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Abstract
We examine the dynamics of solutions to nonlinear Schrödinger/Gross–
Pitaevskii equations that arise due to semisimple indefinite Hamiltonian Hopf
bifurcations—the collision of pairs of eigenvalues on the imaginary axis. We
construct localized potentials for this model which lead to such bifurcations in a
predictable manner. We perform a formal reduction from the partial differential
equations to a small system of ordinary differential equations. We analyze
the equations to derive conditions for this bifurcation and use averaging to
explain certain features of the dynamics that we observe numerically. A series
of careful numerical experiments are used to demonstrate the phenomenon and
the relations between the full system and the derived approximations.
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1. Introduction

This paper brings together several threads in the study of nonlinear waves in media with a
localized defect. It focuses on one specific example: the dynamics of low-amplitude solutions
to the nonlinear Schrödinger/Gross–Pitaevskii (NLS/GP) equation

i∂tu = Hu − |u|2u; H = −∂2
x + V (x), (1.1)

in the presence of an oscillatory instability, arising from a particular type of Hamiltonian Hopf
(HH) bifurcation. Our interest in this problem has four primary motivations. In the remainder
of this section, we discuss these motivations, while simultaneously defining the mathematical
problem to be studied.
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1.1. Physical motivation

In nonlinear optics, equation (1.1) describes the evolution of the envelope u(x, t) of an
electromagnetic field E inside a nonlinear waveguide [1, 2]. The equation is derived using the
paraxial approximation, so that t measures the propagation distance along the waveguide axis,
and x the transverse profile. The waveguide is assumed to be thin in the third (y) direction,
so that variation in this direction can be safely ignored. The potential V (x) represents the
waveguide structure. The material is assumed to be Kerr nonlinear, i.e. a nonzero electric field
E locally and quadratically modifies the refractive index, n = n0 + n2(|E|2).

When the sign on the nonlinear term of (1.1) is reversed, it describes the evolution of a
Bose–Einstein condensate (BEC), a state of matter achievable at extreme low temperatures in
which atoms lose their individual identities and are described by a common wavefunction [3].
For equation (1.1) to hold, the three-dimensional condensate must be strongly confined by a
steep potential in the two transverse directions y and z so that it assumes a ‘cigar’ shape. The
term V (x) then describes a less steeply confining potential in the third spatial dimension.

1.2. Mathematical motivation—moving from stability to dynamics

A fundamental object of study for systems like (1.1) is a nonlinear standing wave or bound
state, i.e. a localized solution to (1.1) of the form

u(x, t) = e−i"tU (x).

A solution consists of a function U (x) ∈ H2, and real numbers " and N satisfying
"U = HU − U3;
∫ ∞

−∞
U2(x) dx = ||U ||22 = N .

(1.2)

The parameter N > 0 represents the number of particles of a BEC or the total intensity of
the light in optics. This solution is a nonlinear generalization of an eigenfunction of a linear
Schrödinger equation, although the principle of superposition does not apply. There exist
continuous families of solutions to (1.2) that are indexed by the intensity N . Some of these
families persist in the limit N → 0, and approach the eigenpairs of the linear system. We
denote the nonlinear continuation of the linear eigenfunction Uj(x) as UN

j (x).
Nonlinear bound states, or standing waves, represent coherent and simple states that should

be observable in a laboratory experiment. Such bound states may be found numerically, or,
for certain potentials V (x), computed exactly in the linear limit and perturbatively for N ≪ 1.
For such states to be observable in experiments, they must be stable, i.e. if a solution to
equation (1.1) is initialized at t = 0 with value close to, but not equal to, a solution to system
(1.2), then it must stay in a neighborhood of that solution for all t > 0.

The stability of such solutions has been widely studied, especially their spectral stability.
Eigenvalues or continuous spectrum with positive real part in the linearization of (1.1) about a
given solution is a sufficient condition for instability. The intensity N becomes a bifurcation
parameter: as N changes a particular solution may become unstable, and in addition the
number of solutions and the dynamics may change. The systems can change in a small number
of ways—bifurcation types—dependent on the leading order linear and nonlinear terms of the
system in a neighborhood of the bifurcation, their normal forms.

Recent studies have examined possible bifurcations in system (1.1) and related systems.
Several groups have demonstrated, for example, that solutions to (1.2) with a double-well
potential,

V (2)
L (x) = Ṽ (x − L) + Ṽ (x + L) with Ṽ (−x) = Ṽ (x), (1.3)
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undergo a symmetry-breaking (SB) bifurcation as the parameter N is raised from zero
[4, 5]. At a critical value NSB, a symmetric solution to equation (1.2) loses stability and two
stable, asymmetric standing wave modes are created. This has been subsequently understood
in work focusing on the time-dependent dynamics that arise near the bifurcation [6, 7], where
the dynamics of the Duffing equation are seen. The main tool for studying the dynamics in all
the above references, and here too, is to derive a system of Hamiltonian ordinary differential
equations (ODEs) whose dynamics approximate those of system (1.1).

Kapitula, Kevrekidis and Chen [8] have shown that for a triple-well potential

V (3)
L (x) = Ṽ (x − L) + Ṽ (x) + Ṽ (x + L) with Ṽ (−x) = Ṽ (x), (1.4)

that this symmetry-breaking bifurcation is replaced by three separate saddle-node bifurcations,
which give rise to six additional families of standing waves. They numerically investigated the
stability of all these solutions but did not address the nonlinear dynamics, which is the subject
of this paper.

1.3. Mathematical motivation—from simple to complex dynamics

The SB bifurcation studied by Kirr et al was shown by Marzuola and Weinstein to display the
dynamics typical of such systems. Below the bifurcation, the ODE system has a single-well
potential energy, and thus a one-parameter family of periodic orbits. Above the bifurcation,
the potential energy has a dual-well shape and three topologically distinct families of periodic
orbits. This manifests itself in a wobbling of the shape of the asymmetric solutions or a periodic
exchange of energy between the two wells [6]; see also [7, 9].

The SB bifurcation studied above is the simplest that can be found in Hamiltonian partial
differential equations (PDEs) with symmetries. The equations derived are integrable, and the
phase plane in the reduced ODE can take one of four simple arrangements, corresponding to
subcritical and supercritical bifurcations. Here, we focus on the next simplest bifurcation, a
relative of the HH bifurcation, which requires one more degree-of-freedom and gives rise to
dynamics that appear to be non-integrable and chaotic. This requires a potential more similar
to (1.4) than to (1.3). The dynamics require certain resonance assumptions on the spectrum of
V (x), which we outline below.

1.4. Mathematical motivation—analyzing previous simulations

There are several types of HH bifurcation, which have been seen in numerical simulations
of a variety of physical systems that support nonlinear waves. These bifurcations arise due
to ‘Krein collisions’ between frequencies, defined in section 4.4 below. Such a bifurcation is
observed numerically in the spectrum of the linearization of (1.1) about a certain standing wave,
when the potential (1.4) is used [8, figure 6(d)]; see also [10]. Although such a bifurcation is
commonly referred to as an HH bifurcation in the nonlinear wave literature, the analysis below
shows it to be, more precisely, a semisimple Hopf bifurcation, corresponding a semisimple
1:−1 resonance defined below in equation (2.8).

Several studies have demonstrated numerically the existence of Krein collisions in other
NLS-related settings: in discrete wave equations [11–14] and in BECs [15–18]. In these,
the bifurcation is discussed only in the context of detecting the instability transition in the
linear spectrum, or by performing a small number of numerical solutions to the initial value
problem. Theocharis et al [19] present one such simulation of multiple dark solitons in a
BEC system. They describe the Krein collision as ‘the collision of the second anomalous
mode with the quadrupole mode’ and display dynamics in their figure 5(c) very much like our
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figure 6(b), column 3. A goal of this paper is to shed light on the origin of such patterns in this
and similar numerical simulations.

Many of these references cite in passing the monograph of van der Meer [20], but this
analysis only applies to the generic HH bifurcation, and not the semisimple cases. In both
bifurcations, the linearization matrix possesses a complex-conjugate pair of multiplicity-two
imaginary eigenvalues. In the semisimple case, the corresponding block of the linearization
can be diagonalized over C. In the generic case, this block has a non-trivial Jordan form.
The bifurcation in the generic HH case is codimension-one and very well understood; see,
for example, [20–23]. By contrast, the bifurcation discussed in this paper has codimension
three.

Kapitula et al have developed rigorous analytical methods for detecting Krein collisions in
Hamiltonian nonlinear wave equations [24, 25], and apply these methods to study the stability
of many different solutions. In [26], they use this machinery to study the stability of rotating
matter waves in Bose–Einstein condensates, and demonstrate the presence of Krein collisions.
They supplement this with well-chosen numerical simulations showing the dynamics that arise
when the solution is destabilized.

Overview and organization of the paper

In this paper, we focus the dynamics in the vicinity of an HH bifurcation. The main tool of
the paper is to derive a finite-dimensional model of the dynamics, via a Galerkin truncation.
This Hamiltonian system of ODEs is then further reduced via symmetries to a two degree-
of-freedom system, the smallest that can possess a 1 : −1 resonance. Using Hamiltonian
averaging methods, we are able to separate further the slow and fast timescales of this reduced
system. Using these tools, we focus on the instability of one particular solution to (1.1) and the
dynamics nearby. We use numerical simulations to show the agreement between the different
models, and to demonstrate the appearance of chaotic dynamics.

Section 2 contains preliminaries. After a brief list of notation used, we discuss in
section 2.2 technical assumptions on the potential V (x). After a slight reformulation of
the problem in section 2.3, we review some basic concepts from dynamical systems and
Hamiltonian mechanics in section 2.4. Section 3 discusses the elementary properties of the
finite-dimensional model. In section 3.1, we briefly describe its derivation from (1.1) and
in section 3.2 we use symmetry to reduce the dimension from three to two. We compute a
further reduction of the dimension to (3.10), using Hamiltonian averaging to put the system
in Gustavson normal form. In sections 4 and 5, we discuss the stability of certain solutions,
and the dynamics in a neighborhood of those solutions. Section 4 contains analysis and
section 5 a numerical study. Section 4.1 reviews the known stationary solutions of system
(3.4). In section 4.2 and in section 4.3, we compute the linearizations of the PDE and the ODE
about the relevant solutions, and in section 4.4, we derive an analytical approximation to the
amplitude at which the antisymmetric mode becomes unstable. In section 4.5, we describe the
phase space of the one degree-of-freedom averaged equations. Section 5 contains numerical
experiments that further explore the phase space, and compare the results of simulations of
the different approximations. Section 5.1 compares the stability result of section 4.4 with
direct simulations of the linearized problem defined in section 4.2. Section 5.2 compares
the numerically computed dynamics of NLS/GP and the finite-dimensional model. Section 6
contains a concluding discussion and presents several directions for planned future research. In
the appendix, we sketch the construction the potential, thus proving the existence of a potential
satisfying the assumptions of section 2.2, while leaving further details to the supplementary
materials (available at stacks.iop.org/JPA/44/425101/mmedia).
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2. Preliminaries

2.1. Notation

• An overbar, z̄ represents the complex conjugate of z.
• ℜz = Real(z) and ℑz = Imag(z).
• ⟨ f , g⟩ =

∫
R f (x)ḡ(x) dx is the L2 inner product over complex-valued L2 functions of a real

argument.
• The inner product of u, v ∈ Rn is ⟨u, v⟩ =

∑n
k=1 ukvk and in Cn is⟨u, v⟩ =

∑n
k=1 ukv̄k .

2.2. Assumptions on the potential V (x) and the spectrum of H

We make the following assumptions about V (x) and about the frequencies " j that solve the
linear eigenvalue problem

HUj(x) = " jUj(x). (2.1)

Assumptions on spectrum Assumptions on potential
(S1) "1 < "2 < "3 < 0; (V 1) V (x) < 0;
(S2) "2 − "1 = O(1); (V 2) lim|x|→∞ V (x) = 0;
(S3) "3 − "2 = O(1); (V 3) V (x) = V (−x).

(S4) ("3 − "2) − ("2 − "1) ≪ 1;
(S5) 2 "2 − "1 < 0;

To satisfy assumption (S4) in particular, we let

"2 − "1 = W − ϵ and "3 − "2 = W + ϵ, (2.2)

where ϵ ≪ W and W = O(1). The sign of ϵ is left unspecified while W > 0. Assumption (S5)
ensures that the linearization about mode u2 possesses no leading-order resonances between
the discrete and continuous spectrum. The evenness assumption assures that the eigenfunctions
u j are, alternately, even and odd functions, and we further assume they satisfy

∥∥Uj
∥∥ = 1. Note

further that, by [27, theorem 13.9], the essential spectrum consists entirely of continuous
spectrum; specifically

σess = [0,∞).

Remark 1. As in [4], these assumptions ensure that equation (1.1) has O(2) × Z2 symmetry,
as does the finite-dimensional system that we derive.

Kirr et al show that for a similar system with a symmetric potential with only two closely
spaced eigenvalues and "2 − "1 ≪ 1, that the SB bifurcation of the nonlinear continuation
of UN

1 occurs at a small intensity
N ∝ "2 − "1.

Analogously, we show in this paper that under the above assumptions, the Krein collision, in
the linearization about UN

2 occurs for

N ∝ "3 − 2"2 + "1 ∝ |ϵ| .
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Figure 1. Top: the potential with "2 = −10, W = 1 and ϵ = −0.1 in assumption 2.2. Bottom: its
corresponding eigenfunctions.

In the appendix, we demonstrate a potential V (x) with two prescribed negative eigenvalues
and which also satisfies conditions (V1)–(V3). A similar potential with three frequencies is
derived in the supplementary materials (available at stacks.iop.org/JPA/44/425101/mmedia).
An example constructed in this manner and satisfying the above assumptions is shown
in figure 1. The potential is chosen such that " = (−11.1,−10,−9.1). The numerical
computations in the paper use this potential, except where noted. It is the odd mode UN

2 , the
nonlinear continuation of eigenfuction U2, that undergoes the HH bifurcation.

Remark 2. In the two-mode case, breaking assumption (V3) causes the bifurcation to
degenerate from a pitchfork bifurcation to a saddle node. In the three-mode case, the Krein
collision is generic and occurs regardless of this assumption, although the type of HH
bifurcation may change. Still, assumption (V3) greatly reduces the number and complexity of
the nonlinear terms in the reduced system.

2.3. An alternate formulation

The change of variables u =
√
N ũ in equation (1.1) and U =

√
NŨ in (1.2) produces the

modified evolution equation

i∂t ũ = Hũ − N |ũ|2ũ, (2.3)

and stationary equations

"Ũ = HŨ − NŨ3;
∫ ∞

−∞
Ũ2(x) dx = ||Ũ ||22 = 1.

(2.4)

This formulation presents a natural environment for studying the N → 0 limit. Since this
system is well-defined regardless of sign(N ), we can study all the bifurcations for N ∈ R,
which gives a fuller picture of the dynamics, unifying the focusing and defocusing NLS
equations. We use this formulation for the remainder of the paper.
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Remark 3. This formulation has, in general, no bifurcation at N = 0: for almost all potentials
V (x), a smooth family of functions passes through any solution to system (2.4) at N = 0.

2.4. Hamiltonian systems, resonance and stability

The principal tool of this paper is to formally reduce system (2.3) to a finite-dimensional system.
While the definitions given in this section refer to finite-dimensional systems, equivalent
definitions exist for infinite-dimensional systems.

It is convenient to define the Hamiltonian in terms of n complex variables z =
(z1, z2, . . . , zn) and their complex conjugates. In this setting, the Hamiltonian H is a real
valued function H(z, z̄) with canonical position vector given by q = z and momentum vector
by p = iz̄. The evolution equations are

i
d
dt

z j = ∂

∂z∗
j
H(z, z̄); j = 1, . . . , n. (2.5)

We often make reference to a ‘solution’ to a Hamiltonian H(z, z̄), by which we mean a solution
to the associated system (2.5).

2.4.1. Relative equilibria and relative periodic orbits. A solution to system (2.5) of the form

z = e−i"t z0,

i.e. a solution that is time-invariant in an appropriate rotating reference frame, is known as
a relative equilibrium. Equation (2.4) describes such relative equilibria for NLS/GP (2.3).
Similarly, a relative periodic orbit is a quasi-periodic orbit which appears periodic when
viewed in an appropriate rotating reference frame. A more technical definition of a relative
equilibrium (or periodic orbit) is a solution to (2.5) that corresponds to an equilibrium (or
periodic orbit) of a symmetry-reduced Hamiltonian derived from (2.5).

2.4.2. Quadratic Hamiltonian systems and resonances. A more standard formulation is to
make the change of variables q = (z + z̄)/

√
2; p = (z − z̄/(i

√
2)), which is canonical, i.e. it

preserves the Hamiltonian structure q̇ j = ∂H/∂ p j and ṗ j = −∂H/∂q j. Writing x =
(q

p

)
,the

equations of motion are d
dt x = J∇H; J =

( 0 I
−I 0

)
.

Assuming that x = 0 is an equilibrium, then H = H2(x)+O(|x|3),where H2(x) = ⟨x, Kx⟩
for some symmetric matrix K. The linear stability of the trivial solution is determined by the
eigenvalues λ j of the matrix JK. The real and imaginary parts of the eigenvalues determine,
respectively, the growth and decay rates of the solution, and the oscillation frequency of small
solutions. The solution is unstable if any eigenvalues λ j satisfy ℜλ j > 0.

If the trivial solution is neutrally linearly stable, then JK has n complex conjugate pairs
of eigenvalues λ = ± i" j on the imaginary axis, the natural frequencies of the system. If these
eigenvalues are distinct and nonzero, then the matrix JK is diagonalizable. Any solution to the
linear system is of the form

x =
n∑

j=1

ℜ(c j e−i" jtVj), (2.6)

where Vj is an eigenvector corresponding to i" j.
Topologically, such a solution lies on an n-dimensional torus Tn in the 2n-dimensional

phase space. The analysis in this paper requires some understanding of resonances in
Hamiltonian systems, see e.g. Wiggins [28]. A resonance relation is a solution to the equation

⟨k,"⟩ = 0 with k ∈ Zn\{0}. (2.7)
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The sum

|k| =
n∑

j=1

|k j|

defines the order of a given resonance; e.g. a frequency vector " satisfying assumption 2.2
with ϵ = 0, together with the vector k = (1,−2, 1), satisfies equation (2.7) and defines a
resonance of order 4. The number of linearly independent vectors k that solve equation (2.7)
is the multiplicity of the resonance. In the absence of such resonances, each solution (2.6)
is dense on Tn. Given a resonance with multiplicity m, the solutions are confined to, and
dense on, (n − m)-dimensional subsets of Tn which are themselves topologically equivalent
to Tn−m. To understand this, think of the two-dimensional case. If there are two non-resonant
frequencies, any nonzero solution is dense on a two-torus, so its closure is two-dimensional,
but if the two frequencies are rationally related, then each one-dimensional orbit is closed. The
closed orbits lie on the level sets of an additional conservation law within T2. A system with
a near-resonance, ⟨k,"⟩ ≪ 1 but non-zero, and small nonzero nonlinear terms will have a
nearly conserved quantity. Averaging methods then allow us to decrease the dimension of the
system and obtain simpler equations that accurately approximate solutions for long but finite
times.

While our procedure is to first derive a finite-dimensional Hamiltonian approximation to
NLS and apply averaging methods to analyze this finite-dimensional system, Bambusi and
collaborators have applied such methods directly to a variety of PDE systems [29–31], the
most relevant being [32]. We return to this theme in the conclusion, after more of the technical
details have been introduced.

2.4.3. Bifurcations. Bifurcation points, locations in parameter space where the stability,
type, or number of solutions changes may be classified into different types, or normal forms.
A normal form for a system of differential equations is any equivalent system of differential
equations, obtainable by a change of variables, in which the dynamics are particularly simple
to understand [28]. We talk more about normal forms for Hamiltonian systems in section 3.3.

In Hamiltonian systems, it is well-known (Williamson’s theorem) that if λ is an eigenvalue,
then so are −λ, λ̄, and −λ̄. This implies that the eigenvalues can occur in four types of
groupings, up to multiplicity: complex quadruplets (Krein quartets) {λ, λ̄,−λ,−λ̄} with
nonzero real and imaginary parts, real-valued pairs {λ,−λ}, purely imaginary pairs {iµ,−iµ}
and zero eigenvalues of even algebraic multiplicity.

The symmetry-breaking, or Hamiltonian pitchfork, birfurcation occurs when, as a
parameter is varied, a purely imaginary pair of eigenvalues collide at the origin, producing a
purely real pair. Here, small perturbations to the origin initially grow monotonically due to
the real positive eigenvalue. See figure 2(a) and (b). At the bifurcation point, the spectrum
contains a zero of multiplicity-two.

A solution may also lose stability when, as the parameters are varied, two pairs of pure
imaginary eigenvalues collide at a nonzero point on the imaginary axis, and the four eigenvalues
recombine to form a quartet of fully complex eigenvalues. The linear stability is determined by
the form of H2 while the dynamics in a neighborhood of the equilibrium also depends on the
higher-order terms. There are several different normal forms for a pair of complex conjugate
double eigenvalues

HSS
1:± 1 = (" + δ1) |z1|2 + (± " + δ2) |z2|2 . (2.8)

At δ1 = δ2 = 0, these systems are possess the semisimple 1 : 1 or semisimple 1 : −1
resonance, depending on the ± sign, because the frequencies of J∇H2 at δ1 = δ2 = 0 are

8
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Figure 2. (a) The path of the eigenvalues as a parameter is varied in the Hamiltonian pitchfork
bifurcation. (b) The real and imaginary parts of the eigenvalues. (c) The path of the eigenvalues
as an parameter is varied, resulting in a Krein collision. (d) The real and imaginary parts of the
eigenvalues. After Luzzatto–Fegiz and Williamson [36].

in ratios 1 : ± 1, and satisfy resonance relations of the form (2.7) with k = (1,∓1). In
both of these cases, the matrix JK is semisimple (diagonalizable over C). We may refer to the
bifurcations in these two systems, depending on the ± sign, as the semi-simple positive-definite
(SPHH) and the semisimple indefinite (SIHH) Hamiltonian Hopf bifurcations.

The third normal form that possesses a pair of multiplicity-two eigenvalues on the
imaginary axis occurs when the matrix JK is non-semisimple, i.e. has nontrivial Jordan
form. This normal form is referred to in the geometric mechanics literature as the Hamiltonian
Hopf (HH) bifurcation, while in the nonlinear waves literature, the HH label has been applied
to any of the three normal forms. The failure to recognize this distinction has caused a lot of
confusion in the nonlinear waves literature, and results applicable to the Hamiltonian Hopf
bifurcation have often been inappropriately cited in reference to systems with either of the two
semisimple normal forms. There exists a very small literature studying the two semisimple
cases, notably [21] and [33], while a wealth of papers examine the HH bifurcation, for example
[20, 22, 23].

The system under study here undergoes the SIHH bifurcation. Nonetheless, we will
use the abbreviation HH in this paper, as is familiar, and the abbreviation SIHH is
awkward.

Readers unfamiliar with the Hamiltonian context may nonetheless be aware that the
generic (non-Hamiltonian) Hopf bifurcation may be classified as supercritical or subcritical.
This classification depends on the nonlinear terms in the equations, whereas the classification
given above depends solely on the linear part. A similar classification is made by Lahiri and
Roy for the nonsemisimple HH bifurcation using formal averaging of a different type than
given here [34].

They find two types of bifurcations, depending on certain coefficients in the cubic and
quartic terms in the Hamiltonian. In their Type I bifurcation, they find that there exists a critical
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nonlinearity coefficient Ncrit > 0. For N > Ncrit, the averaged equations possess a periodic
orbit a distance d ∝

√
N > Ncrit from the origin, regardless of whether the nonlinear terms

are subcritical or supercritical. In their Type II bifurcation, there exists no nonzero periodic
orbit near zero on the unstable side of the bifurcation. Johansson makes a similar observation
in his study of the NLS trimer [11] but does not comment on the difference between the
semisimple and non-semisimple bifurcations—in fact, a straightforward computation shows
the bifurcation for the trimer is semisimple, so the results of Lahiri and Roy do not apply.
The analysis of Chow and Kim [33] serves a similar purpose for the SIHH bifurcation, but the
dynamics are too varied to fit into a simple dichotomy.

2.4.4. Krein Signatures. Whether the collision of eigenvalues on the imaginary axis leads
to instability is determined by the Krein signatures [35] associated with them. Let Iω be the
eigenspace corresponding to the eigenvalues ± iω, with basis {ξ1, . . . , ξ2n}. Defining K{ω} to be
the restriction of K to Iω, which can be constructed explicitly, using (complex) inner products
to define a matrix

K{ω}
j,k = ⟨ξ j, Kξk⟩.

Since K{ω} is self-adjoint, we can define the positive (respectively, negative) Krein signature of
Iω to be the number of positive (resp., negative) eigenvalues of K{ω}.1 An important theorem on
stability [35] states that if Iω has mixed signature, i.e. if both its positive and negative signatures
are nonzero, then upon perturbation the eigenvalues may split into a Krein quartet, and that
this cannot happen if Iω has purely positive (or purely negative) signature. As a consequence,
when two pairs of purely imaginary eigenvalues of opposite Krein signature collide, they
generically split into a Krein quartet, indicating that the origin has become unstable, with
oscillatory dynamics due to their nonzero imaginary parts as sketched in figure 2(c) and (d).

3. The finite-dimensional model

3.1. Derivation of the model

We decompose the solution to equation (2.3) as the following time-dependent linear
combination:

u = c1(t)U1(x) + c2(t)U2(x) + c3(t)U3(x) + η(x; t), (3.1)

where the eigenfunctions Uj, defined in equation (2.1), are orthonormal and, for all t, η(x; t)
is orthogonal to the discrete eigenspace, i.e.

⟨Ui,Uj⟩ = δi, j and ⟨η(·, t),Uj⟩ = 0, for i, j = 1, 2, 3.

We define the projection operators on to the discrete eigenmodes

* jζ = ⟨Uj, ζ ⟩Uj for j = 1, 2, 3, (3.2)

and onto the continuous spectrum

*Cζ = ζ − (*1 + *2 + *3)ζ .

1 Mackay [35] provides a complete definition, which is also well defined for the cases of real eigenvalues and complex
quartets as well as purely imaginary eigenvalues.

10
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Substituting the decomposition (3.1) into NLS/GP (2.3) and applying these four projection
operators gives evolution equations for the components of the decomposition. The following
system of equations is equivalent to (2.3) under the assumptions of section 2.2:

i
dc1

dt
− "1c1 + N

[
a1111|c1|2c1 + a1113

(
c2

1c̄3 + 2|c1|2c3
)
+ a1122

(
2c1|c2|2 + c̄1c2

2

)

+ a1133
(
2c1|c3|2 + c̄1c2

3

)
+ a1223

(
c2

2c̄3 + 2|c2|2c3
)

+ a1333|c3|2c3
]

= R1(c1, c2, c3, η);

i
dc2

dt
− "2c2 + N

[
a1122

(
c2

1c̄2 + 2|c1|2c2
)
+ 2a1223(c1c2c̄3 + c1c̄2c3 + c̄1c2c3)

+ a2222|c2|2c2 + a2233
(
2c2|c3|2 + c̄2c2

3

)]
= R2(c1, c2, c3, η);

i
dc3

dt
− "3c3 + N

[
a1113|c1|2c1 + a1133

(
c2

1c̄3 + 2|c1|2c3
)
+ a1223

(
2c1|c2|2 + c̄1c2

2

)

+ a1333
(
2c1|c3|2 + c̄1c2

3

)
+ a2233

(
c2

2c̄3 + 2|c2|2c3
)

+ a3333|c3|2c3
]

= R3(c1, c2, c3, η);
i∂tη − Hη + N |η|2η = RC(c1, c2, c3, η), (3.3)

where
a jklm = ⟨u j, ukulum⟩

and we have used the invariance of the coefficients ajklm under permutation of the four indices
and the fact that a jklm = 0 if ( j + k + l +m) is odd. The parameters are calculated numerically
as needed for the numerical simulations. The remainder terms Rj are the projections of the
remaining nonlinear terms of (2.3) onto the discrete eigenfunctions:

Rj = −N · * jF,

where * j is given in equation (3.2) and

F = |c1U1 + c2U2 + c3U3 + η|2(c1U1 + c2U2 + c3U3 + η)

− |c1U1 + c2U2 + c3U3|2(c1U1 + c2U2 + c3U3).

The remainder term in the continuum portion is

RC = −N · *CG,

where
G = |c1U1 + c2U2 + c3U3 + η|2 (c1U1 + c2U2 + c3U3 + η) − |η|2 η.

Ignoring the contributions of η(x; t) to the solution yields a finite-dimensional
approximation to (3.3); the reasoning for the change of notation N → N is described
afterward:

i
dc1

dt
− "1c1 + N

[
a1111|c1|2c1 + a1113

(
c2

1c̄3 + 2|c1|2c3
)
+ a1122

(
2c1|c2|2 + c̄1c2

2

)

+ a1133
(
2c1|c3|2 + c̄1c2

3

)
+ a1223

(
c2

2c̄3 + 2|c2|2c3
)
+ a1333|c3|2c3

]
= 0

i
dc2

dt
− "2c2 + N

[
a1122

(
c2

1c̄2 + 2|c1|2c2
)
+ 2a1223(c1c2c̄3 + c1c̄2c3 + c̄1c2c3)

+ a2222|c2|2c2 + a2233
(
2c2|c3|2 + c̄2c2

3

)]
= 0

i
dc3

dt
− "3c3 + N

[
a1113|c1|2c1 + a1133

(
c2

1c̄3 + 2|c1|2c3
)
+ a1223

(
2c1|c2|2 + c̄1c2

2

)

+ a1333
(
2c1|c3|2 + c̄1c2

3

)
+ a2233

(
c2

2c̄3 + 2|c2|2c3
)
+ a3333|c3|2c3

]
= 0. (3.4)

11
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We have introduced the following slight change of notation in this equation. As system (3.3)
is equivalent to equation (2.3), it conserves the L2 norm

|c1|2 + |c2|2 + |c3|2 + ∥η∥2
2 = 1.

This implies that |c1|2 + |c2|2 + |c3|2 ! 1, while system (3.4) possesses a finite-dimensional
conserved quantity corresponding to the photon number of system (1.1),

|c1|2 + |c2|2 + |c3|2 = 1. (3.5)

The conserved quantities in systems (2.3) and (3.4) are not equivalent, since the contribution
of η(x, t) is ignored in the latter. Recall that N represents the total intensity and the sign of
the nonlinearity in equation (1.1). Since the meaning of N is slightly changed from equation
(2.3) to system (3.4), we introduce the new constant N.

The above reduction demands some justification, either numerical or rigorous. One check
is whether a numerically computed solution to (1.1) whose initial condition consists of a linear
superposition of the eigenmodes stays close to the manifold η(x, t) = 0 for long times. Our
PDE simulations, which are described in section 5.2 were run over long times, up to 20 000
oscillations of the phase θ (t). Although they were run with absorbing boundary conditions,
the computed L2 norm of the solution was in all cases conserved to within half of a percent,
and the L2 norm of the projection onto the three eigenfunctions conserved to within 0.6
percent. Further, figure 6 shows good qualitative agreement, and for shorter times quantitative
agreement, between solutions to (1.1) and the approximation (3.4).

To rigorously justify the above assumptions is, of course, a significant task, and one which
we delay to a subsequent paper. It should proceed in largely the same way as recent results.
Here we discuss those results and in what sense those results justify the finite-dimensional
truncation. Kirr et al [4] prove using a Lyapunov–Schmidt argument that standing waves
given as the continuations of the linear eigenfunctions are well-approximated by solutions
to the finite dimensional system, and that the critical amplitude at which such solutions lose
stability in symmetry-breaking bifurcations is asymptotically close to the bifurcation value
for the finite-dimensional problem. Marzuola and Weinstein [6] prove a shadowing theorem,
in which certain quasiperiodic solutions to the finite-dimensional system are shadowed by
solutions to NLS/GP (1.1) over long but finite times using an infinite-dimensional Floquet
argument. This approach required the use of Strichartz estimates, and we should be able to
prove similar theorems regarding periodic and quasiperiodic solutions in the present case.
Pelinovsky and Phan [7] use a normal form argument that proves the results of Kirr without
Lyapunov–Schmidt, and obtains short-time shadowing theorems like Marzuola for arbitrary
small initial conditions, not just certain periodic orbits, without the need for Floquet analysis
and using much simpler inequalities, at the cost of the estimates being valid on significantly
shorter timescales. Of course, since the numerics below suggest that both the PDE and ODE
evolve chaotically, such a shadowing theorem may have to be replaced by a much weaker
statement. The proofs given in the above references depend on stricter assumption than those
given in (S1)–(V3), particularly inequalities involving the coefficients ai jkl .

3.2. Model reduction via symmetry

To understand the dynamics of system (3.4), it is useful to use the invariance of H under
c j → eiαc j to reduce the number of degrees of freedom from three to two. This reduction is
based on the Hamiltonian form

12
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H = "1|c1|2 + "2|c2|2 + "3|c3|2 − N
[ 1

2 a1111|c1|4 + a1113|c1|2(c1c̄3 + c̄1c3)

+ a1122
( 1

2 c2
1c̄2

2 + 2|c1|2|c2|2 + 1
2 c̄2

1c2
2

)
+ a1133

( 1
2 c2

1c̄2
3 + 2|c1|2|c3|2 + 1

2 c̄2
1c2

3

)

+ a1223
(
2|c2|2(c1c̄3 + c̄1c3) + c1c̄2

2c3 + c̄1c2
2c̄3

)
+ a1333|c3|2(c1c̄3 + c̄1c3)

+ 1
2 a2222|c2|4 + a2233

( 1
2 c2

2c̄2
3 + 2|c2|2|c3|2 + 1

2 c̄2
2c2

3

)
+ 1

2 a3333|c3|4
]

(3.6)

with evolution equations

iċ j = ∂H
∂ c̄ j

; j = 1, 2, 3. (3.7)

We simplify the equations using generalized action-angle coordinates

c1(t) = σ1(t) eiθ (t); c2(t) = ρ(t) eiθ (t); c3(t) = σ3(t) eiθ (t), (3.8)

where ρ(t), θ (t) ∈ R. ODEs for these variables are determined by inserting (3.8) into equations
(3.6) and (3.7). The c2 equation determines the evolution of θ (t) in terms of σ1 and σ3

θ̇ (t) = −"2 + N
[
a2222(1 − |σ1|2 − |σ3|2) + 1

2 a1122
(
σ 2

1 + 4|σ1|2 + σ̄ 2
1

)

+ a1223(2σ̄3σ1 + 2σ̄1σ3 + σ̄1σ̄3 + σ1σ3) + 1
2 a2233

(
σ 2

3 + 4|σ3|2 + σ̄ 2
3

)]
. (3.9)

This equation and the conservation law (3.5) are used to eliminate θ and ρ from the evolution
equations for σ1(t) and σ3(t). These are integrated to give a reduced Hamiltonian depending
solely on N, σ1, σ3, and their complex conjugates:

HR = (−W + ϵ)|σ1|2 + (W + ϵ) |σ3|2 − N
[ 1

2 a1111 |σ1|4 + a1113 |σ1|2 (σ1σ̄3 + σ̄1σ3)

+ 1
2 a1122(1 − |σ1|2 − |σ3|2)

(
σ 2

1 + 4|σ1|2 + σ̄ 2
1

)

+ a1133
( 1

2σ 2
1 σ̄ 2

3 + 2|σ1|2|σ3|2 + 1
2 σ̄ 2

1 σ 2
3

)

+ a1223(1 − |σ1|2 − |σ3|2)(σ1σ3 + 2σ1σ̄3 + 2σ̄1σ3 + σ̄1σ̄3)

+ a1333|σ3|2(σ1σ̄3 + σ̄1σ3)

+ 1
2 a2222(1 − |σ1|2 − |σ3|2)2 + 1

2 a2233(1 − |σ1|2 − |σ3|2)
(
σ 2

3 + 4|σ3|2 + σ̄ 2
3

)

+ 1
2 a3333|σ3|4

]
. (3.10)

The term c2(t) may be recovered using the conservation law (3.5) to obtain ρ(t) and
equation (3.9) for θ (t).

Remark 4. This reduction involves defining a reference phase θ (t) and thus leads to reduced
equations that are not equivariant with respect to rotation by a phase.

3.3. Averaging and further reduction of the ODE

We further reduce the system using averaging methods. This puts the equations into normal
form, which identifies which terms in HR have a significant effect on the dynamics at leading
order. We formally apply the von Zeipel procedure, which applies when there is a resonance
between eigenvalues [28, 37]. The averaged equations preserve some but not all features of
the full system of equations—for example, hyperbolic equilibria and their local un/stable
manifolds are preserved, but homoclinic orbits are not. The averaged system Haverage, equation
(3.19), is completely integrable, but we do not expect general Hamiltonians, such as (3.10), to
be. Our numerical computations, typified by figure 6, suggest that the full system is chaotic
and thus not integrable.

To put the system in the correct form for averaging, we make two exact changes of
variables. After using definition (4.4), and replacing ϵ in equation (2.2) by

ϵ → sϵ

13
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with ϵ " 0 and s = ± 1, we first make the change of variables to canonical polar coordinates

σ j → √
ρ jeiθ j ; j = 1, 3,

yielding a Hamiltonian:

Hpolar = Wρ1 − Wρ3 − ϵs(ρ1 + ρ3) + ϵν
[
(a1122 cos 2θ1 + 2a1122 − a2222)ρ1

+ 2a1223(2 cos (θ1 − θ3) + cos (θ1 + θ3))
√

ρ1
√

ρ3

+ (a2233 cos 2θ3 − a2222 + 2a2233)ρ3

+ 1
2 (−2a1122 cos 2θ1 + a1111 − 4a1122 + a2222)ρ

2
1

+ 2((a1113 − 2a1223) cos (θ1 − θ3) − a1223 cos (θ1 + θ3))ρ
3/2
1 ρ

1/2
3

− (a1122 cos 2θ1 − a1133 cos 2(θ1 − θ3) + a2233 cos 2θ3

+ 2a1122 − 2a1133 − a2222 + 2a2233)ρ1ρ3

− 2((2a1223 − a1333) cos (θ1 − θ3) + a1223 cos (θ1 + θ3))ρ
1/2
1 ρ

3/2
3

+ 1
2 (−2a2233 cos 2θ3 + a2222 − 4a2233 + a3333)ρ

2
3

]
. (3.11)

Averaging methods allow one to simplify a system by replacing some or all of its oscillatory
terms by their means, which is accomplished using a sequence of near-identity changes of
variables. Leading-order linear terms that satisfy a resonance condition, as in (2.7), render
some of these equations unsolvable due to zero denominators. Were it not for such resonances
between the eigenvalues, one could formally remove all terms containing trigonometric
functions and fractional powers of ρ1 and ρ3, putting the system in the so-called Birkhoff
normal form. In the present case, the leading order linear part H2 = Wρ1 − Wρ3 is 1 : −1
resonant (semisimple and indefinite), so the system cannot be completely averaged and the
Gustavson normal form applies, in which all but the resonant terms are averaged away. For
more information see Wiggins [28, section 19.10, section 20.9].

The canonical change of variables

θ1 = φ1, θ3 = −φ1 + φ3, ρ1 = I1 + I3, ρ3 = I3

puts the Hamiltonian into the form

Hreduced(I⃗, φ⃗) = H0(I1) + ϵH1(I1, I3,φ1,φ3), (3.12)

where
H0(I1) = WI1 and H1 = Hmean

1 (I1, I3) + Hosc
1 (I1, I3,φ1,φ3)

and Hosc
1 has period π in φ1 and 2π in φ3. In general, the term H0 may be written as the inner

product
H0 = ⟨ω, I⃗⟩,

so that, in this case, ω = (W, 0). Equation (3.12) shows that φ1 oscillates on an O(1) time
scale since d

dt φ1 = W + O(ϵ), while I1, I3 and φ3 oscillate slowly, on an O(ϵ−1) time scale.
For this reason φ1, but not φ3, can be averaged out.

In the present problem, Hosc
1 contains five terms, details omitted:

Hosc
1 =

∑

k∈K

Hk
1 (I1, I3) cos ⟨k, φ⃗⟩;

K = Kres ∪ Knon = {(0, 1)} ∪ {(2, 0), (2,−1), (2,−2), (4,−2)}.
Applying definition (2.7) the ordered pair (0, 1) ∈ Kres is resonant with ω, while the four in
Knon are not.

14
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The von Zeipel averaging procedure yields a partially averaged Hamiltonian as a formal
power series in ϵ,

I j = ∂S
∂φ j

, ψ j = ∂S
∂Jj

, (3.13)

S(J,φ, ϵ) = ⟨J⃗, φ⃗⟩ + ϵS1(J⃗, φ⃗) + · · · (3.14)

H(J⃗, ψ⃗ ) = H0(I) + ϵH1(J⃗, ψ⃗ ) + · · · . (3.15)

Equations of the form (3.13) generate a canonical near-identity change of variables (I,φ) →
(J,ψ ) for any generating function S(J,φ), the downside being that S must be inverted in order
to find J. A more modern approach using Lie transforms does not have this problem. Plugging
the expansion for I = Sφ into the Hamiltonian (3.12), setting this equal to the series (3.15) for
H and equating orders of ϵ, one finds at O(1), H0 = H0, and at order ϵ,

H1(J,ψ ) = ⟨∇J⃗H0,∇φ⃗S1⟩ + H1(J⃗, ψ⃗ ) = ⟨ω,∇φ⃗S1⟩ + H1(J⃗, ψ⃗ ).

The terms in S1 are chosen to eliminate the fast phases from H1. The method proceeds
by eliminating terms in H1 of the form Hk

1 cos ⟨k, φ⃗⟩ one at a time by solving homological
equations of the form

(ω · ∇φ⃗ )Sk
1 + Hk

1 cos ⟨k, φ⃗⟩ = 0.

For k ∈ Kres, this equation is unsolvable, since cos ⟨k, φ⃗⟩ is in the nullspace of the operator
ω · ∇φ . Terms involving k ∈ Knon may be eliminated, so that

S1 =
∑

k∈Knon

−Hk
1

⟨k,ω⟩
sin ⟨k, φ⃗⟩.

This transforms the Hamiltonian to

H(J⃗, ψ⃗ ) = WJ1 + ϵH1(J1, J3,ψ3) + ϵ2Hremainder(J1, J3,ψ1,ψ3; ϵ), (3.16)

where

H1(J1, J3,ψ3) = α1J1 + α3J3 + α1,1J2
1 + α1,3J1J3 + α3,3J2

3

+ 21223ν(J1 + 2J3 − 1)
√

J3

√
J3 + J1 cos ψ3 (3.17)

and Hremainder is 2π -periodic in ψ1. We delay writing down the coefficients.
System (3.16) is in the proper form for the reduction procedure of [38, section 4.8]. We

consider the dynamics on the level set H = hW and solve for J1 in (3.17) as a series in ϵ.
Such a solution exists when ∂

∂J1
H ̸= 0, or equivalently when d

dt ψ1 ̸= 0. In this case ψ1 is a
time-like variable; the reduction then gives simplified equations for the evolution of (J3,ψ3)

with respect to ψ1. The ansatz

J1 = L(J3,ψ3; h) = J(0)
1 + ϵJ(1)

1 + · · ·
yields expansion

J(0)
1 = h; J(1)

1 = − 1
W

H1(h, J3,ψ3)

and J3 and ψ3 evolve under the effective Hamiltonian

Hreduced(J3,ψ3, τ ; h) = −L = −h + ϵ

W
H1(J3,ψ3; h) + ϵ2H2(J3,ψ3, τ ; h). (3.18)
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Ignoring any terms independent of J3 and ψ3 that do not effect the dynamics

H1(J3,ψ3; h) = γ1J3 + γ2J2
3 + γ3

√
J3

√
J3 + h (2J3 + h − 1) cos ψ3

with

γ1 = 2s + (−a1111h + 2a1122(3h − 1) − 2a1133h − 2a2222(h − 1) + 2a2233(h − 1)) ν

γ2 = ν

2
(−a1111 + 8a1122 − 4a1133 − 4a2222 + 8a2233 − a3333)

γ3 = 2νa1223.

Remark 5. The implicit function theorem will fail if there exists t0 such that dψ1
dt |t=t0 = ∂H

∂J1
= 0;

if ψ1 does not grow monotonically, it cannot be used as a proxy for time. Our simulations
show this is the case, for example, in figure 6, row (d).

System (3.18) satisfies some easily verified smoothness requirements in order to apply the
averaging theorem, as stated by Guckenheimer and Holmes [38, theorem 4.1.1]. The theorem
guarantees that there exists a change of variables

J = J3 + O(ϵ), ψ = ψ3 + O(ϵ)

such that the solution to the averaged system with Hamiltonian

Haverage = ϵ

W
H1(J,ψ; h) (3.19)

agrees with solutions to system (3.18) with O(ϵ) error O(ϵ−1) timescales. Further, for
sufficiently small ϵ, hyperbolic equilibria and their local invariant manifolds of system (3.19)
correspond to hyperbolic periodic orbits and their local invariant manifolds of system (3.18).
Similarly elliptic equilibria of (3.19) correspond to elliptic periodic solutions of (3.18).

By the conservation law (3.5), ρ1 and ρ3 in system (3.11) are confined to the triangle

0 ! ρ1 ! 1; 0 ! ρ3 ! 1; 0 ! ρ1 + ρ3 ! 1.

In system (3.18), this becomes a constraint on the conserved parameter h and the variable J,

−1 ! h ! 1; max (−h, 0) ! J ! 1 − h
2

in the case 0 ! h ! 1. In this case, the phase space is the disk J ! 1−h
2 .

Due to the higher-order terms H2 in equation (3.18), the conservation of h is only
approximate in system (3.18). Formally, one may perform a countable sequence of changes of
variables that transform system (3.18) into completely integrable form. This corresponds to
defining a change of variables as a power series in ϵ. Generally, this power series has radius
of convergence zero, because the full system is not itself integrable, which we can see from
the apparent chaotic dynamics in the numerical solution given in figure 6(c). This suggests
that the solution 6(b) is also very weakly chaotic, but with a much smaller chaotic region and
a longer chaotic timescale.

4. Stability and dynamics near the first excited state: analysis

Just as other studies have begun by focusing on the destabilization of the ground state of the
two-well system via symmetry breaking [4, 6, 7], the goal of this paper is to understand the
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dynamics in the neighborhood of an HH bifurcation. We therefore consider the stability of,
and the dynamics near, the antisymmetric mode U2(x, N), the nonlinear continuation of the
first excited state U2 of equation (2.1). In the reduced system (3.10) this is just the dynamics in
the neighborhood of the origin. Future work will include a more thorough description of the
global phase space including all the relative equilibria and relative periodic orbits for small N.

4.1. Relative equilibria of the reduced hamiltonian

We first look for relative equilibria of system (3.10) of the form
(

σ1(t)
σ3(t)

)
=

(
x
y

)
e−i"t,

which correspond, ultimately, to standing wave solutions of equation (1.2). This calculation
is well-covered by Kapitula et al [8] who demonstrate the existence of two types. The first
families persist in the N → 0 limit. These correspond to the nonlinear deformations of the
eigenfunctions defined in equation (2.1). The other family of solutions arise due to saddle-node
bifurcations. These bifurcations are shown to take place for N ≫ ϵ, whereas we demonstrate
HH bifurcations for N = O(ϵ). It is simple to show [4, 8] that a solution to equation (1.2)
with real potential V (x) are up to a constant phase factor, a real-valued function, as are relative
equilibria of system (3.10). Thus, without loss of generality, we look for stationary solutions
of the form

(" − "1 + "2 + 3a1122N)x + 3a1223Ny + N((a1111 − 3a1122)x3 + 3(a1113 − a1223)x2y

+ 3(a1133 − a1122)xy2 − (3a1223 − a1333)y3) = 0

3a1223Nx + (" + "2 − "3 + 3a2233N)y + N((a1113 − 3a1223)x3 + 3(a1133 − a2233)x2y

+ 3(a1333 − a1223)xy2 − (3a2233 − a3333)y3) = 0

with x2 + y2 ! 1 and x, y ∈ R.
The simplest solution is

x = y = 0, " = "2 − a2222 (4.1)

which corresponds to an antisymmetric standing wave solution to (1.2), the nonlinear
deformation of the eigenpair (U2,"2) of equation (2.1). There are two other standing-wave
solutions for small N. These satisfy x2 + y2 = 1, so we write x = cos θ (N), y = sin θ (N).
Taylor expanding θ (N) and "(N) for small N yields two solutions, one with θ near zero,
corresponding to the nonlinear deformation of the eigenfunction U1, and one with θ near π/2,
corresponding to the continuation of the eigenfunction U3. For a complete enumeration of the
relative equilibria of (1.2), see [8].

4.2. Linearization of PDE solutions

Letting (U,") be a solution of system (2.4) and consider small time-dependent perturbations
of the form

u(x, t) =
(
U (x) + r(x, t) + is(x, t)

)
e−i"t .

Then, linearizing and letting
(r, s) = (R(x), S(x))eλt

yields the eigenvalue problem

λ

(
R
S

)
=

(
0 −(" + ∂2

x − V (x) + NU2(x))

" + ∂2
x − V (x) + 3NU2(x)

)(
R
S

)
. (4.2)
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While future studies will concentrate on analysis of this system in its own right, here we are
interested in comparing the results of numerical stability studies of this system with those
found for the model ODE.

4.3. Linearization of ODE

First, we determine the linear stability of the solution (4.1), the trivial solution to system (3.10).
By inserting the form (

σ1(t)
σ3(t)

)
=

(
r1(t) + is1(t)
r3(t) + is3(t)

)

into system (3.10), the linearized equations become

d
dt

⎛

⎜⎜⎝

r1

r3

s1

s3

⎞

⎟⎟⎠ =
(

02 −M−
M+ 02

)
⎛

⎜⎜⎝

r1

r3

s1

s3

⎞

⎟⎟⎠ ≡M(ϵ, N)u, (4.3)

where 02 is a 2 × 2 matrix of zeros,

M± =
(

W − ϵ + (m± a1122 − a2222)N m± a1223N
m± a1223N −W − ϵ + (a2233 + m± a2222)N

)
,

and m± = 2 ± 1. The matrix M(ϵ, 0) has imaginary eigenvalues λ±
1,2 = ± i("1 − "2) =

± i(−W + ϵ) and λ±
3,2 = ± i("3 − "2) = ± i(W + ϵ). For all N, M(ϵ) is symplectic, i.e.

M = JK where K is symmetric and

J =
(

02 −I
I 02

)
so that K =

(
M+ 02

02 M−

)
.

4.4. Analytical criterion for ODE bifurcation

In this section, we compute an analytic condition for a Krein collision in system (3.10). The
Krein signatures associated with the frequencies ± ("2 −"1) and ± ("2 −"3) in system (4.3)
are K(± i("1 − "2)) = sign("1 − "2) and K(± i("3 − "2)) = sign("3 − "2), implying
by assumption (S1), that their Krein signatures are opposite. Thus, their collision leads to
instability. In fact, the Krein signature can be interpreted as the direction of phase rotation, and
since "2 lies between "1 and "3, the Krein signatures can be determined without performing
this calculation.

Krein collisions occurs at N for which P(λ; N), the characteristic polynomial of M(ϵ, N),
has multiple roots. As is generic for Hamiltonian systems, P contains only even powers of λ.
Letting q = λ2 defines a quadratic polynomial p(q; N), which has a multiple root at N where
its discriminant vanishes. Defining

ν = N/ϵ, (4.4)

the discriminant is

*(ν) = ϵ2(d4(ϵ)ν4 + d3(ϵ)ν3 + d2(ϵ)ν2 + d1(ϵ)ν + d0(ϵ)) = 0, (4.5)
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where

d4 = (3a1122 − 4a2222 + 3a2233)
2(a2

1122 − 2a2233a1122 + 4a2
1223 + a2

2233

)
ϵ2

d3 = 8(a1122 − a2233)(a1122 − a2222 + a2233)(3a1122 − 4a2222 + 3a2233)Wϵ

− 8(3a1122 − 4a2222 + 3a2233)(a2
1122 − 2a2233a1122 + 4a2

1223 + a2
2233)ϵ

2

d2 = 16(a1122 − a1223 − a2222 + a2233)(a1122 + a1223 − a2222 + a2233)W 2

− 8(a1122 − a2233)(7a1122 − 8a2222 + 7a2233)Wϵ

+ 16
(
a2

1122 − 2a2233a1122 + 4a2
1223 + a2

2233

)
ϵ2

d1 = 32(a1122 − a2233)Wϵ − 32(a1122 − a2222 + a2233)W 2

d0 = 16W 2.

This is solved numerically or by a perturbation expansion ν = ν0 + O(ϵ) which gives double
eigenvalues at

NKC,± = ϵ

−a1122 ± a1223 + a2222 − a2233
+ O(ϵ2). (4.6)

Thus, there are Krein collisions for small values of ϵ, under the assumption that the denominator
of this equation is bounded away from zero.

4.5. Dynamics of the averaged system H1

We are interested in the dynamics near the trivial solution of system (3.10), (σ1, σ3) = (0, 0),
which we showed in the previous section to destabilize via a semisimple implicit HH
bifurcation.

This fixed point lies on the level set h = 0 in the truncated averaged system (3.19), so we
can gain insight into the behavior of solutions to the system near this solution by looking at its
phase space for h = 0. There is a slightly different structure for general h, which is the subject
of ongoing investigation.

First, we define two invariant subspaces: 5odd is simply the origin in system (3.10),
corresponding to all the energy in system (2.3) being in the mode U2(x). In the reduced system
(3.19), this invariant set only intersects the set h = 0 where it corresponds to the left boundary
J = 0. The second subspace is

5even = {(σ1, σ3)||σ1|2 + |σ3|2 = 1}

corresponding to the case where all the energy in system (2.3) is in the two modes with even
symmetry. In the averaged system (3.19), 5even is simply the right boundary J = 1−h

2 .

On the set h = 0, the level set of system (3.19) corresponding to the origin in (z1, z3, z̄1, z̄3)-
space is

S0 = {(J,ψ )|γ1J + γ2J2 + γ3(2J2 − J) cos ψ = 0}

= 5odd ∪
{
(J,ψ )

∣∣∣∣cos ψ = γ1 + γ2J
γ3(1 − 2J)

}
.

There exist fixed points on 5odd if the second set contains points with J = 0. At these points,

cos ψ = γ1

γ3
= − (a1122 − a2222 + a2233) ν − s

a1223ν
. (4.7)

These solutions exist if |γ1/γ3| ! 1 and there exist bifurcations when the right-hand side is
± 1, i.e. at

νKC = s

± a1223 + a1122 − a2222 + a2233
,
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Figure 3. Gray lines: level sets of H1. Black lines: heteroclinic orbits. Heteroclinic orbit and fixed
point JNO toward left appears for N > 0.445; heteroclinic orbit and fixed point JNE to right for
N > 0.530. Scattered points are Poincaré section ψ1 = 0 of simulations of system (3.10); see
section 5.2.

which recapitulates the Krein collision condition (4.6). For ν < νKC, the dynamics is described
by monotonically decreasing angle ψ (determined from the sign of the numerically calculated
γ1) and small oscillations in the amplitude J; see the gray lines in figure 3(a).

For ν > νKC, the two hyperbolic fixed points on 5odd are connected by three heteroclinic
orbits: two on 5odd and one with J > 0. These separatrices enclose a region of phase space in
which the solutions lie on closed curves with (J,ψ ) oscillating about a nonlinear center with
sin ψ = 0 and

J = JNO ≡ 2 (a1122 ± a1223 − a2222 + a2233 − s/ν)

−a1111 − 8a1122 − 4a1133 ± 4a1223 + 4a2222 − 8a2233 + a3333
. (4.8)

The subscript NO stands for nearly-odd, since this solution bifurcates from 5odd; see
figure 3(b). Whether this equilibrium lies on ψ = 0 or ψ = π is determined by whether
JNO solves equation (4.7) with cos ψ = 1 or −1. In the computations we have performed
ψ = 0 has occurred for s < 0 and ψ = π for s > 0.
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4.5. Additional structure from the averaged system. A similar bifurcation exists involving
5even. Two hyperbolic equilibria on 5even exist at

J = 1
2
; cos ψF = −γ1 − γ2

γ3
. (4.9)

These exist only if the right hand side has magnitude less than one which gives a necessary
condition on the amplitude ν " νF for their existence, where

νF = s
1
4 a1111 − a1122 + a1133 ∓ a1223 − a2233 + 1

4 a3333
. (4.10)

The dynamics of the averaged system near this structure are exactly analogous to the
dynamics near 5odd described above. For ν > νF, equation (4.9), the two saddles are connected
by three heteroclinic orbits, two of them contained in 5even and a third one surrounding an
additional elliptic equilibrium with J = JNE (nearly even) and ψ = π or ψ = 0; see
figure 3(c).

Remark 6. For h ̸= 0, the structure near 5even persists: there is a critical amplitude νF(h)

which approaches νF as h → 0, and for ν > νF(h), there exist three fixed points and three
heteroclinic orbits. Near 5odd, the behavior is somewhat different as will be explained further
in an upcoming article. These differences do not effect the claims made here.

Note that the equilibria of system (3.19) found in this section correspond to periodic
orbits of equation (3.10) and are not solutions to system (2.4). The averaged system (3.19) is
valid for small values of ϵ and describes the dynamics for small |N| demonstrated numerically
in figure 5. More concretely, the averaged system possesses the bifurcations described by
equation (4.6), but not the other two roots of equation (4.5) that may exist for N = O(1).

The evolution in the averaged system shown in figure 3 appears very similar to that in
[6, figure 8] for a two-well defect. The separatrix that bifurcates from 5odd is a close analog of
the homoclinic origin to the origin in the Hamiltonian pitchfork bifurcation. The equilibria and
separatrix that bifurcate from 5even have no analog in their model. The behavior of solutions to
(3.10) closely follows that of the averaged system for small ν but demonstrates torus break-up
and chaos for larger values of ν, as discussed in section 5.2. This is qualitatively different from
Marzuola and Weinstein, because the system they study is integrable.

5. Stability and dynamics near the first excited state: numerical simulations

In all computations and simulations below, we use the potential depicted in figure 1 with
frequencies {−11.1,−10,−9.1}.

5.1. Bifurcation study: spectrum of linearization

We first consider for what values of ϵ equation (4.6) provides a good approximation to the
critical value NKC when the eigenvalues satisfy assumption (2.2). We show an example in
figure 4. The potential pictured in figure 1 corresponds to choosing ϵ = −0.1, and the
potential’s shape does not change much as ϵ is varied. This figure shows that for small values
of ϵ the system has Krein collisions at both positive and negative values of N, but that for
larger values of ϵ these collisions may cease to exist for large W . This change in character
occurs for values of ϵ where two roots of the discriminant (4.5) collide and annihilate each
other, i.e. where the discriminant of the discriminant *(N) vanishes. Next we compare the
bifurcation structure of ODE system (3.10) with that of standing waves of system (1.2). We
convert equation (2.4) to an algebraic equation using a pseudospectral approximation for the
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Figure 5. The imaginary and real parts of the discrete eigenvalues of the reduced ODE
(solid) PDE standing wave (dashed). Both show four HH bifurcations, the PDE at N ∈
{−3.58,−0.44, 0.44, 4.71}, and the ODE at N ∈ {−3.46,−0.44, 0.44, 5.01}.

derivative, which we solve using Matlab’s fsolve command. We then calculate 6PDE, the
discrete spectrum of the linearized PDE (4.2), using a pseudospectral approximation. We
compare this with the 6ODE, spectrum of the matrix M(ϵ, N) in equation (4.3). Figure 5 shows
excellent agreement between 6PDE and 6ODE, even for large N.

5.2. ODE and PDE dynamics

In this section we compare numerical simulations of ODE system (3.10) with those of the
nonlinear Schrödinger equation (2.3).

We simulate the (σ1, σ3) system (3.10) using the Hamiltonian Boundary Value Method
of Brugnano et al [39], a symplectic method that exactly conserves the energy in polynomial
Hamiltonian systems. To compare these numerical solutions to the phase portraits of the
averaged system (3.19), we follow the sequence of changes of variables in section 3.3 to
transform the variables into the action-angle coordinates (J,ψ ) in equation (3.16). We then
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compute Poincaré sections of (J3,ψ3) on the section ψ1 ≡ 0 mod 2π , which are compared
with the phase portraits of the system (3.19) in figure 3. For small values of N, the Poincarè
sections resemble the level sets of the averaged system, with the agreement decreasing for
larger N, parts (a) and (b). As N is increased and new families of periodic orbits appear in
the averaged system, we find Poincaré sections lying near tori with the same topology, parts
(b)–(d). For larger N, the non-integrability of system (3.10) becomes apparent. We show in
subfigure (c), marked with an arrow, one resonant torus that has broken up into an island chain
with five islands. In subfigure (d), the Poincaré sections no longer follow the trajectories of
system (3.10) well at all.

We next present simulations that demonstrate the dynamics of small perturbations to the
antisymmetric standing wave uN2 (x) defined in section 1.2, and to compare these solutions of
NLS/GP (2.3) with approximations constructed from solutions to the (σ1, σ3) system (3.10).
To simulate solutions to (2.3), we use a Matlab code written by T Dohnal. It uses fourth-order
centered differences in space, and an implicit-explicit additive Runge–Kutta method for time
stepping [40] and, most importantly for long-term simulation, uses perfectly matched layers
(PML) to handle the outgoing radiation [41].

For the NLS simulations, we begin with the same values of σ1 and σ3 as above, and
compute σ2 = ρ =

(
1 − σ 2

1 − σ 2
3

)1/2. From these, we construct the initial conditions with
u(x, 0) =

∑3
j=1 σ jUj(x).We then post-process these PDE simulations to compare them with

ODE system (3.10). First we numerically compute the projections (3.2), giving parameters
c j(t). Dividing c j by the phase of c2(t) give values analogous to σ j and ρ(t). We then repeat
the steps outlined above to obtain variables akin to (J3,ψ3).

Numerical experiments for the five values of N marked in figure 5 are displayed in
figure 6. In all cases the initial conditions used are σ1 = σ3 = 10−5. The first column contains
time series of ℜσ1 for numerical solutions to (2.3) and (3.10). The second, a Poincaré section
on ψ1 ≡0 mod 2π ; plotted are X =

√
J3 cos ψ3 versus Y =

√
J3 sin ψ3 for simulations of the

same two systems. The third column contains the amplitude |u(x, t)|, reconstructed from a
numerical simulation of system (3.10), computed using (3.1) and (3.8). Column four contains
|u(x, t)| from direct numeral simulation of NLS/GP, equation (2.3).

In the five computations, we see that (a) for small N < NKC, the solution stays in a
neighborhood of zero and oscillates quasiperiodically. (b) For N slightly greater than NKC, the
solution undergoes a sequence of homoclinic bursts, where an oscillatory bright spot grows
periodically in the middle well, taking energy from the two outer wells. (c) For somewhat larger
N, the spacing between the bursts becomes irregular, and the Poincaré section displays a ‘lace
curtain’ structure typical of Hamiltonian chaos, with very similar structure in the ODE and
PDE simulations. (d) For N chosen to maximize the instability, the dynamics is very irregular
and fills the energetically accessible region of phase space. The ODE and PDE simulations
separate exponentially, but display remarkably similar dynamics. (e) For N sufficiently large,
the trivial solution is again stable. In simulation (d), we are unable to use ψ1 as a time-like
variable as in (3.18) because it is non-monotonic; see remark 5. We instead display the Poincaré
section σ1 ∈ R.

The equilibrium JNO of the averaged equation exists for N > NKC, corresponding to a
periodic orbit of system (3.10). We solve for this periodic orbit numerically, which then can
be used to construct a relative periodic orbit of system (3.4). Using the decomposition (3.1)
with the assumption η = 0, we can approximate a quasiperiodic time-dependent field which
should be shadowed by a solution to (1.1).

This reconstructed field, computed for the parameter value N = 2, is shown in figure 7.
The bright spots move around due to constructive and destructive interference between the three
eigenfunctions. The odd symmetry is broken, as the minimum amplitude location meanders

23



J. Phys. A: Math. Theor. 44 (2011) 425101 R Goodman

0 75 150
−1

−0.5

0

0.5

1x 10
−3

t

R
e(

σ 1)

(a), N=0.35

−2 0 2 4 6 8
x 10

−4

−5

0

5
x 10

−4

X
Y

0 150 300

−0.2

0

0.2

t

R
e(

σ 1)

(b), N=0.6

0 0.1 0.2 0.3
−0.1

−0.05

0

0.05

0.1

X

Y

0 200 400
−0.5

0

0.5

t

R
e(

σ 1)

(c), N=1.0

0 0.2 0.4
−0.2

−0.1

0

0.1

0.2

X

Y

0 40 80

−0.5

0

0.5

t

R
e(

σ 1)

(d ), N=3.0

−0.5 0 0.5

−0.5

0

0.5

Re σ
3

Im
 σ

3

0 10 20 30
−1

−0.5

0

0.5

1
x 10

−3

t

R
e(

σ 1)

(e), N=5.5

−1 0 1 2 3
x 10

−3

−1

0

1

x 10
−3

X

Y

Figure 6. Simulations of ODE system (3.10) and PDE system (2.3) with initial condition of the
form (3.1). The rows (a)–(e) correspond to the values of N indicated on figure 5. Column 1: ℜσ1(t).
Column 2: Poincaré section at ψ1 = 0 (except row 4, see text) with ODE solutions in blue and
PDE in red. Column 3: |u(t)| reconstructed from ansatz (3.8) (brighter = higher intensity). Column
4: |u(t)| for computed solution of (2.3).
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Figure 7. The field |urecon(x)|, reconstructed from a periodic solution to (3.10) with N = 2 > NKC.

around the center line, and a bright spot grows and decays periodically in the center well, a
bright spot that is absent in the antisymmetric defect mode. A future study will look specifically
at the shadowing of this ODE solution by a time-dependent solution to the NLS/GP equation
(1.1).

As the system reaches the second HH bifurcation at N ≈4.71 where the trivial solution
regains stability, the periodic orbit does not disappear, nor does the chaotic motion shown
in row (d) of figure 6. Instead, a small region around the origin appears at this amplitude,
on which the solution is regular (quasiperiodic and confined to topological ellipses), and this
region grows as N is further increased. This is confirmed by numerical simulation. Johansson
finds similar Hamiltonian chaos when the parameters in his NLS trimer are in the unstable
domain, as well as KAM-like islands [11].

6. Discussion and conclusions

While many papers, discussed in the introduction, have examined the HH bifurcation and the
onset of oscillatory instabilities in nonlinear wave equations, this is the first we know of to
analyze the nonlinear dynamics that arise. A pair of homoclinic orbits are found in the averaged
equations, which act as skeletons for weakly chaotic dynamics. At stronger nonlinearities,
chaotic orbits seem to fill the entire phase space. New families of relative periodic solutions
are found in the finite dimensional model, showing a time-dependent symmetry breaking.

While the analysis presented is formal, the pieces are in place to make rigorous the
conclusions, as discussed at the end of section 3.1. Kirr et al [4] and Marzuola and Weinstein
[6] first derive finite-dimensional model equations and then prove their validity over long
times. Pelinovsky and Phan [7], in contrast, derive the model equations using normal forms,
which essentially combines the two steps. This normal form does not, however, exploit the
Hamiltonian structure of NLS/GP. Bambusi, in a series of papers, has applied the Hamiltonian
methodology of Birkhoff and Gustavson normal forms directly to NLS/GP and other wave
equations, for example [29–31], proving the accuracy of these normal forms over much longer
(exponential) time scales than the other methods are capable of. This work involves systems
possessing only a discrete spectrum (due to trapping potentials or finite spatial domains), so
that the quadratic part of the Hamiltonian can be written as an infinite series over coefficients
of the eigenfunctions, and the argument of section 3.3 can be generalized straightforwardly.
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These assumptions on the spectrum are also necessary for the applicability of the normal
forms over such long time scales. In [32], Bambusi and Cuccagna apply the method to a
Klein–Gordon equation in three spatial dimensions with a potential that vanishes at infinity,
and so generalize the Birkhoff normal form to systems with a continuous spectrum. This result
applies only for solutions with very small initial data, where the effect of the nonlinearity is not
strong enough for the bifurcations and strongly nonlinear dynamics that we have discussed.
Nonetheless, this is a promising approach for future research.

In the finite dimensional system of approximate equations near a symmetry-breaking
bifurcation, derived in [4, 6], it takes one line of algebra to show the existence of the two
new asymmetric solutions that are born when the bifurcation occurs. In system (3.4), the
analysis is not so simple, and the new solution arising from the bifurcation appears, in its
simplest form, as the equilibrium (4.8) of Hamiltonian system (3.19) that corresponds to a
periodic orbit of system with Hamiltonian (3.6). Proving the existence of this periodic orbit
is a straightforward application of a paper from the late 1980s by Chow and Kim [33] and
will constitute the first step of a planned program to put the results of the present paper on
a more rigorous footing. Beyond that, almost nothing has been proven about the semisimple
indefinite HH bifurcation. One might hope to reproduce some of the many results proven for the
generic case, but because the semisimple case has higher codimension, the analysis should be
harder.

In numerical simulations of this system, we observe Hamiltonian chaotic motion, the
underlying dynamics of which, given by system (3.6) are essentially two degree-of-freedom.
Motion of such a system occurs on level sets of the Hamiltonian H which are three-
dimensional manifolds in the four-dimensional phase space. Invariant tori in this system are
two-dimensional subsets of these manifolds. The KAM theorem (or something very similar,
see [23]) implies that most of these tori persist when 0 < (N −NKC) ≪ 1. A two-dimensional
torus separates the three-dimensional manifold, so that trajectories cannot cross from one side
of the torus to the other. This implies that solutions starting near the odd-symmetric relative
equilibria must remain near that point. If the linear system (2.1) is assumed to support a fourth
eigenmode, with similar assumptions on the spacing of the eigenvalues, then in this weakly
unstable regime, with six-dimensional phase space, solutions no longer need stay close to
the equilibrium, a process known as Arnol’d diffusion [37]. Further studies are planned to
investigate this possibility.

We have assumed throughout this paper that the potential V (x) enjoys even spatial
symmetry. The HH bifurcation we discussed depends only on assumptions (S1)–(S4) and
not on this symmetry. Lacking such a symmetry, the finite-dimensional model (3.6) and its
relative equilibria given in section 4.1 would be significantly more complicated, and the normal
form for the HH bifurcation might no longer be semisimple. An interesting question would be
to see how the dynamics change in the face of such asymmetry.

Finally, when considered as a model for an optical waveguide, the system studied
here should be straightforward to implement in a laboratory setting. Discussions are
underway to make this happen and will form the basis of an experimental line of
research.
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Appendix. Construction of the linear potential V (x)

Most other studies about the dynamics and stability of nonlinear PDEs with multi-well
potentials have constructed the potential as the sum of several simpler potentials as in equations
(1.3) and (1.4) [4, 6, 7, 5, 8]. This construction provides, very simply, families of potentials
with nearly-multiple eigenvalues, but does not allow the control needed to construct potentials
satisfying the assumptions (S1)–(V3).

Another way to proceed is to use inverse scattering methods to construct a reflectionless
potential with prescribed eigenvalues " j = −κ2

j , j = 1 . . . n. This process yields a potential
that is unique except for n integrating factors ξ j, which can be chosen uniquely to makeV (x)

satisfy assumption (V3). The solution is a two-soliton solution of the Korteweg–de Vries
equation [42]. This solution is most easily constructed using the Darboux transformation,
which is very similar to the Bäcklund transformation, except that it yields not only the
potential, but also its eigenvectors, which is useful in what follows [43, 44]. When n = 2, the
general formula for this two-soliton is

V (x) =
4
(
κ2

2 − κ2
1

)(
κ2

2 cosh 2κ1x + κ2
1 cosh 2κ2x

)

((κ1 − κ2) cosh (κ2 + κ1)x + (κ1 + κ2) cosh (κ1 − κ2)x)2
(A.1)

with κ1 > κ2 > 0. This has (un-normalized) ground state and excited states

U1 = cosh κ2x
(κ1 − κ2) cosh (κ1 + κ2)x + (κ1 + κ2) cosh (κ1 − κ2)x

and U2 = sinh κ1x
(κ1 − κ2) cosh (κ2 + κ1)x + (κ1 + κ2) cosh (κ1 − κ2)x

and frequencies " j = −κ2
j . When κ1 = 2 and κ2 = 1, this potential reduces to the familiar

initial condition for the KdV two-soliton V (x) = −6sech2x with frequencies "1 = −4 and
"2 = −1. Choosing κ1 =

√
1 + ϵ and κ2 =

√
1 − ϵ, with 0 < ϵ ≪ 1, the potential (A.1) takes

the form of dual-well potential, very similar to that studied by Kirr et al, but with closed-form
eigenvalues and eigenfunctions.

The potential V (x) constructed as above with three frequencies and satisfying assumption
(V3) is similar in form to that in (A.1), but with ten terms in the numerator and four
in the denominator. This solution is given in the supplementary materials (available at
stacks.iop.org/JPA/44/425101/mmedia), as well as a Mathematica notebook of its derivation.
As the spacings between the frequencies are chosen to approach zero, the potential V (x)

asymptotically approaches the superposition of three identical potentials with large spacing,
as studied by Kapitula et al [8].
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[27] Hislop P D and Sigal I M 1996 Introduction to Spectral Theory: With Applications to Schrödinger Operators

(Applied Mathematical Sciences) (Berlin: Springer)
[28] Wiggins S 2003 Introduction to Applied Nonlinear Dynamical Systems and Chaos 2nd edn (Berlin: Springer)
[29] Bambusi D 2008 Hamiltonian Dynamical Systems and Applications (NATO Science for Peace and Security

Series B: Physics and Biophysics) (Dordrecht: Springer) pp 213–47
[30] Bambusi D 1999 Math. Z. 230 345–87
[31] Bambusi D and Sacchetti A 2007 Commun. Math. Phys. 275 1–36
[32] Bambusi D and Cuccagna S 2009 arXiv:0908.4548
[33] Chow S-N and Kim Y-I 1988 Applicable Anal. 31 163–99
[34] Lahiri A and Roy M S 2001 Int. J. Nonlinear Mech. 36 787–802
[35] MacKay R 1987 Hamiltonian Dynamical Systems ed J M R MacKay (Bristol: Hilger) pp 137–53 (available at

http://books.google.com/books?id=a1ToPs9iZlEC)
[36] Luzzatto-Fegiz P and Williamson C H K 2011 Proc. R. Soc. A 467 1164–85
[37] Arnol’d V I, Kozlov V V and Neishtadt A I 1997 Mathematical Aspects of Classical and Celestial Mechanics

2nd edn (Berlin: Springer)
[38] Guckenheimer J and Holmes P 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector

Fields (New York: Springer)
[39] Brugnano L, Iavernaro F and Trigiante D 2009 AIP Conf. Proc. 1168 715–8
[40] Kennedy C A and Carpenter M H 2003 Appl. Numer. Math. 44 139–81
[41] Dohnal T and Hagstrom T 2007 J. Comput. Phys. 223 690–710
[42] Drazin P G and Johnson R S 1993 Solitons: An Introduction (Cambridge: Cambridge University Press)
[43] Ablowitz M J, Prinari B and Trubatch A D 2004 Discrete and Continuous Nonlinear Schrödinger Systems

(Cambridge: Cambridge University Press)
[44] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer)

28

http://dx.doi.org/10.1137/05064076X
http://dx.doi.org/10.1103/PhysRevA.78.053601
http://dx.doi.org/10.1063/1.1993867
http://dx.doi.org/10.1088/0305-4470/37/6/017
http://dx.doi.org/10.1103/PhysRevE.63.036604
http://dx.doi.org/10.1103/PhysRevLett.85.550
http://dx.doi.org/10.1016/j.physd.2005.07.018
http://dx.doi.org/10.1088/1367-2630/5/1/364
http://dx.doi.org/10.1016/j.matcom.2005.01.016
http://dx.doi.org/10.1103/PhysRevA.72.033611
http://dx.doi.org/10.1103/PhysRevA.76.063603
http://dx.doi.org/10.1103/PhysRevA.81.063604
http://dx.doi.org/10.1016/0167-2789(82)90008-2
http://dx.doi.org/10.1088/0951-7715/24/3/002
http://dx.doi.org/10.1016/j.physd.2004.12.004
http://dx.doi.org/10.1016/j.physd.2004.03.018
http://dx.doi.org/10.1016/j.physd.2004.11.015
http://dx.doi.org/10.1016/j.physd.2007.06.012
http://dx.doi.org/10.1007/978-1-4020-6964-2_11
http://dx.doi.org/10.1007/PL00004696
http://dx.doi.org/10.1007/s00220-007-0293-4
http://arxiv.org/abs/0908.4548
http://dx.doi.org/10.1080/00036818808839823
http://dx.doi.org/10.1016/S0020-7462(00)00045-7
http://books.google.com/books?id=a1ToPs9iZlEC
http://dx.doi.org/10.1098/rspa.2010.0453
http://dx.doi.org/10.1016/S0168-9274(02)00138-1
http://dx.doi.org/10.1016/j.jcp.2006.10.002

	1. Introduction
	1.1. Physical motivation
	1.2. Mathematical motivation—moving from stability to dynamics
	1.3. Mathematical motivation—from simple to complex dynamics
	1.4. Mathematical motivation—analyzing previous simulations
	1.5. Overview and organization of the paper

	2. Preliminaries
	2.1. Notation
	2.2. Assumptions on the potential
	2.3. An alternate formulation
	2.4. Hamiltonian systems, resonance and stability

	3. The finite-dimensional model
	3.1. Derivation of the model
	3.2. Model reduction via symmetry
	3.3. Averaging and further reduction of the ODE

	4. Stability and dynamics near the first excited state: analysis
	4.1. Relative equilibria of the reduced hamiltonian
	4.2. Linearization of PDE solutions
	4.3. Linearization of ODE
	4.4. Analytical criterion for ODE bifurcation
	4.5. Dynamics of the averaged system

	5. Stability and dynamics near the first excited state: numerical simulations
	5.1. Bifurcation study: spectrum of linearization
	5.2. ODE and PDE dynamics

	6. Discussion and conclusions
	Acknowledgments
	1. Construction of the linear potential
	References

