn)].

A single branch U of the unstable manifold associ-
ated with the fixed point x∗ can be constructed as
the union of the primary segments Un. Therefore,
we can write

U =
∞⋃

n=−∞
Un,

where the branch is determined by the choice of
the initial primary segment U0. This is obtained by
local analysis and it is usually taken very close to
x∗; see Fig. 2. The short portion of the branch of
W u between x∗ and the initial primary segment can
be generated by backward iterates. It is however of
little interest.

The problem of computing a finite portion of
an unstable manifold can be reduced to that of
simply computing a parametric curve in the follow-
ing manner. Given an already computed segment
Un that has been endowed with parameterization

U

U0

1

U
3

U2

f (x)
3

0

f(x)
0

0x

x*

f (x)
2

0
f (x)4

0

Fig. 2. (Schematic) Union of primary segments forming a portion of the unstable manifold.

1A more precise definition of these manifolds requires exponential convergence. This condition is fulfilled for any system
satisfying the conditions given on λs and λu.

July 28, 2011 12:0 WSPC/S0218-1274 02960

2020 R. H. Goodman & J. K. Wróbel

Un = Un(t), a ≤ t ≤ b, then the next segment is
simply

Un+1(t) = f(Un(t)), (1)

so that Un+1(t) is a parametric curve depending
on the same parameter. We further discuss how to
choose the parameterization in Sec. 3.

Clearly any numerical method employing this
idea by using the same number of points to approxi-
mate the initial primary segment U0 and all its for-
ward images will have several disadvantages. First,
the distribution of points along each segment is not
controlled. A few iterations of the initial segment
may produce very closely spaced points in some
regions while large gaps between points occur else-
where. Next, the length of a primary segment tends
to increase rapidly with the number of iterations of
the initial segment. The number of points required to
resolve a later segment is generallymuch greater than
that required to resolve previous segments; see Fig. 2.

We focus our work on adaptive methods for
computing invariant manifolds. These methods are
able to adapt the distribution and number of points
on each segment. This avoids large gaps between suc-
cessive points on a segmentwithout placing toomany
points on that segment. It can also avoid using far
too many points in the shorter segments while still
resolving the longer segments. Our goal is to generate
an approximation of the manifold which is smoothly
resolved with a minimum number of points.

3. Model Curves and
Parameterization

3.1. Parametric curves

Motivated by (1), we delay considering the prob-
lem of computing an unstable manifold and instead
focus on the simpler problem of drawing a paramet-
ric curve

γ = {x ∈ R
2 : x = g(t), a ≤ t ≤ b}. (2)

To discuss what “drawing a curve” means, it is use-
ful to first discuss the idea of “geometric modeling”.
Any computational algorithm must replace the con-
tinuous mathematical object γ by a finite collection
of data that can be stored and manipulated by a
computer. These tools were developed as part of
the field of CAGD and are at the heart of modern
computer graphics, animation and CAD programs.

Most existing methods for calculating invariant
manifolds do not explicitly discuss the idea of geo-
metric modeling, but all implicitly choose a model

in order to construct an algorithm. In the cited ref-
erences, the curve is modeled by a “discrete curve”,
a sequence of points connected by a linear inter-
polant. The question addressed by the existing algo-
rithms, then, is how best to generate a finite set of
parameter values such that the model curve satisfies
some analytic or aesthetic criteria. We discuss previ-
ous algorithms in Sec. 5.1. Similar existing methods
for generating two-dimensional invariant manifolds
are likewise based on linear (planar) interpolation
of points on a surface. As loose analogy, algorithms
based on linear interpolation have local approxi-
mation error of O(∆2) where ∆ is the distance
between two consecutive interpolation points — the
equivalent of the forward Euler schemes students
first learn for the solution of ODE initial value
problems. The proposed research would, stretching
this metaphor, bring this to the level of second or
third-order Runge–Kutta, with local errors scaling
as ∆3 or ∆4 — this is made more precise in the next
section.

In addition to drawing a curve that “looks nice”
at screen resolution or upon “zooming in” to exam-
ine the features of a curve, there are analytic and
topological criteria that our approximate or model
curve should meet. For example, the unstable man-
ifold W u cannot have any self-intersections. The
algorithms below would need to be modified to meet
these additional criteria.

3.2. Parameterization

The spline interpolation problem in numerical anal-
ysis is usually stated with given points {x0, . . . ,xn}
and corresponding parameter values {t0, . . . , tn}. In
applications such as computer graphics, the param-
eter values are rarely provided and therefore must
be chosen somehow. Chapter 9 of the textbook
[Farin, 2002], dedicates a fair amount of discussion
on how best to pick the parameter values. Two
commonly used parameterizations defined induc-
tively by tk = k and the accumulated chord length
parameterization: one inductively defines t0 = 0 and
tk−tk−1 = ‖xk−xk−1‖, which gives a crude approx-
imation to arc length parameterization. The first
method often works poorly because it ignores the
geometry of the points. The second method spaces
the knots proportionally to the distance between
points and usually produces better results, although
not in all cases.

Another parameterization which we have found
to be very natural for this problem has been named
the inductive parameterization. Assuming the initial

July 28, 2011 12:0 WSPC/S0218-1274 02960

High-Order Bisection Method for Computing Invariant Manifolds 2021

primary segment U0 = {U0(t)|0 ≤ t ≤ 1} has been
given some parameterization (which is discussed
below), let U1(t) = f(U0(t−1)) for 1 ≤ t ≤ 2. Then
by mathematical induction, we can define Un(t) in
terms of Un−1(t − 1) and thus parameterize the
whole curve.

We find the following example of the induc-
tive parameterization both instructive and useful
in the problem of computing unstable manifolds.
Consider a linear map in the form x′ = Ax with a
hyperbolic fixed point at the origin. Let λ be the
unstable eigenvalue and v be its associated eigen-
vector, and let x0 = cv, W u is of course equal to
span{v}. The initial primary segment of the unsta-
ble manifold can be written as U0 = W u[x0, λx0]. If
this segment is parameterized by U0(t) = λtx0 for
0 ≤ t ≤ 1, then using the algorithm described above
extends this parameterization inductively to all seg-
ments Un and thus to the whole branch of W u.

This example suggests a way to parameterize
the initial primary segment U0. Near the fixed point
(which we can assume is x∗ = 0), the map f(x) is
approximately given by x′ = Df(0)x so we can
approximate U0 by an appropriate segment of the
unstable eigenspace using the above parameteri-
zation. We discuss a nonlinear correction to this
approach in Sec. 7.

Another motivation for the inductive param-
eterization is given by the “parameterization
method,” a rigorous analytical method of comput-
ing invariant manifolds of hyperbolic fixed points,
e.g. [Cabré et al., 2003a, 2003b, 2005; Frances-
chini & Russo, 1981]. The parameterization method
is based on power series expansion. The stable or
unstable manifolds of map f at a fixed point x0 is
represented by a parametric function P (s) which is
characterized by the invariance equation

(f ◦ P)(s) = P (λs), (3)

where λ is a stable or an unstable eigenvalue.
Substituting s = λt in (3) we obtain (f ◦ P)(λt)=
P (λt+1) which for any primary segment P is
equivalent to our inductive parameterization. The
parameterization method is the basis for the
recent computations [Mireles-James, 2009; Mireles-
James & Lomeĺı, 2010].

4. Brief Introduction to Geometric
Modeling Tools

For the sake of the flow of the paper, we give here
a very brief sketch of the geometric modeling tools

from which our algorithm is constructed. A more
detailed introduction is given in Appendix A, which
we encourage for further reading. We mention here
only ideas that may be unfamiliar to specialists in
dynamical systems, although in the appendix some
more familiar ideas are discussed in the context of
CAGD.

Bézier Curves refer to a family of degree-n
curves defined in terms of n + 1 control points
{p0,p1, . . . ,pn}, with n = 3 being the most com-
mon choice, for a parameter interval [a, b]. These
curves interpolate the first and last points p0 and pn

at parameter values a and b, respectively, while the
other points merely influence the shape of the curve.
An important property of these curves is the con-
vex hull property, namely that the curve lies inside
the convex hull of the control points for all param-
eter values between a and b. We make use of this
property to define the adaptivity condition.

In many problems, one would like to construct
a curve that interpolates (or comes very close to)
the points {x0, . . . ,xn} at the parameter values
{t0, . . . , tn}. A degree-n Bézier curve does not solve
this problem, so we turn to piecewise Bézier curves,
namely Catmull–Rom splines. These satisfy certain
continuity properties, while maintaining local con-
trol, i.e. a change to a given point xk will change
the curve only on some restricted parameter inter-
val [tk−j, tk+j] rather than on the whole interval
[t0, tn]. Recall that a cubic Hermite interpolant is
defined to match both the function values and the
tangent vectors at the endpoints of a curve seg-
ment. A Catmull–Rom spline is defined to be an
Hermite curve, where the tangent vectors are deter-
mined by finite-difference approximations of the
interpolation data. We will use both third-degree
and fifth-degree finite differences to approximate
these tangent vectors.

In Appendix A, all these families of curves are
precisely defined, and a fuller explanation is given of
their desirable properties, and the relations between
them. We also discuss various notions of continu-
ity, efficient algorithms for evaluating these curves,
and the expected accuracy of the various approxi-
mations made.

5. Adaptive Methods

In the standard interpolation problem of CAGD,
as stated for example [Farin, 2002], one is given a
sequence of points x0, . . . ,xn and would like to draw
a curve passing through those points in the given

July 28, 2011 12:0 WSPC/S0218-1274 02960

2022 R. H. Goodman & J. K. Wróbel

order. Our goal is somewhat different. We seek to
choose the points xk = γ(tk) as efficiently as possi-
ble in order to accurately render the curve.

5.1. Existing methods

Algorithms for efficiently computing unstable man-
ifolds go back at least to the 1980’s [Parker & Chua,
1989]. Two methods developed for drawing unstable
manifolds of maps are due to [Hobson, 1993] and
[Carter, 2004]. Both are essentially algorithms for
computing a parametric curve γ in Eq. (2), although
neither is framed this way. Suppose a model curve
is defined by piecewise linear interpolation between
n+1 points {x0 = f(a),x1 = f(t1), . . . ,xn = f(b)}.
Define the lengths lk = ‖xk − xk+1‖ and the angles
αk between consecutive linear segments xk−1xk and
xkxk+1. Then in both methods, a model curve is
considered acceptable if it satisfies

αk < tol1, (4a)

αklk < tol2, and αklk−1 < tol2, (4b)

where tol1 and tol2 are user-specified tolerances.
The first condition (4a) states that two consecutive
segments should be in nearly the same direction,
while the last two [Eq. (4b)] help to control the arc
length. The first condition is scale-invariant while
the second has an absolute scale. A schematic of
such a linear interpolant, together with the associ-
ated angles and lengths, is shown in Fig. 3.

5.1.1. Hobson’s method : Marching

Hobson’s method begins at t = a and adds new
points x(tk) to a given list of points until t = b
is reached. The method supposes that a sequence
of points xk = f(tk) has already been found and
attempts to find the next point xk+1 = f(tk+1). Let
s be a short parameter increment and let t′ = tk +s,
t′′ = tk + 2s, x′ = f(t′) and x′′ = f(t′′). Define the
vectors v1 = xkx′ and v2 = x′x′′. Let d = ‖v1‖
and α be the angle between v1 and v2. Hobson’s
algorithm uses the conditions

α < tol1, (5a)

αd < tol2 (5b)

to determine whether to accept the point x′. If the
tolerances are not met, the algorithm decreases s
and then tries again. In either case, the point x′′
is discarded. No explicit mention is made in [Hob-
son, 1993] on the condition for choosing s, although
the method for choosing how to adjust s can clearly

x
k

x
k–1

x
k+1

l
k

l
k+1 α

k

Fig. 3. The angle between consecutive segments in a dis-
crete curve.

make a large difference in the efficiency of the algo-
rithm. For example, one might take

s → 0.95max
{

tol1
α

,
tol2
αd

}
s

after each step, regardless of whether the current
step is accepted.

There are two sources of inefficiency in this
method. First, at each step, the computation of x′′
does not contribute to a point on the curve. In addi-
tion, each time a point x′ is rejected, two points are
computed that do not contribute to the curve. Fur-
ther note that the conditions (5) for accepting x′
are not equivalent to the conditions (4). It is possi-
ble, for the algorithm to satisfy conditions (5) while
badly failing to satisfy conditions (4); see Fig. 4.
An obvious downside to this method is the need to
compute and discard a point x′′ at each step. A sim-
pler method, given the curve up to xk, would be to
compute a candidate point x′ and test whether the
three points xk−1,xk and x′ satisfy conditions (4).
Hobson demonstrates that this method can fail at
instances that xk itself is too far from xk−1 for any
such x′ to produce an acceptable value of the angle
α, in particular if xk−1 and xk are situated on oppo-
site sides of a hairpin turn in curve γ, as in Fig. 4.

x’’

x

x

x’

k-1

k

Fig. 4. A situation where part of the curve might be missed.

July 28, 2011 12:0 WSPC/S0218-1274 02960

High-Order Bisection Method for Computing Invariant Manifolds 2023

This method is widely cited, as is a similar method
[Krauskopf & Osinga, 1998b].

5.1.2. Carter’s method : Bisection

Carter’s method, by contrast, is based on bisection.
Given an approximation to the whole curve γ, the
algorithm calculates all the angles αk between the
segments as shown schematically in Fig. 5. For each
point xk at which either condition of (4) is violated,
the algorithm adds new points at t+k = (tk +tk+1)/2
and t−k = (tk−1 + tk)/2. A new approximate curve
is constructed interpolating {x(tk)} ∪ {x(t±k)}.

Carter compares his algorithm to Hobson’s and
finds that for strict tolerances, his method can draw
the curve with as few as one third as many calls that
to the function f ; see Table 1. He found in prac-
tice, it was sufficient to enforce only condition (4a)
while ignoring (4b). Our experience is similar. This
method has appeared only as a preprint and as
an undergraduate honors thesis, and so has not
been cited, although it is very similar to a method
used, without description, to draw the tangles in
[Goodman et al., 2002, 2004]. Although Carter was
the first to propose this method in the context of
invariant manifold calculations, it was earlier dis-
cussed in the computer graphics literature for para-
metric curves, although these papers are not well-
cited. The method was proposed in [Chandler, 1990]
and subsequently in [Tzafestas & Pantazopoulos,
1999] and [de Figueiredo, 1995]. In these cases, the
authors’ focus is on the rendering of parametric
curves on computer screens or printers. Thus the
refinement condition for the recursion is related to
ensuring that any errors be smaller than one pixel.
For dynamics problems, we may be interested in
resolving features of the curve that are finer than
what is visible on the screen or on paper. We thus

Bisection Algorithm
α

x
1

x
3

x
2

x
1

x
2

x
2

v
1

v
2

2

Fig. 5. The angle between consecutive linear segments and
the bisection algorithm.

subject these methods to some exacting numeri-
cal diagnostics to test their effectiveness. In what
follows, we refer to Carter’s method as Adaptive
Linear Interpolation or ALI.

5.2. The proposed methods

We will demonstrate that ALI, while superior to
Hobson’s method, does not compute invariant man-
ifolds efficiently because it places too many points
near hairpin turns. We propose to remedy this by
using the Catmull–Rom spines described briefly in
Sec. 4 and more thoroughly in Appendix A. One
familiar way to interpolate n of points is with cubic
splines — piecewise cubic curves chosen to sat-
isfy matching conditions at the interpolated points
so that the overall curve is C2. This scheme has
two disadvantages which have led to its rejection
in CAD and computer animation systems. First,
satisfying the matching conditions requires solv-
ing a linear system, so that if new points are
added, the entire object must be recomputed. Sec-
ond, and closely related, the method is nonlocal;
changes to one interpolated point lead to changes
in all the coefficients. Interpolation methods used in
computer animation generally use piecewise-cubic
splines, but abandon the C2-matching requirement,
which allows for far greater flexibility. Appendix A
describes various equivalent forms for piecewise-
polynomial curves, and it is convenient to use dif-
ferent forms for different aspects of a calculation.

5.2.1. Flatness refinement condition

We now discuss what the refinement condition, the
analog to condition (4a), should be for a recur-
sive method based on Catmull–Rom splines. The
Catmull–Rom spline is by its definition C1 at the
interpolated points, so that the angle α between two
consecutive segments is identically zero. Because of
this, our method depends on a condition applied
within a single segment as opposed to the between-
segments condition (4a). Geometrically, we require
that each segment be sufficiently flat.

Several possible flatness conditions are sug-
gested by the equivalent Bézier form of the
Catmull–Rom interpolant. Referring to the sche-
matic of a Bézier control polygon given in Fig. 6,
several possible measurements of the flatness of the
Bézier curve are given by

(1) max{d1, d2} (distance from interpolating line to
the further control point);

July 28, 2011 12:0 WSPC/S0218-1274 02960

2024 R. H. Goodman & J. K. Wróbel

2

3

1
p

0

v
1

3

p

p

p

2

d

d

d

0

1

2

dmax

v

v

Fig. 6. The control points and several characteristic quan-
tities of a Bézier curve.

(2) (|p0p1| + |p1p2| + |p2p3| − |p0p3|);
(3) max{d1/d0, d2/d0} (aspect ratio of the bound-

ing box);
(4) the angle between the vectors v1 and v2;
(5) (|p0p1| + |p1p2| + |p2p3| − |p0p3|)/|p0p3|.

Each of the above conditions introduces a different
approach to estimate the flatness. Moreover, con-
ditions 1 and 2 have units of length whereas condi-
tions 3–5 are dimensionless. These conditions might
seem arbitrary but are closely related to the geom-
etry of Bézier curves. For example, the convex hull
property guarantees that dmax, the maximum dis-
tance between γ(t) and its interpolant is bounded
by condition 1.2

To motivate the flatness refinement condition
we look at an application of the de Casteljau algo-
rithm in Appendix A, which is often used to adap-
tively render Bézier curves. The adaptive algorithm
works by splitting a given cubic Bézier curve defined
for t ∈ [a, b] into two equivalent Bézier curves,
defined on the intervals [a, (a + b)/2] and [(a +
b)/2, b], with the algorithm producing the value of
the Bézier curve at the midpoint [choosing t = (a+
b)/2 in Eq. (A.6)]. The algorithm chooses whether
to split the interval based on a flatness condition
like those on this list, often based on the resolution
of the display device.

Catmull–Rom splines based on three-point cen-
tered differences or five-point centered differences,
along with one of the above flatness refinement con-
ditions, give our next methods for adaptively resolv-
ing a parametric curve. We refer to these methods as
Adaptive Catmull–Rom 3, (ACR3) and Adaptive
Catmull–Rom 5, (ACR5), respectively.

5.2.2. Error refinement condition

We find in the numerical tests below that a slightly
improved version of ALI performs nearly as well
as both these ACR methods. We note that each of

these schemes features a refinement condition based
on properties of a single model curve. Adaptive
methods for other types of problems, for example,
adaptive quadratures and adaptive ODE solvers,
work by comparing two approximations in order
to estimate an error and then refining near the
locations where they disagree. We propose such a
scheme here. At each iteration we compute both the
3-point and 5-point Catmull–Rom splines described
in Appendix A. The difference between them will
give the refinement condition. As it is expensive to
find the actual distance between two Bézier curves,
we estimate it using their control polygons. To
estimate the distance between two Catmull–Rom
approximations we use the equivalent Bézier form
of the Catmull–Rom interpolant. We refer to the
schematic of a Bézier curve; see Fig. 7.

This schematic depicts the difference between
two different interpolants to the same sequence of
points. Since the two curves interpolate the same
data, the first and the last points of the differ-
ence curve are zero. Several possible estimations
of the error between the two approximations are
given by

(1) max{|w1|, |w2|}; (maximum distance between
the control points)

(2) max{|w1|/d0, |w2|/d0}; (maximum relative dis-
tance between the control points).

Condition 1 has units of length whereas condition 2
is dimensionless. However, both these approxima-
tions are computationally less expensive than com-
puting the maximum norm error directly; we can
avoid “calculation” of the curve and estimate the
error using the already-calculated control points.

The adaptive method for rendering a paramet-
ric curve based on one of these error refinement
conditions we call 3-point versus 5-point Adaptive
Catmull–Rom or ACR3vs5.

5.3. Other methods

Similar methods for computing the unstable man-
ifold of planar maps are developed in [England
et al., 2005; Krauskopf & Osinga, 1998a, 1998b,
1999; Krauskopf et al., 2004]. These are based on
similar conditions to Eqs. (5). The manifold is com-
puted by adding one point after the other without
using the idea of primary segments. However, the
method is still based on linear interpolation.

2In fact, an elementary calculus exercise demonstrates that dmax ≤ (3/4) max{d1, d2}, see [Cheng, 1992].

July 28, 2011 12:0 WSPC/S0218-1274 02960

High-Order Bisection Method for Computing Invariant Manifolds 2025

0

3

2

2
1

1

p

p

p

p = p

1

2

d0

w

w

p = p
0

3

∼∼

∼
∼

p

∼p(t)

p(t)

2 2

1
p - p

p - p

1

(0,0)

1

2

∼

∼

w

w

(a) (b)

Fig. 7. Two different Catmull–Rom approximations, p(t) and p̃(t), of the curve γ(t). (a) The two approximations p and p̃.
(b) The error loop, p − p̃.

You et al. [1991] presented a slightly differ-
ent approach. They do use the idea of primary
segments. Their adaptive method is however, con-
trolled by the distance between resulting points.
The procedure does not require an interpolation of
any primary segment except the initial one, as long
as the distance is maintained below a screen reso-
lution.

Additionally, there exists an important rig-
orous, analytical method of computing invariant
manifolds based on power series expansions. This
method has been used both to prove analytical
statements about invariant manifolds [Cabré et al.,
2003a, 2003b, 2005] and to numerically calculate
such manifolds [Franceschini & Russo, 1981]. In this
method, a branch of the unstable manifold is writ-
ten as {(x(s), y(s)) | 0 < s < ∞} where x and y are
represented as power series in s, and the invariance
of the manifold under the map is used to derive
equations for the coefficients in the series. If f is
entire, this series has infinite radius of convergence,
but, in practice, due to roundoff error, the numerical
radius of convergence may be quite short, although
there exist methods to increase this radius (with-
out resorting to variable precision arithmetic). The
method is also the basis for the recent computa-
tions of two-dimensional invariant manifolds, and
their intersection in [Mireles-James, 2009; Mireles-
James & Lomeĺı, 2010].

We mention this method briefly in Sec. 3 as
the parameterization of the power series is closely
related to our “inductive parameterization.” The
method eliminates the need to compute the images
of fundamental segments, and, thus, the propa-
gation of error due to interpolation. Nonetheless,

this method does not invalidate the work presented
here. While this method provides an explicit for-
mula to compute points on the manifold, it thus
reduces the problem to that of drawing a paramet-
ric curve, i.e. choosing which points to plot and
how to interpolate between them, which is exactly
what our methods provide. Further, in the case
that the map is given as a numerical routine and
not by an analytical formula (e.g. as a numeri-
cal Poincaré map), this method is not applicable.
Finally when the map is given by an equation
with complex singularities (e.g. poles) the power
series may converge very slowly, thus giving a poor
approximation.

6. Numerical Tests of Proposed
Tools

In Sec. 8 we will test the algorithms using invariant
manifolds, but by performing our initial numerical
experiments on explicit parametric curves, we can
gain a bit more control over the testing process and
gain a clearer understanding of the behaviors of the
methods.

We introduce a model curve with which we
test our algorithms, given in polar coordinates as
r = r(t) and θ = θ(t):

γtest =
{

(r, θ) : r = 1 + ε(3t + cos t + cos
√

2t),

θ =
π

2
(sin t + sin

√
2t), a ≤ t ≤ b

}
,

(6)

and shown in Fig. 8.

July 28, 2011 12:0 WSPC/S0218-1274 02960

2026 R. H. Goodman & J. K. Wróbel

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

x

y

Fig. 8. The test curve for ε = 10−2, 0 ≤ t ≤ 15.

The curve has portions that are nearly circu-
lar, connected by regions where the curve makes
a sharp turn with large curvature. The curvature
of the test curve may be increased as desired by
adjusting the parameter ε 	 1. We consider the
curve a “model” of unstable manifolds in the sense
that it has regions of both large and small curva-
tures, alternating somewhat unpredictably, and is
nonself-intersecting. Since the nearly circular por-
tions of this curve lie very close together, it can be
used to test modifications to the algorithm to pre-
vent self-intersection of the approximate curve.

6.1. Numerical test of ACR3

We start with a visual test of the flatness refine-
ment condition with the Catmull–Rom spline based
on three-point central differences on the test
curve γtest, (6). We tested all of the presented flat-
ness conditions and decided to use condition 1 for
further work. For various values of the flatness toler-
ance we visually checked the graphs containing both
the exact and approximate curves to judge how
“close” the interpolated curve is to the exact curve.
In our initial explorations, we noticed that the
adaptive Catmull–Rom spline approximation per-
forms well along the curve except near sharp tips,
where the approximation has undesirable wiggles;
see Fig. 9(a). The observed “wiggles” correspond
to unwanted variation in the curvature of the C1

Catmull–Rom spline and suggest an improvement.
An improved method, which we call ACR3+, has
two steps

(1) use the ACR3 method to generate the points
along the curve,

(2) take the model curve to be the natural cubic
spline3 interpolating these points.

Note the improvement in Fig. 9(b).
In this section, we describe the initial numer-

ical tests performed to demonstrate the superior-
ity of the ACR3 and ACR3+ methods over ALI.
Additionally, to make a fair comparison between

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4

−1.35

−1.3

−1.25

−1.2

−1.15

−1.1

−1.05

−1

−0.95

−0.9

−0.85

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4

−1.35

−1.3

−1.25

−1.2

−1.15

−1.1

−1.05

−1

−0.95

−0.9

−0.85

(a) (b)

Fig. 9. The exact curve (red dashed) and two different spline interpolants on the knots from the adaptive Catmull–Rom
method, part of the γtest curve with ε = 10−2. (a) ACR3. (b) ACR3+.

3In all numerical tests we use MATLAB’s built-in spline command by default, which uses the not-a-knot condition at the
endpoints and is more accurate than the natural spline. For convenience, we will refer to this as a natural cubic spline.

July 28, 2011 12:0 WSPC/S0218-1274 02960

High-Order Bisection Method for Computing Invariant Manifolds 2027

10
2

10
4

10
−15

10
−10

10
−5

10
0

of points

M
ax

im
um

 E
rr

or

2−1

2−8

2−26

2−9

2−40

2−6

ALI
ALI+
ACR3
ACR3+
ACR3vs5
ACR3vs5+

(a)

1.0226 1.0228 1.023 1.0232 1.0234 1.0236

−10

−8

−6

−4

−2

0

2
x 10

−3

4756 points

1.0226 1.0228 1.023 1.0232 1.0234 1.0236

−10

−8

−6

−4

−2

0

2

x 10
−3

34 points

1.0226 1.0228 1.023 1.0232 1.0234 1.0236

−10

−8

−6

−4

−2

0

2

x 10
−3

18 points

(b) (c) (d)

Fig. 10. (a) Convergence of the error for the adaptive methods with different refinement conditions changing as indicated,
between the values at the opposite ends of each graph. The methods tested on the test curve with 0 ≤ t ≤ 10 and ε = 10−3.
Comparison of (b) the ALI+ method, (c) the ACR3+ method and (d) the ACR3vs5 method on one sharply pointed segment
of the curve for t ∈ (7.57, 7.82), the error approximately at the same 10−8 level indicated by boxes in (a). The curvature at
this point is about 1.1 × 105.

them, we introduce one more method. The pro-
cedure defined by first using the ALI method
to generate points and then passing a natural
cubic spline through those points we call ALI+.
In Fig. 10(a), we plot the maximum error ε =
maxt∈[0,10] |γexact(t)−γapprox(t)| as a function of the
number of points used in each computation as the
tolerance is decreased. The error is computed at
one hundred points between every two interpolated
points and the approximate maximum taken as the
maximum over this finite set.

First, it is clear that ALI+ converges much
faster than ALI and that ACR3+ provides a more
modest improvement over ACR3. Our discussion of
Fig. 9 shows that although this improvement might
be rather small quantitatively, it can provide signifi-
cant qualitative improvement. A common technique

used in evaluating CAGD methods is to plot the
curvature as a function of the parameter; see [Farin,
2002, Chapter 9]. A “good” method would be one
in which the computed curvature does not contain
unnecessary oscillations. Although we do not pro-
vide such a plot here, Fig. 9 makes it clear that
ACR3+ would be seen to be better in this case.

It is also clear from Fig. 10 that ACR3 con-
verges much more rapidly than ALI, but that the
advantage of ACR3+ over ALI+ is far less dra-
matic. Nonetheless, the improvement is significant.
In Fig. 10(a), we have drawn small boxes over
the points corresponding to the largest tolerance
for which the maximum error falls below 10−8, for
the ALI+ and ACR3+ (and ACR3vs5) methods.
The computation using ALI+ required 22 125 total
points while that using ACR3+ required only 5838

July 28, 2011 12:0 WSPC/S0218-1274 02960

2028 R. H. Goodman & J. K. Wróbel

0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

t

In
te

rp
ol

at
io

n
E

rr
or

ACR3
ACR5

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

t

D
iff

er
en

ce
 b

et
w

ee
n

m
et

ho
ds

(a) (b)

Fig. 11. Test on the model curve (6) with ε = 10−2, 0 ≤ t ≤ 15, (a) the error of the Adaptive Catmull–Rom methods, ACR3
green and ACR5 red, (b) the difference between the ACR3 and ACR5 approximations. (a) Flatness condition at the level 2−4.
(b) Difference between approximations.

points. To illustrate the origin of this savings, we
show in Figs. 10(b) and 10(c) the points computed
by the two methods in the neighborhood of one
hairpin turn. ALI+ has required 4756 points in this
neighborhood, to 34 for ACR3+.

6.2. Numerical test of ACR3vs5

Figure 10(a) gives a convenient summary of the per-
formance of the various methods, but does not allow
us to understand the cause of the disappointing
performance. For this we must understand where
large errors occur. Figure 11(a) shows the local error
|ε(t)| in both the ACR3 (Catmull–Rom with three-
point centered differences) and ACR5 (Catmull–
Rom with five-point centered differences) methods
after one run with fairly large tolerance. While both
curves satisfy the flatness condition for all values
of t, the error in the approximation varies widely.
Comparing Figs. 11(a) and 11(b) we see that the
difference between the exact curve and each of the
approximations is large exactly for values of t where
the two approximations disagree with each other.
These figures allow us to both diagnose and correct
the problem with the ACR3 method. The flatness
condition measures a property of the interpolating
curve itself, one that clearly is not well-correlated
with the interpolation error. The difference between
the two approximations does correlate well with
error and makes a more effective refinement con-
dition. This motivates the ACR3vs5 method intro-
duced in Sec. 5.2.

After experimenting with both the error con-
ditions discussed in Sec. 5.2, we chose to work
with Condition 1. We call the method com-
bining ACR3vs5 with a natural cubic splines
ACR3vs5+. We test both methods ACR3vs5
and ACR3vs5+ on the test curve (6) along
with the previous method ALI, ALI+ and ACR3
and ACR3+.

The final two lines in Fig. 10 show the con-
vergence of the two error-refinement methods. The
method ACR3vs5 converges faster than ALI, ALI+,
ACR3 and ACR3+. This improvement leads us to
expect that applying method ACR3vs5 to com-
puting invariant manifolds should lead to similar
results. Note that ACR3vs5+ performs no better
than ACR3vs5.

7. Details of the Numerical
Implementation Invariant
Manifold Calculation

7.1. Some notation

Let Un be the numerical approximation to the nth
true segment Un. This approximation is defined as
the Catmull–Rom curve interpolating the points in
the set

Xn = {xn
k}Nn

k=0

at the corresponding parameter values in the set

Tn = {tnk}Nn
k=0.

July 28, 2011 12:0 WSPC/S0218-1274 02960

High-Order Bisection Method for Computing Invariant Manifolds 2029

In particular, we can define the operator ΓCR that
maps a set of parameter values and the associated
interpolation points to their Catmull–Rom inter-
polant, i.e.

Un = ΓCR(Tn,Xn).

Thus we may construct the approximate invari-
ant manifold using an inductive procedure, with
two obvious steps. First, to construct the initial
segment U0 = ΓCR(T0,X0), which must satisfy the
chosen refinement conditions. Second, given Un, to
find suitable sets Tn+1 and Xn+1, which define an
approximation Un+1 = ΓCR(Tn+1,Xn+1) which sat-
isfies the same refinement condition. In order to
make this construction, we introduce two new pieces
of notation:

Tn + 1 = {tnk + 1}Nn
k=0 and f(Xn) = {f(xn

k)}Nn
k=0.

We call a segment resolved if it satisfies adaptive
refinement condition being used for the particular
algorithm.

Consecutive primary segments are joined
together so that the last point in Un is the first point
in Un+1, i.e. xn

0 = fn(x0
0). Subsequent primary seg-

ments can be found in the same way recursively.
According to the inductive parameterization from
Sec. 3, all values tnk ∈ Tn are drawn from the inter-
val [n, n + 1].

7.2. The initial primary segment

In order to initialize any adaptive method for
computing an invariant manifold, one first has to
determine the initial primary segment U0, approxi-
mating the true segment U0, as described in Sec. 2.
The easiest and the most commonly used method
is to choose the initial primary segment as a line
segment from the unstable subspace. It is crucial
to determine U0 very accurately in order to avoid
error propagation in further computations. There-
fore, this line segment must be taken very close to
the fixed point. This approach is not practical when
we are interested in computing a fairly long portion
of the manifold. Setting the initial primary segment
closer to the fixed point requires many more itera-
tions to compute the same portion of the manifold.
In order to be more efficient, the initial primary seg-
ment should be taken further from the fixed point,
using higher-order approximation. Accordingly, U0

is defined as a polynomial expansion of the manifold
close to the hyperbolic fixed point.

We consider the map of the form x′ = f(x) as
described in Sec. 2, where x = (x, y), f : R

2 → R
2

and the prime denotes the forward mapping. The
map can be written as

x′ = f1(x, y)

y′ = f2(x, y).

Near the hyperbolic fixed point (x∗, y∗) a branch
of invariant manifold can be explicitly written as
y = p(x) =

∑∞
k=0 ck(x − x∗)k. The invariance of

the manifold under the map f , yields the algebraic
relation

f2(x, p(x)) = p(f1(x, p(x))). (7)

Solving this recurrence yields c0 = y∗ and two pos-
sible values for c1, corresponding to the stable, W s

and the unstable, W u manifold. Once c1 is chosen,
the remaining coefficients can be found uniquely in
ascending order from relation 7. The single branch
of the manifold near the hyperbolic fixed point
(x∗, y∗) can be approximated by y = pN (x), the
truncation of the series to the (x−x∗)N term. Tak-
ing (x0−x∗) small enough and N large enough that

|f2(x0, pN (x0)) − pN (f1(x0, pN (x0)))| < ε 	 1,

guarantees that the error between the polynomial
approximation U0 and the true manifold U0 along
this segment is less than δ. The same approach
is used in [Hobson, 1993]. Moreover, our further
numerical tests (not shown here) show that this is
necessary in order to avoid error propagation, and,
especially, to smoothly join two segments Un and
Un+1.

We want to generate the sets X0 and T0 in order
to construct an accurate approximation U0. Choos-
ing x0

0, the x-coordinate of the first point of the
initial segment, the y-coordinate y0

0 is determined
by the expansion p(x) as y0

0 = p(x0
0). According to

the definition of U0 the last point of the segment is
determined by the choice of the first point and its
image (x0

N0
, y0

N0
) = f(x0

0, y
0
0).

Having the first and the last points of the initial
primary segment we generate the set of intermediate
points. Let I0 be the interval of the x-coordinates
between x0

0 and x0
N0

. This is parameterized by
the inductive parameterization introduced in Sec. 3
where the eigenvalue of Df(0) is replaced by a non-
linear correction λ = (x0

N0
− x∗)/(x0

0 − x∗). Then
any point of the U0 has the x-coordinate in a form
x0

i = x∗ + λti(x0
0 −x∗) where ti ∈ [0, 1] is a parame-

ter value. The y-coordinate of the points are given
by the manifold expansion as y0

i = p(x0
i). The

July 28, 2011 12:0 WSPC/S0218-1274 02960

2030 R. H. Goodman & J. K. Wróbel

complete set of points with their parameter values
determines a discrete representation of the initial
primary segment. In this way we define the sets T0

and X0, which give U0 = ΓCR(T0,X0). In order to
obtain an accurate interpolant at later steps, we
found it necessary to use a large number of points,
about 50.

7.3. Resolving a simple primary
segment

We restrict our attention to the specific problem
of finding the unknown primary segment Un+1

which is the approximate image under the map
f of an already-resolved primary segment Un =
ΓCR(Tn,Xn), i.e. Un+1 ≈ f(Un). Mapping the seg-
ment Un forward yields a parametric curve Ũn+1 =
ΓCR(Tn + 1, f(Xn)) which approximates the next
primary segment Un+1. As the dynamics is expand-
ing along the manifold, we expect that a larger set
of points should be needed to resolve the segment
Un+1 than was required for Un. The curve Ũn+1 will
in general be unresolved, but will indicate the gen-
eral shape of Un+1.

Having already generated the initial guess Ũn+1

we may apply any of the proposed adaptive method
from Sec. 5.2 to produce a resolved approximation
Un+1(t) = ΓCR(Tn+1,Xn+1) to the desired para-
metric curve f(Un). Note that by construction, the
number of points on consecutive segments satisfy
Nn+1 ≥ Nn.

7.4. Kink patching

The proposed methods are quite capable of resolv-
ing a single primary segment of a manifold given
a previously completed segment. Segments Un and
Un+1 may be individually resolved but the compos-
ite curve formed by their union Un ∪ Un+1 may be
unresolved in the neighborhood of their common
point. We call a point where this occurs a kink.4

Therefore, some care must be taken to ensure that
the composite curve formed by two successive pri-
mary segments is also well-resolved around that
point. This can be accomplished by examining a
small set of consecutive points centered about the
joint point.

Consider the kink between already-resolved
segments Un and Un+1. The points before the joint
are taken from the end of the discrete representa-
tion of Un and require preimages in Un−1(t), the

points after are from the beginning of Un+1 and
require preimages in Un(t). The inductive param-
eterization presents a clear advantage in searching
for preimages.

Assume that a subsegment of Un has to be
refined between points xn

i and xn
i+1. The parameter

values corresponding to that pair are tni and tni+1.
Their preimages can be found by evaluating the
previous segment approximation Un−1(t) at tni − 1
and tni+1 − 1. In order to refine the subsegment
of Un it is sufficient to sample the approximation
Un−1(t) on t∗ = (tni + tni+1)/2 − 1 and map it for-
ward, xn∗ = f(Un−1(t∗)). The new point lies on Un

between points xn
i and xn

i+1, the new parameter
value for this point is tn∗ = t∗ + 1.

When the joint kink between segments Un and
Un+1 is resolved, then we can say that the segment
Un is completed. Even though the segment Un+1 is
well resolved it may be necessary to refine it again
close to the joint vertex with a segment Un+2.

The procedure is only slightly different for
patching the kink between segments U0 and U1. To
refine the end of U0 we just take more points from
U0(t), the continuous approximation of the initial
primary segment.

8. Numerical Tests

Example 1. Hénon Map

One of the most studied examples of dynamical
systems that exhibit a chaotic behavior, this map is
given by

x′ = 1 + y − ax2;

y′ = bx.

The closure of one branch of the unstable mani-
fold is a well-studied strange attractor with fractal
structure. We have chosen this example primarily
for the purpose of visualization.

For the standard parameters a = 1.4 and b =
0.3 the map has a hyperbolic fixed point at

(x∗, y∗) = (−1.131354477089505,

−0.339406343126851).

In order to determine the initial primary segment
U0 we approximate the unstable manifold near this
saddle point as y = p(x), where p(x) =

∑10
i=0 ci(x−

x∗)i with ci computed from the relation (7). The ini-
tial primary segment U0 is generated by x0 − x∗ =
0.0001, then y0 = p(x0) = −0.339397140050439.

4Note, this problem occurs in Carter’s method, as well, but not in Hobson’s.

July 28, 2011 12:0 WSPC/S0218-1274 02960

High-Order Bisection Method for Computing Invariant Manifolds 2031

The last point of the initial primary seg-
ment is determined by (x1

0, y
1
0) = f(x0, y0) =

(−1.131028508759507,−0.339376343126851). The
error between this polynomial approximation and
the true manifold along this segment is less than
machine precision.

Figure 12(a) shows part of the computed unsta-
ble manifold of the Hénon Map: the union of
primary segments U0 through U20. Figures 12(b)
and 12(c) present a closeup view of the bounded
boxes A and B from Fig. 12(a), respectively. They

show more detail of three approximations of some
sharp segments of the manifold, each approxima-
tion derived with a different tolerance condition.
Additionally, the computed manifold is rotated in
Figs. 12(b) and 12(c) and the aspect ratio is not
preserved. These show the behavior of the method
close to slanted hairpin turns.

For computations of real unstable manifolds
using methods based on linear interpolation, this
concentration of points near maxima of curvature
becomes a crippling fault. For example, the unstable

−1.5 −1 −0.5 0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

A

B

(a)

(b) (c)

Fig. 12. (a) The unstable manifold of the Hénon Map, b = 0.3 and a = 1.4 with length about 419.6268, generated by
the ACR3vs5 method; (b) closeup of box A with three approximations; (c) closeup of box B with three approximations,
tol = 2−12–blue, tol = 2−14–green, tol = 2−16–red. Note subfigures (b) and (c) do not preserve the aspect ratio nor orienta-
tion of subfigure (a). In (b) height = O(10−5), width = O(10−4) and similarly for (c), height = O(10−6), width = O(10−4).

July 28, 2011 12:0 WSPC/S0218-1274 02960

2032 R. H. Goodman & J. K. Wróbel

manifold of the Hénon Map develops folds where the
curvature reaches O(106). We found that ALI with
such small tolerance places points so close together
[e.g. see Fig. 10(b)] that, in 16-digit arithmetic,
there are not enough significant digits remaining to
meaningfully compute the angle between successive
segments of the computed curve. See also Figs. 10
and 14(b).

Example 2. McMillan Map

Next, we consider the McMillan Map defined by

x′ = y

y′ = −x + 2y
(

µ

1 + y2
+ ε

)
.

For µ = 2.0 and ε = 0.05 this map has a saddle
fixed point at the origin. We approximate the unsta-
ble manifold near the origin as p(x) =

∑10
i=0 cix

i

with ci computed using the relation (7).
In order to make direct comparison between

the proposed methods and those of both Hob-
son and Carter, we test our example of the
McMillan map, choosing the same parameter val-
ues and initial segment. The initial primary seg-
ment U0 is generated by x0 = 0.001, so that
y0 = p(x0) = 0.003839548998331. The last
point of the initial primary segment is determined
by (x1

0, y
1
0) = f(x0, y0) = (0.003839548998331,

0.014741924483874). The error between this poly-
nomial approximation and the true manifold along
this segment is below machine precision.

Figure 13(a) shows part of the unstable
manifold of the McMillan Map, computed using
ACR3v5, the union of primary segments U0 through
U15. Figures 13(b) and 13(c) present a closeup view
of bounded boxes A and B from Fig. 13(a), respec-
tively. They show more detail of three approxima-
tions of some sharp segments of the manifold, each
approximation derived with different tolerance con-
dition. These graphs show the method appears to
converge.

8.1. The proposed methods versus
Hobson’s and Carter’s methods

In order to compare the proposed methods with
existing methods we also perform computations
with the ALI+ method which is based on the same
type of refinement condition as in both Hobson and
Carter. Our implementation of ALI is slightly dif-
ferent from Carter’s and we put some effort into
making sure that ALI does not work any worse than

in his studies; see Tables 1–3. We modify Carter’s
approach to the kink patch making sure that it
always works.

In order to test convergence, Hobson consid-
ered the convergence of the arc length of an indi-
vidual primary segment, estimating the length as
the sum of the chord lengths between adjacent dis-
crete points. We perform the same test and show
the results in Tables 1–3, an expanded version of
similar tables in [Carter, 2004] and [Hobson, 1993].
This test indicates that ACR3+ seems to be the
fastest converging.

The sum of chord lengths between any neigh-
boring points on the manifold does not converge to
the length of the curve connecting them particu-
larly fast. While the length of a cubic Bézier curve
segment is not computable in closed form, a result
due to [Gravesen, 1997] shows that estimating the
arc length by one half the perimeter of the con-
trol polygon converges to the arc length faster than
using chord length. Using this method, it is clear
that the arc length of our methods converges even
more rapidly. See Table 4.

We do not believe that the arc length conver-
gence is the best way to show the convergence of the
method. Approximations to individual segments of
the curve may approach the same length without
lying close together.

8.2. A more direct convergence test

Figures 13(b) and 13(c) show that the ACR3vs5
method appears to converge. However, to make it
more quantitative we perform further tests.

In order to show convergence of the proposed
methods, we use high-order interpolation to gener-
ate continuous representations of the manifold for a
very small value of the refinement condition; we call
this an “exact” manifold. Next, we generate con-
tinuous representations of the manifold for several
decreasing values of the refinement condition and
check how the difference between the approxima-
tion and the “exact” manifold, measured using the
maximum (L∞) norm, decays. Note that this is the
same test as we performed in Sec. 6 for the model
problem; see Fig. 10.

The initial primary segment U0 is generated
as above and the first 15 primary segments are
computed. Figure 14(a) shows the convergence of
the two proposed methods, ACR3vs5 and ACR3+.
Additionally, as a comparison, the figure presents
convergence of ALI+, described in the previous

July 28, 2011 12:0 WSPC/S0218-1274 02960

High-Order Bisection Method for Computing Invariant Manifolds 2033

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

B

A

(a)

0.0535 0.0535 0.0535 0.0535
0.488

0.4885

0.489

0.4895

0.49

0.4905

0.4947 0.4947 0.4947 0.4947 0.4947 0.4947

1.5868

1.5869

1.587

1.5871

1.5872

1.5873

c d

paramization slip

(b) (c)

Fig. 13. (a) The unstable manifold of the McMillan Map, µ = 2.0 and ε = 0.05 with length about 113.3335, generated by
ACR3vs5; (b) close up of box A; (c) close up of box B with three approximations, tol = 2−11 — blue, tol = 2−13 — green,
tol = 2−15 — red. Note (b) and (c) do not preserve the aspect ratio of (a), for (b) height = O(10−3), width = O(10−5) and
for (c) height = O(10−4), width = O(10−4).

Table 1. Manifold calculation comparison using chord arc length of primary segments of the
McMillan Map. The bold type values we can call the “exact” lengths of the segments. Values
for Hobson’s and Carter’s method follow [Carter, 2004].

Hobson’s Method Carter’s Method

tol1 0.45 0.45 0.45 0.15 0.1 0.07 0.05 0.03 0.01
tol2 0.01 0.003 0.001 0.00001

U13 20.020 20.117 20.119 20.120 20.115 20.115 20.117 20.118 20.120
U14 22.834 23.098 23.097 23.098 22.975 23.090 23.092 23.094 23.097
U15 28.407 28.991 29.034 29.037 28.687 29.024 29.033 29.037 29.038

Calls 4975 7671 11 395 90 813 3144 4364 5837 9578 27 493

July 28, 2011 12:0 WSPC/S0218-1274 02960

2034 R. H. Goodman & J. K. Wróbel

Table 2. Arc length values for ALI+ method computed using ten points at the initial segment.

ALI+

tol 0.143 0.102 0.0737 0.0555 0.0445 0.0365 0.0145 0.0044

U13 20.1141 20.1169 20.1183 20.1190 20.1193 20.1195 20.1199 20.1200
U14 23.0882 23.0938 23.0956 23.0965 23.0969 23.0972 23.0976 23.0977
U15 29.0154 29.0304 29.0350 29.0366 29.0371 29.0375 29.0379 29.0381

Calls 3126 4351 5832 7664 9579 11 407 27 503 90 703

Table 3. Arc length values for ACR3+ and ACR3vs5 computed using ten points at the
initial segment.

ACR3+ ACR3vs5

tol 2(−9) 2(−12) 2(−14) 2(−16) 2(−13) 2(−18) 2(−20) 2(−23)

U13 20.1136 20.1192 20.1198 20.1199 20.1160 20.1195 20.1198 20.1199
U14 23.0903 23.0963 23.0974 23.0976 23.0920 23.0970 23.0974 23.0976
U15 29.0210 29.0357 29.0375 29.0380 29.0234 29.0367 29.0375 29.0380

Calls 1666 4276 8397 16 649 2223 7035 10 559 20 988

Table 4. Manifold calculation comparison using Gravesen’s arc length approximation of
primary segments of McMillan Map. The values are computed for the given value of the
tolerance with ten points at the initial primary segment.

ACR3+ ACR3vs5

tol 2(−8) 2(−9) 2(−10) 2(−13) 2(−7) 2(−10) 2(−13) 2(−17)

U13 20.1190 20.1195 20.1199 20.1200 20.1199 20.1203 20.1199 20.1200
U14 23.0931 23.0975 23.0977 23.0977 23.0942 23.1003 23.0983 23.0977
U15 29.0286 29.0359 29.0383 29.0381 29.0167 29.0400 29.0375 29.0381

Calls 1190 1666 2219 6246 666 1166 2223 5314

paragraph, the method based on the angle refine-
ment condition.

We perform the same test for the Hénon map.
We use the same initial primary segment U0 as
above, and compute the first 16 primary segments,
[Fig. 12(a) contains 20 segments]. Figure 14(b)
shows that both methods converge very well and
at a similar rate. The error between approximation
and the “exact” manifold with about 105 points is
on the order of 10−8. The ALI method fails to con-
verge for tol < 2−8 with 16 iterates of the map.
Using this tolerance, the algorithm also failed to
converge on the 17th iterate, as discussed in the
final paragraph in the discussion of Example 1.

Figures 14(a) and 14(b) show that both pro-
posed methods (ACR3vs5 and ACR3+) converge
faster than ALI+. The method ACR3vs5 seems to
work slightly better than the ACR3+. However, for
a few values of tolerance the second method outper-
forms the first.

We encountered a difficulty in measuring the
error in the unstable manifold calculations not
present in the parametric curve convergence studies
in Sec. 6. Since we do not know the true manifold
W u, we compute the error by calculating the dis-
tance between two approximations of W u. Because
the map is expanding in the direction tangent to
W u, calculations with different values of the tol-
erance lead to slight changes in the parameteriza-
tion of the curve. Plotting, say, the x-coordinate
as a function of the parameter t, we find that the
two graphs look the same but are shifted slightly
along the t-axis. We call this phenomenon parame-
terization slip and, although it is the largest source
of our computed error, it does not correspond to
an actual error in the computation of the man-
ifold. It is illustrated in Fig. 13(c): the points
marked c and d correspond to the same parameter
value, obtained using different values of the toler-
ance. The calculated error represents the distance

July 28, 2011 12:0 WSPC/S0218-1274 02960

High-Order Bisection Method for Computing Invariant Manifolds 2035

10
3

10
4

10
5

10
−8

10
−6

10
−4

10
−2

of points

M
ax

im
um

 E
rr

or

2−1

2−8

2−8

2−30

2−21

2−6

ALI+
ACR3+
ACR3vs5

10
3

10
4

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

2−7

20

2−10

2−9

2−28

2−20

of points

M
ax

im
um

 E
rr

or

ALI+
ACR3+
ACR3vs5

(a) (b)

Fig. 14. Convergence of the adaptive methods ACR3vs5 (blue), ACR3+ (red) and ALI+ (green) with decreasing refinement
conditions changing as indicated, between the values at the opposite ends of each graph; 50 points on the initial primary
segment. (a) Test on the McMillan Map. The “exact” manifolds for ALI+, ACR3+ and ACR3vs5 with tolerances 2−9, 2−22

and 2−32, respectively. (b) Test on the Hénon Map. The “exact” manifolds for ALI+ ACR3+ and ACR3vs5 with tolerances
2−8, 2−21 and 2−30, respectively, without reparameterization.

between these two points, which is clearly much
larger than the distance between the two curves in
this neighborhood.

The results in Figs. 14(a) and 14(b) are slightly
different than the results which we see in Fig. 10(a)
for the model problem. However, computation of
these manifolds is more complex than the sim-
ple problem of drawing a parametric curve. The
accuracy of that computation depends only on the
interpolation error, whereas the adaptive method
for computing the invariant manifold has several
sources of error. The convergence of the method
can be affected by the interpolation error and by
the amount by which this error and round-off errors
are amplified by sensitive dependence on initial con-
ditions. Much of the observed error is actually due
to parameterization slip. The error in the normal
direction often appears to be significantly smaller.
In the last case, we can partially solve the problem
of parameterization slip by chord length reparame-
terization. However, our numerical tests show that
this does not always help. The reparameterization
improved the convergence for the McMillan map,
whereas for the Hénon map it did not.

Example 3. A map with an explicit manifold

In this section, we test the methods on a map
constructed explicitly to have an unstable man-
ifold that is computable in closed form. W u =
{(x, y) | y = h(x)}. First, since y is an explicit func-
tion of x, we avoid the “parameterization slip” and

its effect on the error. Second, we are able to com-
pute the exact error between the true and com-
puted manifolds, rather than the distance between
two approximations. Note that the errors reported
in this section refer to distance in the y direction
rather than Euclidean distance. A similar test on an
explicit manifold is performed in [Osinga & Rokni,
2005].

We consider the example for which the unstable
manifold can be found explicitly, namely

ẋ = x

ẏ = −y + g(x),
(8)

with explicit solution

x(t) = c1e
t

y(t) = c2e
−t +

G(c1e
t)

c1et
,

(9)

where the function G(x) satisfies G′(x) = g(x). We
assume that g(0) = 0, i.e. G′(0) = 0, this automat-
ically ensures that the origin is a saddle point with
associated stable and unstable manifolds tangent to
the x and y axes, respectively. Note from (9) that
trajectories of the system can be explicitly written
in the form

y =
c1c2 + G(x)

x
.

Note that assuming the explicit unstable man-
ifold is tangent to the y axis at the origin

July 28, 2011 12:0 WSPC/S0218-1274 02960

2036 R. H. Goodman & J. K. Wróbel

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

of points
10

3
10

4
10

5
10

6

10
−8

10
−6

10
−4

10
−2

10
0

of points

M
ax

im
um

 E
rr

or

2−1

2−10

2−11

2−25

2−4

2−26

ALI+
ACR3+
ACR3vs5

(a) (b)

Fig. 15. (a) The explicit unstable manifold of the system (8) given by Eq. (10), (b) convergence of the error between the
manifold and approximations given by adaptive methods ACR3vs5 (red), ACR3+ (green) and ALI+ (blue), the test performed
on the branch with length about 255, the initial primary segment starts at x = 0.0011 with 10 points and the first 11 primary
segments are computed. Decreasing refinement conditions as indicated, between the values at the opposite ends of each graph.
(a) The unstable manifold. (b) Convergence of the three methods.

requires y(0) = y′(0) = 0. Assuming c1c2 = 1, the
function G(x)=−cos(x2ex2

) satisfies all the con-
ditions above and guarantees the existence of the
explicit unstable manifold of the form

y =
1 − cos(x2ex2

)
x

; (10)

see Fig. 15(a). In addition, it is significantly com-
plex to providing a challenging test for the various
algorithms.

In order to test the proposed methods we need
to find the planar map associated with the sys-
tem (8). For any flow ϕt(x, y) given by the solu-
tion of a dynamical system, the planar map can be
written as

(x′, y′) = f(x, y) = ϕT (x, y),

where T is a constant. Consider the flow ϕt(x, y)
given by (9) with T = ln 2, then the planar map
takes the form

x′ = 2x

y′ =
xy + G(2x) − G(x)

2x
.

(11)

where the function G(x) is as defined above.
We apply each of the proposed methods to the

map (11) to generate the rightgoing branch of the
unstable manifold; see Fig. 15(a). Next we investi-
gate the behavior of the maximum error between

the exact manifold and each approximation for
decreasing refinement condition.

Figure 15(b) shows the convergence of the
error for each method. Both methods, ACR3+
and ACR3vs5, perform very well (here, it appears
ACR3vs5 converges slightly faster), whereas the
ALI+ method does poorly. The test above confirms
our previous results for the proposed methods. The
question which method, ACR3+ or ACR3vs5, for
computing unstable manifold is better in general
remains open.

9. Discussion

The methods presented here for computing unstable
manifolds incorporate ideas from computer aided
geometric design and achieve significant improve-
ments in the accuracy of the calculation, and in
reducing the number of calls to the map f . This
is especially relevant if one wants to resolve all the
sharp folds typically found on such manifolds. For
the mere display of the manifold on a screen, resolv-
ing points where the curvature reaches such maxima
would be excessive, but for computations involving
the manifolds, such as estimating their dimension
as suggested by [Hobson, 1993], or calculating their
intersections in order to apply the theory of homo-
topic lobe dynamics [Mitchell & Delos, 2006], this
would be necessary.

We should point out, however, that there are
other costs involved with the implementation of

July 28, 2011 12:0 WSPC/S0218-1274 02960

High-Order Bisection Method for Computing Invariant Manifolds 2037

this method, in comparison, say, with the simpler
method in [Carter, 2004]. In particular, one segment
of a piecewise linear interpolant can be plotted using
only its values at the two endpoints, with high-level
graphing software filling in the points in between.
To effectively render a cubic interpolant, one first
samples the curve at a finite number of points in
between those interpolated, and then plots a lin-
ear interpolant through those points. By choosing
these points adaptively, one can plot the piecewise-
cubic curve to the desired degree of accuracy, but
the overhead of this adaptive calculation makes the
procedure more expensive than simply evaluating
the interpolant of a finite number of equally spaced
parameter values. Here, too, one has the choice to
either choose a large enough number of points to
guarantee this will accurately compute the curve,
or else to estimate the necessary number of points
using a bound based on the derivatives of the inter-
polant; see, for example, references [Cheng, 1992;
Filip et al., 1986].

The method has some additional advantages
over methods based on linear interpolation. To ana-
lyze transport in a chaotic system, one needs to
construct regions bounded by segments of the sta-
ble and unstable manifolds, and thus must deter-
mine intersections of W s and W u. There are two
steps to this process. Given piecewise interpolants
to the two curves, one first compiles a list of pairs of
segments whose bounding boxes overlap and which
might intersect. Second, one tests each of these
pairs for an intersection. In the second step, it is
simpler to detect intersections between linear inter-
polants (solving a small system of linear equations),
although many efficient methods exist for calculat-
ing the intersections of Bézier curves, for example
[Sederberg, 1989; Sederberg & Nishita, 1990]. It is
the first step that takes the most time however.
Given n segments, there are n(n−1)/2 pairs of seg-
ments to check. Since our method greatly reduces n,
finding the candidate pairs will take significantly
less time.

While discussing manifold intersections, we
should also point out that, as the map f is
invertible, W u is topologically forbidden from self-
intersecting. A more complete code should also
check for self-intersections and refine the manifolds
in their neighborhoods. Due to the fractal nature of
the strange attractor, arbitrarily many additional
segments of the manifold pass within any small
neighborhood of any point on W u. Because of the
finite errors in the method, and the arbitrarily small

spacing between segments, a computed manifold
based on any refinement conditions of the type dis-
cussed will possess erroneous self-intersections.

We would also like to point out some comple-
mentary work. Mireles-James [2009] adapted as a
computational tool the parameterization method of
Cabré et al., developed as a rigorous tool in the
study of invariant manifolds [Cabré et al., 2003a,
2003b, 2005], and previously applied in [Frances-
chini & Russo, 1981] as part of a numerical pron-
umber of chaos for the Hénon map. We introduced
this method briefly in Sec. 3. This method avoids
the roundoff error and interpolation error we find
in our methods by representing the solution as a
power series in a parameter s, and eliminates the
need to iterate fundamental segments. On the other
hand, this method generates a parametric form of
W u. The methods described in Sec. 5.2 are ideally
suited to sample this curve efficiently.

In future work, we plan to extend these meth-
ods to the computation of two-dimensional invari-
ant manifolds in three-dimensional maps. This
problem is harder for a variety of reasons, well-
summarized in [Krauskopf & Osinga, 1998a]. Most
importantly, the hyperbolic fixed point can have
eigenvalues λ1 > λ2 > 1 > λ3. Iterating a fun-
damental segment (in this case an annular region)
will lead to greater growth in the λ1 direction, and
the computed manifold will be severely stretched in
this manner, having an aspect ratio on the order
of (λ1/λ2)n after n iterations of the map. To avoid
this problem, their method works by growing the
manifold radially from the fixed point in such a
way that the growth rate is nearly constant in all
directions (their method in [Krauskopf & Osinga,
1998b] for one-dimensional maps works much the
same way). To achieve this, they must, as Hob-
son does, discard certain calculated points until a
point of proper distance from the edge is found.
This method seems fundamentally at odds with our
approach of calculating the image of an entire seg-
ment and of using high-order error conditions to
build a bisection method.

Finally, we would like to make the point that
we have not seen many applications of CAGD meth-
ods to dynamics problems in this manner before,
and that we believe there is wide potential for their
adoption. One exception is the work by Hender-
son on numerical methods of invariant manifolds
of continuous-time problems, although he does use
a different set of tools than those described here
[Henderson, 2005, 2006, 2009]. CAGD methods,

July 28, 2011 12:0 WSPC/S0218-1274 02960

2038 R. H. Goodman & J. K. Wróbel

especially NURBS, have also been widely used in
the finite elements literature. A large and very
accessible literature exists on this subject, and the
methods we have used here are not particularly
sophisticated. We hope that these techniques can
prove useful to other researchers in dynamical sys-
tems. Two excellent books are [Farin, 2002] and
[Goldman, 2003].

Acknowledgments

The authors would like to thank Denis Blackmore,
Josh Carter, Rafael de la Llave, Hector Lomeĺı,
Jason Mireles-James, Hinke Osinga, and Denis
Zorin for helpful discussions. NJIT undergraduates
Matthew Peragine and Fatima Elgammal collabo-
rated on a preliminary version of this work as part
of the CSUMS program, supported by NSF DMS-
0639270. The authors both received support from
NSF DMS-0807284.

References

Cabré, X., Fontich, E. & de la Llave, R. [2003a]
“The parameterization method for invariant mani-
folds I: Manifolds associated to non-resonant sub-
spaces,” Indiana U. Math. J. 52, 283–328.

Cabré, X., Fontich, E. & de la Llave, R. [2003b] “The
parameterization method for invariant manifolds II:
Regularity with respect to parameters,” Indiana U.
Math. J. 52, 329–360.

Cabré, X., Fontich, E. & de la Llave, R. [2005] “The
parameterization method for invariant manifolds III:
Overview and applications,” J. Diff. Eqs. 218, 444–
515.

Carter, J. [2004] “A bisection method for computing
invariant manifolds of 2-D maps,” Preprint, posted,
with the author’s permission, at http://web.njit.
edu/˜goodman/publications/carter.pdf.

Chandler, R. [1990] “A recursive technique for rendering
parametric curves,” Comput. Graph. 14, 477–479.

Cheng, F. [1992] “Estimating subdivision depths for
rational curves and surfaces,” ACM T. Graph. 11,
140–151.

Collins, P. [2002] “Symbolic dynamics from homoclinic
tangles,” Int. J. Bifurcation and Chaos 12, 605–617.

de Figueiredo, L. H. [1995] “Adaptive sampling of para-
metric curves,” Graphics Gems V, 173–178.

England, J., Krauskopf, B. & Osinga, H. [2005] “Com-
puting one-dimensional global manifolds of Poincaré
maps by continuation,” SIAM J. Appl. Dyn. Syst. 4,
1008–1041.

Farin, G. [2002] Curves and Surfaces for CAGD: A
Practical Guide, 5th edition (Morgan-Kaufmann,
San Francisco, CA).

Filip, D., Magedson, R. & Markot, R. [1986] “Surface
algorithms using bounds on derivatives,” Comput.
Aided Geom. D. 3, 295–311.

Franceschini, V. & Russo, L. [1981] “Stable and unstable
manifolds of the Henón mapping,” J. Stat. Phys. 25,
757–769.

Gamet, L., Ducros, F., Nicoud, F. & Poinsot, T. [1999]
“Compact finite diffrence scheme for non-uniform
mesh. Aplication to direct numerical symulation of
compressible flows,” Int. J. Numer. Meth. Fluids 29,
159–191.

Goldman, R. [2003] Pyramid Algorithms: A Dynamic
Programming Approach to Curves and Surfaces for
Geometric Modeling (Morgan-Kaufmann).

Goodman, R., Holmes, P. & Weinstein, M. [2002] “Inter-
action of sine-Gordon kinks with defects: Phase space
transport in a two-mode model,” Phys. D 161, 21–44.

Goodman, R., Holmes, P. & Weinstein, M. [2004]
“Strong NLS soliton-defect interactions,” Phys. D
192, 215–248.

Goodman, R. [2008] “Chaotic scattering in solitary wave
interactions: A singular iterated-map description,”
Chaos 18, 023113.

Gravesen, J. [1997] “Adaptive subdivision and the length
and energy of Bézier curves,” Comp. Geom.-Theor.
Appl. 8, 13–31.

Henderson, M. E. [2005] “Computing invariant manifolds
by integrating fat trajectories,” SIAM J. Appl. Dyn.
Syst. 4, 832–882.

Henderson, M. E. [2006] “Covering an invariant man-
ifold with fat trajectories,” Model Reduction and
Coarse-Graining Approaches for Multiscale Phenom-
ena (Springer, Berlin), pp. 39–54.

Henderson, M. E. [2009] “Flow box tiling methods for
compact invariant manifolds,” preprint, pp. 1–25.

Hénon, M. [1976] “A two-dimensional mapping with a
strange attractor,” Comm. Math. Phys. 50, 69–77.

Hobson, D. [1993] “An efficient method for comput-
ing invariant manifolds of planar maps,” J. Comput.
Phys. 104, 14–22.

Kostelich, E., Yorke, J. & You, Z. [1996] “Plotting stable
manifolds: Error estimates and noninvertible maps,”
Phys. D 93, 210–222.

Krauskopf, B. & Osinga, H. [1998a] “Globalizing two-
dimensional unstable manifolds of maps,” Int. J.
Bifurcation and Chaos 8, 483–503.

Krauskopf, B. & Osinga, H. [1998b] “Growing 1D and
quasi-2D unstable manifolds of maps,” J. Comput.
Phys. 146, 404–419.

Krauskopf, B. & Osinga, H. [1999] “Two-dimensional
global manifolds of vector fields,” Chaos 9, 768–774.

Krauskopf, B., Osinga, H., Doedel, E., Henderson, M.,
Guckenheimer, J., Vladimirsky, A., Dellnitz, M. &
Junge, O. [2004] “A survey of methods for computing
(un)stable manifolds of vector fields,” Int. J. Bifurca-
tion and Chaos 15, 763–792.

July 28, 2011 12:0 WSPC/S0218-1274 02960

High-Order Bisection Method for Computing Invariant Manifolds 2039

Meiss, J. [1997] “Average exit time for volume-preserving
maps,” Chaos 7, 139–147.

Mireles-James, J. [2009] “Elementary example of the
parametrization method. stable and unstable mani-
folds of the standard map,” preprint, University of
Texas at Austin.

Mireles-James, J. & Lomeĺı, H. [2010] “Computation
of heteroclinic arcs with application to the volume
preserving Hénon family,” SIAM J. Appl. Dyn. Syst.
(accepted) .

Mitchell, K. & Delos, J. [2006] “A new topological tech-
nique for characterizing homoclinic tangles,” Phys. D
221, 170–187.

Mitchell, K. [2009] “The topology of nested homoclinic
and heteroclinic tangles,” Phys. D 238, 737–763.

Osinga, H. & Rokni, R. [2005] “Numerical study of man-
ifold computations,” Equadiff 2005, eds. Dumortier,
F., Broer, H., Mawhin, J., Vanderbauwhede, A. &
Lunel, S. V. (World Scientific, Singapore), pp. 190–
195.

Parker, T. & Chua, L. [1989] Practical Numerical Algo-
rithms for Chaotic Systems (Springer).

Rom-Kedar, V. [1990] “Transport rates of a class of two-
dimensional maps and flows,” Phys. D 43, 229–268.

Rom-Kedar, V. [1994] “Homoclinic tangles–classification
and applications,” Nonlinearity 7, 441–473.

Sederberg, T. [1989] “Algorithm for algebraic curve
intersection,” Comput. Aided Design 21, 547–554.

Sederberg, T. & Nishita, T. [1990] “Curve intersection
using Bézier clipping,” Comput. Aided Design 22,
538–549.

Tzafestas, S. & Pantazopoulos, J. [1999] “An efficient
algorithm for rendering parametric curves,” Advances
in Intelligent Systems: Concepts, Tools, and Applica-
tions, ed. Tzafestas, S. (Springer), pp. 357–366.

You, Z., Kostelich, E. & Yorke, J. [1991] “Calculating
stable and unstable manofolds,” Int. J. Bifurcation
and Chaos 1, 605–623.

Appendix A

Detailed Introduction to CAGD
Tools

Here we introduce a few tools from CAGD that are
used to construct the numerical method.

A.1. Piecewise linear interpolation

For a given sequence of points x0, . . . ,xn and
parameter values t0, . . . , tn, the line segment
between the points xk−1 and xk can be written as

sk(t) =
tk − t

tk − tk−1
xk−1 +

t − tk−1

tk − tk−1
xk

for t ∈ [tk−1, tk]. (A.1)

Therefore, the whole interpolated curve can be
written as

γapprox =
n⋃

k=1

sk(t).

To accurately approximate a smooth curve using
linear interpolation requires a large number of
points, especially near regions of large curvature.

We can estimate the error of the linear interpo-
lation. For any C2 curve such that γ : [tk−1, tk] →
R

n and the linear interpolant given by Eq. (A.1),

sup
t∈[tk−1,tk]

‖γ(t) − sk(t)‖

≤ (tk − tk−1)2

8
sup

t∈[tk−1,tk]
‖γ′′(t)‖;

see the proof in [Filip et al., 1986].

A.2. Bézier curves

The fundamental object in geometric modeling
is the Bézier curve, which can be constructed
using the Bernstein polynomials. The Bernstein
polynomials are given by

Bn
k (t) =

(
n

k

)
tk(1 − t)n−k.

Note that, by the binomial theorem,

1 = (t + (1 − t))n =
n∑

k=0

Bn
k (t). (A.2)

A Bézier curve has parametric form given by the
convex affine combination (i.e. with positive weights
summing to one) of n + 1 control points p0, . . . ,pn:

β(t) =
n∑

k=0

Bn
k (t)pk. (A.3)

Note that β(0) = p0 and β(1) = pn, but that
the other control points are not interpolated by the
curve. We can see from Eq. (A.2) that for 0 ≤ t ≤ 1,
the point β(t) is a weighted average of the control
points, and as the weights defined by the Bernstein
polynomials are positive, this curve must lie inside
the convex hull of the control points. The polygon
P formed by p0, . . . ,pn is called the Bézier polygon
or control polygon of the curve. Note that in general
the edge of a convex hull (the bounding box) is not
the same as the control polygon. An example of a
cubic Bézier curve is shown in Fig. 16.

July 28, 2011 12:0 WSPC/S0218-1274 02960

2040 R. H. Goodman & J. K. Wróbel

2

3

1
p

0

p

p
p

Fig. 16. A cubic Bézier curve, together with its control
points p0, p1, p2 and p3, and their convex hull.

Bézier curves are invariant under affine trans-
formation of the independent variable t; setting

t =
u − a

b − a
, (A.4)

then the curve γ(t(u)) over the interval [a, b] param-
eterizes the same curve as γ(t) over [0, 1].

Finally, note from Eq. (A.3) that the tangent
vectors to the curve at the endpoints p0 and pn are
given by

T0 = n(p1 − p0) and Tn = n(pn − pn−1),
(A.5)

respectively — this formula is modified slightly if
the parameterization in Eq. (A.4) is used. This can
be observed in Fig. 16.

Bézier curves are widely used in CAGD
because, in addition to the above properties,
there exist efficient algorithms for evaluating them
(forward-differencing and the de Casteljau algo-
rithm), and for performing other calculations such
as finding their intersections [Sederberg, 1989;
Sederberg & Nishita, 1990] or their arc length
[Gravesen, 1997].

A.3. Composite Bézier curves

Several Bézier curves may be pieced together in
order to generate shapes that are too complex
for a single low-degree Bézier curve to handle.
(High degree Bézier curves suffer from Runge’s
Phenomenon.) In concatenating Bézier curves, we
need to control the smoothness of the composite
curve. Let p0, . . . ,p3 and p3, . . . ,p6 be the Bézier
points of two cubic curve segments P[a,c] and Q[c,b];
see Fig. 17. Since they share the point p3, their
union clearly forms a continuous, or C0, curve.
With this minimal continuity requirement, the two

curves may form a corner. To ensure that the two
pieces meet smoothly, more care is called for.

Two adjacent curve segments P and Q are said
to be Ck continuous (or, to have kth order para-
metric continuity) if

P(c) = Q(c),P′(c) = Q′(c), . . . ,P(k)(c) = Q(k)(c).

Thus, C0 means simply that the two adjacent curves
share a common endpoint, p3 in our case. C1 means
that the two curves not only share the same end-
point, but also that they have the same first order
parametric derivatives. C2 means that two curves
are C1 and in addition that they have the same
second order parametric derivatives at their shared
endpoint. Equation (A.5) demonstrates that this
curve is C1 if and only if (p3 − p2)/(c − a) =
(p4 − p3)/(b − c). Similar condition exists for C2

and higher continuity.
A slightly weaker notion of continuity of a

piecewise curve, one which is independent of param-
eterization, is called geometric continuity and is
denoted Gk. The two curves are Gk continuous at p3

if the kth derivative vectors from both sides point
in the same direction. In practice, this means that
the two component curves may be reparameterized
to make their union Ck. The conditions for geomet-
ric continuity (also known as visual continuity) are
less strict than for parametric continuity.

G1 continuity requires that the three points
p2,p3 and p4 are collinear; i.e. they have a common
tangent line at their shared endpoint. G2 (second
order visual or geometric continuity) means that
the two neighboring curves have the same tangent
line and also the same curvature at their common

1
p

2
p

3
p=P(c)=Q(c)

p
5

p
4

0
p=P(a)

6
p=Q(b)

Fig. 17. Composite of two Bézier curves.

July 28, 2011 12:0 WSPC/S0218-1274 02960

High-Order Bisection Method for Computing Invariant Manifolds 2041

boundary. Clearly, two curves which are Cn are
also Gn.

A.4. The de Casteljau algorithm

This is a recursive method to evaluate a Bézier
curve P[a,b] at an arbitrary parametric location
t ∈ (a, b). As an example, the geometric interpre-
tation of the evaluation algorithm for a point on
cubic Bézier curve is shown in Fig. 18. We label the
control points of a cubic Bézier curve P[a,b] with p0

0,
p0

1, p0
2, and p0

3. Each line segment in the trellis is
split in the ratio (t − a)/(b − t), i.e. we define

pi+1
j =

((t − a)pi
j + (b − t)pi

j+1)
(b − a)

. (A.6)

The value P[a,b](t) = p3
0 is the value of β(t) at t as

defined in Eq. (A.3).
The de Casteljau algorithm can also be used

to subdivide a Bézier curve P[a,b] into two shorter
Bézier curves P[a,t] and P[t,b] whose union is equiva-
lent to P[a,b]. The control points for P[a,t] are p0

0, p
1
0,

p2
0, p3

0 and the control points for P[t,b] are p3
0, p2

1,
p1

2, p0
3. This is not the most efficient computational

algorithm to compute P[a,b] but is very important
in the mathematical theory of such curves.

A.5. Hermite interpolating
polynomials

Bézier curve, by themselves, are insufficient to con-
struct an interpolation scheme. Given two points,

2

3

1
p

0

p

pp

t-a

t-a

t-a
t-a

t-a

t-a

b-t

b-t

b-t

b-t

b-t

b-t

2
pp

0

3

p
0 p

1

p
1

p
0

0 0

0

0

1

1

1

2
2

P (t)=[a,b]

Fig. 18. The De Casteljau construction for evaluat-
ing/subdividing a cubic Bézier curve.

x1 and x2 and two vectors, v1 and v2, the cubic Her-
mite interpolating polynomial is the unique cubic
polynomial p(t) that interpolates the two points at
t = 0 and t = 1, respectively, with tangent vectors
v1 at x1 and v2 at x2. Using relation (A.5), the
Hermite interpolating polynomial can be written as
a cubic Bézier curve with

p0 = x1, p1 = x1 +
v1

3
,

p2 = x2 −
v2

3
, and p3 = x2.

(A.7)

It should be noted that, unlike Bézier curves,
Hermite interpolating polynomials are not invari-
ant under affine changes of the parameter t, given
by Eq. (A.4). Such a change of variables changes
the length of the tangent vectors and thus pro-
duces a different curve. To preserve the shape of
the curve, the tangent vectors v1 and v2 must be
scaled appropriately.

If a curve γ(t) = (x(t), y(t)) is approximated
by its Hermite interpolant, with v1 and v2 given
by the exact tangent vectors at the endpoints, the
error for t ∈ [tk−1, tk] is given by

x(t) − p1(t)

=
x(4)(c)

4!
(t − tk−1)2(t − tk)2

for some c ∈ [tk−1, tk],

the maximum of the right-hand side is achieved for
t = (tk−1 + tk)/2, so we can bound the error in the
first component for t ∈ [tk−1, tk] with the expression

sup
t∈[tk−1,tk]

|x(t) − p1(t)‖

≤ (tk − tk−1)4

384
sup

t∈[tk−1,tk]
|x(4)(t)‖.

The error in the y component has a similar bound.
Then, we can estimate the error of the Hermite
interpolant by

sup
t∈[tk−1,tk]

‖γ(t) − p(t)‖

≤ (tk − tk−1)4

384



(

sup
t∈[tk−1,tk]

|x(4)(t)|
)2

+

(
sup

t∈[tk−1,tk]
|y(4)(t)|

)2



1/2

.

July 28, 2011 12:0 WSPC/S0218-1274 02960

2042 R. H. Goodman & J. K. Wróbel

This guarantees that refining the set of parameter
values, results in better approximation of the para-
metric curve.

A.6. Catmull–Rom splines

Catmull–Rom interpolating splines are constructed
as piecewise cubic Hermite interpolating polynomi-
als. In a general interpolation problem, the tangent
is not provided and must instead be approximated.
To construct the segment connecting the points
xk and xk+1 approximate tangent vectors at those
points are needed; call them �v+

k and �v−
k+1. These,

in turn, require an approximation ṽk to dx/dt|t=tk .
We discuss two different approximations; the first
based on three-point centered-differences and the
second based on five-point centered-differences.

In the first case, under the uniform parameteri-
zation tk = k∆ this is just ṽk = (xk+1−xk−1)/(2∆),
but for general parameterization, it is

ṽk =
∆2

k(xk+1 − xk) + ∆2
k+1(xk − xk−1)

∆k+1∆k(∆k+1 + ∆k)
,

k = 1, . . . , n − 1

where ∆k = tk − tk−1. Since Hermite interpolating
polynomials are not affine invariant with respect to
t, this must be scaled by the length of the interval in
order to give the right tangent vector to interpolate
on [tk−1, tk]. This gives formulas

�v+
k = ∆kṽk and �v−

k+1 = ∆kṽk+1

for the tangent vectors at the left and right end
points of the interior points k = 1, . . . , n − 1.
In the formulas for the tangent vectors �v+

0 and
�v−

n at the endpoints, the centered difference for-
mula is replaced with a three-point one-sided dif-
ference formula, which will, on average, give twice

the approximation error as the centered-difference
formula.

The second approach, based on five-point
centered-differences gives

ṽk =
−xk+2 + 8xk+1 − 8xk−1 + xk−2

12∆k
,

k = 2, . . . , n − 2,

under the uniform parameterization. The formula
for ṽk under the nonuniform parameterization is of
course more complex; see [Gamet et al., 1999]. To
derive formulas for the tangent vectors �v+

0 and �v−
n

at the endpoints, the centered difference formulas
are replaced by one-side differences. Similarly, to
derive formulas for the tangent vectors �v−

1 and �v+
1

at the second point, and the tangent vectors �v−
n−1

and �v+
n−1 at the second point from the end, the

centered difference formulas are replaced by asym-
metric differences.

Using (A.7) to express Hermite interpolating
polynomials as cubic Bézier curves, we consider
Catmull–Rom interpolating splines as composite
Bézier curves. The way that the control points of
each Bézier segment are constructed guarantees the
C1 continuity of Catmull–Rom splines.

Appendix B

Software

The authors have written a small set of MATLAB
programs that implement the methods described
in this article. These are available from the first
author’s website http://web.njit.edu/˜goodman/
roy/Numerics.html or by searching for “unstable
manifold” on the MATLAB File Exchange at
http://www.mathworks.com/matlabcentral/fileex-
change/.

	1 Introduction
	2 Background
	3 Model Curves and Parameterization
	3.1 Parametric curves
	3.2 Parameterization

	4 Brief Introduction to Geometric Modeling Tools
	5 Adaptive Methods
	5.1 Existing methods
	5.1.1 Hobson's method: Marching
	5.1.2 Carter's method: Bisection

	5.2 The proposed methods
	5.2.1 Flatness refinement condition
	5.2.2 Error refinement condition

	5.3 Other methods

	6 Numerical Tests of Proposed Tools
	6.1 Numerical test of ACR3
	6.2 Numerical test of ACR3vs5

	7 Details of the Numerical Implementation Invariant Manifold Calculation
	7.1 Some notation
	7.2 The initial primary segment
	7.3 Resolving a simple primary segment
	7.4 Kink patching

	8 Numerical Tests
	8.1 The proposed methods versus Hobson's and Carter's methods
	8.2 A more direct convergence test

	9 Discussion
	A.1 Piecewise linear interpolation
	A.2 Bézier curves
	A.3 Composite Bézier curves
	A.4 The de Casteljau algorithm
	A.5 Hermite interpolating polynomials
	A.6 Catmull--Rom splines

