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Abstract: The problem of inferring interactions from observations of individual behavior in
networked dynamical systems is ubiquitous in science and engineering. From brain circuits to financial
networks, there is a dire need for robust methodologies that can unveil network structures from
individual time series. Originally formulated to identify asymmetries in pairs of coupled dynamical
systems, transfer entropy has been proposed as a model-free, computationally-inexpensive framework
for network inference. While previous studies have cataloged a library of pathological instances in
which transfer entropy-based network reconstruction can fail, we presently lack analytical results that
can help quantify the accuracy of the identification and pinpoint scenarios where false inferences results
are more likely to be registered. Here, we present a detailed analytical study of a Boolean network
model of policy diffusion. Through perturbation theory, we establish a closed-form expression for
the transfer entropy between any pair of nodes in the network up to the third order in an expansion
parameter that is associated with the spontaneous activity of the nodes. While for slowly-varying
dynamics transfer entropy is successful in capturing the weight of any link, for faster dynamics the
error in the inference is controlled by local topological features of the node pair. Specifically, the error
in the inference of a weight between two nodes depends on the mismatch between their weighted in-
degrees that serves as a common uncertainty bath upon which we must tackle the inference problem.
Interestingly, an equivalent result is discovered when numerically studying a network of coupled
chaotic tent maps, suggesting that heterogeneity in the in-degree is a critical factor that can undermine
the success of transfer entropy-based network inference.
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perturbation theory; policy diffusion
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1. Introduction

Networks arise in all areas of science and engineering whenever we study the interactions between
discrete actors [4]. To understand the functioning of the brain, it is critical to know which regions are
sending signals to which other regions [8]. In ecology, the goal may be to understand the structure
of the food web, that is, to identify which organisms depend on which others for sustenance [10].
In social science or epidemiology, the question may be to identify links between people along which
information or disease might spread [14]. Similarly, financial regulators often wish to understand the
interdependence of financial institutions that are enmeshed by a web of investments and loans, in order
to determine how a shock might ripple through the community [26].

The network topology is not known explicitly in most of these real-world examples, thereby calling
for data-driven computational methods to identify links from time-series collected at each node. In this
process of network inference, one seeks to determine which actors influence the dynamics of which
other actors, from the joint time evolution of their states. Despite considerable progress in network
inference, the precise quantification of the errors associated with the implementation of these methods
remain elusive. This is the motivating question for the present study.

In mathematical terms, a network is modeled by a graph I' = (V, &), a collection V of vertices (or
nodes), some subset of which are connected pairwise by a set & of edges (or links) [12]. In particular,
we consider weighted directed networks, in which each edge is interpreted as beginning at a node j and
end ending at a node i, and to which there is associated a scalar weight W;;. With respect to network
inference, given two nodes i and j, one seeks to infer if node j influences the behavior of node i and,
in addition, the strength W;; of that influence. In particular, the interest is in direct influence, that is,
if node i depends on node j and node j on node k, then node k influences node i, but perhaps only
indirectly, and it is important to distinguish this from the direct influence of j on i.

In an authentic model-free vein, information theory provides a mathematical framework for
drawing such inferences based solely on time-series [5]. Information theory grew out of the effort to
understand the transmission of signals along noisy communication channels and has strong
connections both with statistical physics and with optimal strategies for gambling and investment [9].
The information in an event is associated with the uncertainty in its outcome, with unlikely events
possessing more information. Information may flow among the units of a network, and can be used to
reconstruct its topology. For example, Squartini and colleagues [26] have recently reviewed
information-theoretic results for network inference, focusing on financial networks, and Wibral and
colleagues [30] have presented an overview of the state-of-the-art of information-theoretic methods in
neuroscience.

Introduced almost twenty years ago by Schreiber [25] to quantify asymmetries in coupled
dynamical systems, transfer entropy is emerging as an approach of choice to guide the process of
network inference from time-series. A thorough survey of its mathematical properties and many
applications is provided in [6]. Given a pair of time-series, transfer entropy measures the reduction in
uncertainty in predicting the future state of one of the time-series from its present value, compared
with predicting its future state from both its present value and that of the second series. In the context
of network inference, one predicts that a link is present from node j to node i given a value of transfer
entropy from node j to node i that is statistically different from zero.

While network inference based on transfer entropy is intuitive and computationally inexpensive, it
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is not free of technical limitations that may beget false positive and negative results. Most of these
limitations are rooted in the pairwise definition of transfer entropy that does not contemplate the
existence of indirect influence from any other node in the network. Extending the transfer entropy
definition to multivariate interactions could address some of these limitations, but it would require the
estimation of high dimensional probability mass functions that could be computationally unfeasible
beyond simple motifs [6]. While Runge [24] and Sun and colleagues [28] pinpoint several
pathological instances in which transfer entropy-based network reconstruction can fail, we currently
lack analytical results that can help assess the accuracy of the inference and determine scenarios
where false results should be expected. Filling this gap in knowledge is the chief aim of this study.

Specifically, we continue the mathematically-principled treatment of a random Boolean network
(RBN) model proposed in [20] as a minimalistic representation of policy diffusion. The model is a
simplification of the more general setup presented in [2, 13] to describe enactment and changes to
alcohol-related policies in the 50 state of the United States of America from 1980. In the RBN, each
node is assigned a Boolean variable, whose probability of activation at a given time-step depends on
both the state of its neighboring nodes and on its own internal dynamics, each of which is specified by
weighting parameters. The model possesses a small parameter that allows for the use of perturbation
methods to compute closed-form equations approximating the relations between system parameters
and the transfer entropy, allowing the reconstruction of the former from the latter. In [19], the analysis
was completed and extended to the case in which the parameters vary with a prescribed temporal period
7, while here we assume, for simplicity, that it is time-independent.

The model provides an interesting test case for a number of reasons. Foremost is that its explicit
and linear mathematical formulation allows for closed-form analysis that is not possible for real-world
datasets, nor for most nonlinear mathematical models. Second is that because it is defined in terms
of predetermined parameters, the ground truth is known and deviations from that ground truth can be
exactly measured. It is exceptionally simple and fast to evaluate, allowing us to compute long time-
series that would be unavailable in most experimental settings. Finally, because the state space of the
model is binary, computation of the transfer entropy is especially fast and inexpensive.

The RBN model consists of N nodes with state X’,i = 1...N, each of which can take the two states
zero or one. The system’s state at a given time depends on its previous state according to the linear
transition law

Pr [Xi(t+ D=1X'@O=x,.... X0 = xN] -0

N
1+ Zwijxf], (1.1)

=

where the constants ® and W;; are chosen to ensure that the right-hand side of the equation lies in
[0, 1]. The right-hand side consists of two terms. The first, ® is simply the spontaneous probability of
node activation. The second is the increased probability of activation due to the activation of the other
nodes connected to it. Specifically, the term W;; represents the nonnegative weighted influence on node
i from its neighbor j. We assume for simplicity that the network contains no self-connected edges, that
is,

Wi,‘ =0. (12)

In the context of policy diffusion, ® measures the tendency of a legal unit to spontaneously enact
or change a policy in the absence of any interaction with other legal units. With reference to real
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policy-making in the United States of America, adopting a time-step of one month would yield small
values of ® for policies that have a high start-up cost and unknown, long-term, benefits as well as for
policies that attend rare, specific problems that could have significant opposition [2, 13]. The RBN
shares similarities with synapsis models in theoretical neuroscience, where influence between neurons
is represented through excitatory networks [23]. This is the case of slowly-varying dynamics on which
we focus, thereby enabling a perturbation argument that treats ® as a small parameter.

The primary analytical result of [19] is a closed-form expression relating the transfer entropy from
Jj to i with the weight W;;, namely,

TE/™ = @GP (W) + 0(©). (1.3)

where G is the map
GPx) = —x+ (1 +x)log(l + x), (1.4)

which is one-to-one for x > 0. This expression was derived earlier in [20] where W;; was assumed
to take only the binary values zero or one. In [19], it is proposed that truncating this expression and
solving for W;; should be an effective way to estimate the network weights. This is shown via a handful
of examples to largely reproduce the network structure of several small time-dependent networks and
of a larger random network. These examples include networks with as few as two and as many as 100
nodes.

In the present work, we compute the next-order, O (@3), term in this approximation, providing an
estimate of the error associated with indirect influence from other nodes in the network.
Approximation (1.3) is local in the sense that the weight corresponding to a link (i, j) is determined
entirely by the transfer entropy from j to i. The correction, by contrast, depends on the difference
between the total weighted inputs incident on each of the nodes i and j, revealing the effect of the
more global network structure on the transfer entropy.

This paper is organized as follows. In Section 2 we introduce our motivating example, whose
surprising behavior we wish to explain. In Section 3, we summarize additional mathematical
background to this problem. In Section 4, we calculate the next order term in the expansion (1.3) to
understand the errors made in the example calculation. Then in Section 5 we return to this example,
which is illuminated by our calculation. To offer evidence in favor of the generality of the analysis,
we numerically study a network of coupled chaotic maps in Section 6. Finally, we present our main
conclusions in Section 7.

2. A surprising example

We begin by describing the network at the center of the example. The Barabasi-Albert (BA) network
was introduced in 1999 to model the network structure of the internet, although related models date
back at least to Yule’s work in 1925 [1,31]. Such a network is constructed by an algorithm exhibiting
preferential attachment that proceeds as follows. Begin with a small “seed” graph, which we take to
be the complete network with m nodes. Then at step k = my + 1,... N, choose m existing nodes at
random according to the weights

d.:

J

Zf:ll d

2

Pj=
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where d; is the in-degree of node i (the number of links pointing toward 7), and create links between
node k+1 and the m chosen nodes. By construction, the network have no self-directed edges connecting
a node to itself (assuming that the seed network satisfies this property.)

The standard BA network is undirected; Prettejohn et al. describe a directed network variation [21].
In their model, the links added at each step are directed edges from node k to node j, corresponding
to a nonzero weight above the diagonal. If that were the entire model all links would point toward the
seed graph, and none would point away from it. In the modified version, once such a directed edge
is chosen, then with the same probability p; another directed edge is created in the opposite direction
(i.e., from j to k), corresponding to a nonzero entry below the diagonal in the weight matrix.

After constructing such a network I" we introduce a random weight W;;, chosen from the uniform
distribution on [0, 1], to each link from a node j to a node i. By the above construction, most of the
nonzero weights lie above the diagonal. The elements of the weight matrix W in (1.1) represent the
influence of j on i. The matrix W visualized in Figure 1. Due to the method of construction, the out-
degree of each node, that is, the number of nonzero entries in each column is fairly homogeneous: 40
of the 50 nodes have out-degree equal to five, while the in-degree (number of nonzero entries per row)
i1s much more heterogeneous, with 15 different values ranging from O to 20.

(a) (b)

0r . x o 1 0.6
Lo | - 1. - .. " ] -In—degree
. m " " = "u -~ | Out-degree
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Figure 1. (a) Visualization of the matrix W with larger entries shaded darker. (b) Histograms
of the in- and out-degree of I', measuring the distribution of the weighted in- and out-degrees
in the network. The weighted in-degree of a node is defined as the corresponding row-sum
of W, and, similarly, the out-degree is the column-sum. This histogram is normalized to have
unit area, as are all others in the paper. The weighted in-degree and out-degree both have
mean 2.7. The in-degree has variance 6.7, while the out-degree has variance 0.58.

In the computational example we apply the result of [19] to reconstruct two distinct but related
networks. The first is described above and the second is its transpose I'", obtained by reversing the
orientation of each directed link. The weight matrix for I'T is simply the transposed weight matrix W',
The in-degree of a node i of I'" is equal to the out-degree of the same node in I, and vice-versa.

To analyze the model, we run 100 time-series each of 10° steps. For each of the 2,450 pairs (i, j)
(excluding the terms with i = j since there are no self-loops by construction), we compute the transfer
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entropy TE/™ via a simple plug-in estimation [17] where we count the occurrences of the possible
states that define the interaction between the node pair. Then we calculate, using the leading-order
term in (1.3), an approximate value of the corresponding weight. We utilize ® = 0.05, which is
sufficiently small to ensure that the probability on the right-hand side of (1.1) is less than one for all
i, since no row of the matrix has more than 20 nonzero entries. We average the computed value of
the transfer entropy over the 100 realizations. If the O (@3) error term in (1.3) is negligible, then the
inferred influence of j on i in I should be identical to the influence of i on jin I,

In Figure 2, we plot the inferred weights as a function of their exact values for both these matrices,
here showing only the 262 nonzero entries. When the weight is small, the computation significantly
overestimates it in both cases. For larger weights, there is an increased amount of variation in the
predicted values, but it is distributed in markedly different ways for the two matrices. For the network
I, the variation appears to be distributed evenly above and below the exact value. For the network I',
the error in the inference is nearly always positive, and appears to be much smaller. This is confirmed
in the right panel of the figure, which shows histograms of the errors, normalized to have unit area. The
histogram for the network I" has mean close to zero and is considerably broader than the histogram for
I'T, which has a positive mean value.
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w
o

[\V]
ot
T

(]
()

Computed weight
=

Normalized frequency
o

ot

0 0.5 1 -0.1 0 0.1
Exact weight Weight computation error

Figure 2. (a) Computed values of the nonzero matrix entries vs. the exact values for both
I"and I'". (b) Normalized histograms of the error in the computed approximations for the
nonzero entries of the two matrices. For I' the inference error has mean —7.8 x 10~ and
variance 1.8 X 1073, For I'T the inference error has mean 2.3 x 1072 and variance 4.8 x 107,

Since most of the entries of the weight matrix W are zero, a critical measure of success in the
network reconstruction is minimizing false positives, that is, links that are inferred between
disconnected nodes. The overestimation of weights lower than 0.1 evident in Figure 2 suggests that
some false positives are unavoidable. Of the 262 largest inferred weights for both " and I'T, 11 entries
for W and 13 for W' would be classified as false positives. Note that this computation was performed
using the value of the transfer entropy averaged over 100 realizations. Significantly more false
positives were found if the calculation was performed using a single realization.

Clearly, the calculated errors in the weights in the calculation for I' are larger than for the similar
calculation using I'T, despite the fact that equation (1.3) predicts the same leading-order accuracy. The
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analysis of this paper aims to determine what topological features of the two networks conspire to
create this difference and to determine how to correct it.

3. Mathematical background

3.1. Markov chains

We assume familiarity with the basics of Markov chains and use this section mainly to set
notation [7]. We consider a discrete-time finite-state Markov chain Z(#), t € N evolving in a sample
space Z whose generic element is denoted as z;, i = 1...|Z| where |Z| is the cardinality of the set.
Lower case letters will be used to denote realizations of random variables. The transition matrix is a
matrix P € RLZMZ', whose columns each sum to one. The entry P;; represents the probability that the
the Markov chain will transition from state z; to state z; at any given step,

P,‘j = PI'[Z([ + 1) = ZJ|Z([) = Zi]'
Considered as a row vector, the distribution v(#) evolves according to the following recursion,
v(it+ 1) = v(H)P, (3.1

for t € N and initial distribution v(0) = vy.

The solution to this recursion is a probability distribution for all times #, such that its entries are non-
negative and sum to one. Given mild assumptions on the transition matrix P, the recursion converges
exponentially as # — oo to a unique limiting distribution denoted r, called the stationary distribution
[7]. This is given by the left eigenvector with unit eigenvalue,

N

n =P, Zmzl. (3.2)

i=1

3.2. Elements of information theory

Our goal is to reconstruct the network I' from a time-series of finite duration generated by the
dynamics of (1.3). Since this time series is finite, it is impossible to determine with certainty the
matrix used to create it. The object, then, is to find the network that is consistent with the data while
requiring the fewest unsupported assumptions. Loosely speaking, we can say that it should not be too
surprising [9]. The idea of surprise is that unlikely events convey more information, so a “surprise
function” should assign a large value to unlikely events and a small value to expected events.

The information associated with the event that a random variable X drawn from a sample space X
takes the value x is

I(x) = —logPr(X = x).

Here, we make use of natural logarithms, so that information is measured in nats. The (Shannon)
entropy of the random variable X is then the expectation of the information

H(X)=E[IX)] = - Z Pr(X = x)log Pr(X = x), 3.3)
xeX
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which quantifies the amount of uncertainty in X, where E denotes expectation. The entropy is the
unique functional over probability distributions that satisfies the Shannon-Khinchin axioms [15],
making it the best choice for measuring the uncertainty of a distribution. Since the entropy is the
expectation of /(X), it is generically non-negative.

Given another random variable Y, the notions of joint and conditional entropies are similarly defined

by
HX,Y) = - Z Pr(X = x,Y = y)logPr(X = x,Y = y), (3.4a)
xeX,yeY
HX|Y) = — Z Pr(X = x,Y = y)log Pr(X = x|Y = y), (3.4b)
xeX,yeY

where Y is the sample space of Y.
These notions can be readily extended to stochastic processes, such that given two stationary
processes X and Y, transfer entropy from Y to X is defined as [25]

TE"™ = HX(r + DIX(©©)) - HX(t + D|X(©®), Y (1))

= Z {Pr [X(t+ 1) = x,, X(2) = x, Y(r) = y] X log

xr€X
xeX
yey

Pr(X(t+1)=x,X(#) =x,Y({) =y]
PriX(t+1)=x:|X©®) = x]

(3.5)

Transfer entropy measures the reduction in the uncertainty of predicting X(¢# + 1) from both X(¢) and
Y (¢) relative to predicting it from X(7) alone. As a simple consequence of its definition, transfer entropy
1S non-negative.

We acknowledge that building on this definition, a variety of ameliorations could be undertaken.
For example, one may consider delayed interactions between the two processes, such that Y(¢) in (3.5)
should be replaced with Y (¢t — 6) with 6 being a suitable time-delay [29]. Also, one may attempt a
symbolic treatment of the time-series [27], or pursue an analysis in terms of recurrence plots [22]. In
this work, we focus on the classical definition in (3.5) toward gathering analytical insight into the role
of the topology on the accuracy of transfer entropy-based network inference.

4. Analysis

We briefly present the computation of the next-order correction in the transfer entropy formula (1.3)
and of the probabilities used to construct it. This necessarily builds on the calculation in [19], the details
of which are summarized below. As in most perturbative calculations [16], the number and complexity
of terms greatly increases as the order of the calculation increases. The details of this calculation were
assisted and verified using Mathematica.

4.1. The stationary distribution

System (1.1) can be reformulated as a Markov chain, with |Z| = 2V states z = [X!,...,X"] €
{0, 1}", such that each state is a binary vector whose entries take the value one or zero depending on
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whether that node is active. Letting Z(¢) = [X'(?),...,X"(¢)], then the transition probability in (1.1)

can be written as
Pr(X'(c+1) = 11Z() =z = ©[1 + &] W], (4.1)

where the unit vector ¢; is column i of the identity matrix. For both possible realizations x’, of X'(t + 1),
this can be written as

Pr(Xi(t+1) = X |Z(1) = 2| = (1 - x}) + © (24, — 1)1+ ] We]. 4.2)

Taking a product of such terms yields the transition matrix of this Markov chain

Pty =Pr(|zZ(+ 1) = zjz) = ] = | [{(1 - efz)) + © (2efz; - 1) |1 +efWzi]}. @43

N
k=1

The transition matrix P can be expanded in powers of ® as follows:
P=PY+0P" +0P? + 0P +0(0*).
The first three terms are given in [19]. Specifically, the zeroth order term is
N
L=l =0
PO = l—e/zj)|=1" 7 ’ (4.4a)

ij 1};[ [( k ])] 0, ||Z]|| > 0.

Here, the norm of a binary vector is taken to be the number of nonzero entries, namely,

N
EEDIE
i=1

The first order term is

N N —[N+Qwz], = =0,
PE‘;) = Z (2eIzj - 1) [1 + eIWz,'] 1_[ (1 - esz) = [1 + ijWzi] ) ||Z,|| =1, (4.4b)
- = 0, el > 1.

where 1y denotes a column vector of N ones. Finally, the second order term is

P = i (2e]2; = 1) [1+ eI Wzi| (2e]2; = 1) [1 + e] Wz ﬁ (1-efz))
rs=l fons
Zi\,:s:yl {[1 + eIWZi] [1 + eIWzi]} , ||ZJ|| =0, (4.4¢)

[ dwa] [N -1 (=D wa], e = 1
{1+z;Wzi+[e}l(zj)Wzi] [e}z(zj)Wz,] o il =2
0, lesf| > 2.

where 7(z;) and 7,(z;) are used to identify the two entries of z; that are different from zero for the
case ||zJ|| =2.
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In a similar manner, we compute P®. The calculation below will only need the values of P® for
which ||z;]| = O (it appears only in Eq. (4.7d)). Accordingly, that is all we report here

() Jkl=o

S (L A

P 0= 1 WV=2, o] =2, (4.5)
L | = 3.
0 Jef] >3

We remark that P(”) # 0 only in the case that both ||z;|| < ( )
vectors z with ||z]| = n so that if n << N then the approximate matrix, computed for all transitions with
|lzll < n, is low rank. Given a time-series of system (1.1), this provides a way to check whether ® has
been chosen small enough that the proposed approximation is reasonable.

Next, we expand the stationary distribution to the third order, in a manner similar to the transition
matrix,

3

Z 7D + O @4) (4.6)

j=0

By replacing (4.6) into (3.2) and grouping terms of the same power in ®, we determine the following
chain of relationships:

N

2% (1-P?) =0, Z V=1, (4.72)
j=1
N

20 (1= PO) = 2OpP, >ah=o, (4.7b)
=1
N

7@ (1= PO) = 2OP® 4 2 VPO, YA =o, (4.7¢)
=1
N

) (1 _ P(O)) = 7 Op® 4 7Hp@ 4 7@ p0) Z ﬂ(/?) - 0. (4.7d)

The left column of equations contains the expansion of the stationary equation, while the right column
enforces the condition that 7 is a probability distribution. The matrix (I - P(O)) in each equation is
singular, with a one-dimensional null space. The first Eq. (4.7a) is solved by its null vector. The other
equations are all solvable, as long as the vectors on their right-hand sides sum to zero, and they all do.

The first three equations in (4.7) for the zeroth, first, and second order terms in the expansion are
solved in [19] and are given by

17 ill = 07
ﬂEO) _ Izl (4.82)
0, llzill >0,
=N, |lzll=0
V=31 zll =1, (4.8b)
0, lzll > 1,
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and
(5) - 1 wiy, Izl = 0,
—(N - 1)+ 7] W1y, A =1,
771(‘2) _ ( ) +z; ns Lzl (4.8¢)
1, llzill = 2,
0, llzill > 2,

To extend the computation to the next order, we replace (4.4) and (4.8) into (4.7d). By solving the
equation and imposing the constraint that the perturbation is zero-sum, we determine

~(3)+ W = DLWy + 1T (WWT = Wo W) 1y - 1[W?1y, |z =0,
(M) =(N =2)7] Wiy — 13, W1y
N
Zill = 17
3 - Z ((ije")z + (g Wew) (e[ Wl - 1LWek))’ !
) _ 2. 4.9)

—(N =2)+ ] Wly + ZiL, (er,cyWen) (er We) lill = 2,

§ il =3,

0 el > 3,

where the Hadamard product [3], or element-wise product, (A o B);; = A;;B;j, is in the ||z J|| = 0 term.
Marginalizing (4.6) via (4.8) and (4.9), we compute the stationary periodic distribution of each node

Pr(X'() = x) = (1 - ') + 2x' = 1) (@ + %] W1y + O] W?1y) + O(©*). (4.10)

This distribution describes the probability that a node is active or non-active at a given time. Should
the expansion be truncated at the second order in ®, only the row sum of W at node i (quantifying
the weighted in-degree of node i) will enter the probability distribution in (4.10). These nodes are
those that influence node i with respect to system (1.1). Extending the analysis to the third power in ®
brings forward a more complex dependence of node i on the ith row sum of the square of the matrix
W, representing the dependence of the state of X at time 7 on its state at time (¢ — 2).

Similarly, marginalizing (4.6) with respect to any nodes but node pair (i, j), we determine the
following joint distribution for (i, j):

Pr(X'(5) = x', X/(1) = x) = Pr(X'(t) = x') Pr (X/(1) = x)
+Q2x' = D2x - De] WW'e,0° +0(0%). (4.11)

While a second order expansion in ® would yield that node i and j are independent, retaining the third
order power yields a different claim. Specifically, (4.11) cannot be obtained from (4.10) if we are
interested in the quantification of the third order term in ©.

4.2. Transfer entropy

We now develop the two leading-order terms in the expansion of the transfer entropy, using the
definition (3.5) and the expansion (4.6) developed in the last section. Without loss of generality we
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consider the transfer entropy from node 2 to node 1:

Pr[X'(+ 1) = x}X'(1) = x', X2(1) = 27

TE! = 3 Pr[x'(+ 1) =xL,X'() = x', X2(1) = *| log

x!

+

Pr[X'(r+ 1) = x}[X'(1) = x|
(4.12)
where the probabilities are evaluated using the stationary distributions derived in the previous section.
We can compute the conditional probability in the denominator of the logarithm term using the
transition probability (4.2) and properly marginalizing the stationary distribution (4.6), as follows:

x! x2

Pr[x'(t+ 1) = x}IX'() = x'| =

N N
(1-xt)+ (26} - 1) @[1+W11x1]+®ZZWU+®3Z(W2)U +0(0Y) @.13)
j=2 j=2

Up to terms of order O(@z), this expansion matches that given in [19]. In agreement with one’s
expectation, for small values of ®, such that an affine expansion would hold, the probability of a
transition does not depend on the network topology. Retaining the second order power in ® introduces
a dependence on all the nodes that influence node 1. Increasing further the order of the expansion, we
observe a richer influence from the entire network, expressed through the term involving W2,

A similar calculation yields the term in the numerator of (4.12). By using (4.11) and (4.6), we
establish

Pr[x'(+ 1) = xX'() = ", X2() = 2’| =

N N
(1-x)+ (22l = 1)|O[1 + Winx' + Wi | + @ > Wy, +©° ) (w?),.|+o(@"). @14
j=3 =3

Again, the expansion agrees with that found in [19] up to order O (@2). Similarly to (4.13), for small
values of ©, the probability that node 1 transitions to a given state conditional to its present state and
the present state of node 2 depends only on W, and W,. Including to the second power in ® brings
about the effect of all the other nodes that influence node 1 (excluding node 2). The third power in
O depicts a further degree of interaction, wherein the entire network contributes to the probability of
transition (4.14), through the term involving W?2.

The joint probability Pr [Xl(t + 1) =xL, X'() = x, X?(r) = xz] in (4.12) is calculated as the product
of (4.11) and (4.14), although, remarkably, the O (@3 ) correction terms in these equations do not enter
into the calculation to this order. From this joint probability and the conditional probabilities in (4.13)
and (4.14), we can calculate an expansion for transfer entropy. Switching from labeling the indices
from (1,2) to (i, j) with i # j, we establish

TE™ = @GP (W) + ©°GY(W) + 0(0*) (4.15)
where the scalar function G is defined in (1.4) and the matrix function G® is defined entry-wise as

Gﬁ)(W) =W (W,»,. —di - dj) +log (1 + W) (di - W+ + Wij)dj) (4.16)
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where .
dj= ) Wy (4.17)
k=1

is the weighted in-degree of node j. The calculation presented in this paragraph is the first place that
assumption (1.2) is used.

In agreement with the discussion on the effect of the network network topology on local joint and
transition probabilities in (4.13) and (4.14), the asymptotic expansion for transfer entropy in (4.15)
suggests that increasing the order of the expansion in TE/~' hampers the possibility of mapping
transfer entropy one-to-one with the corresponding weights. Surprisingly, the term in ®3 depends on
the influence of j on i along with the in-degree of both i and j, which encapsulate the overall influence
of any other network node on the pair.

4.3. Solving for the weights

In the process of network inference, we should compute all the entries of W from transfer entropy
values estimated from time-series. To accomplish this goal, we must solve the system of Eq. (4.15)
withi,j = 1,...,N, i # j, for W. For convenience, we scale transfer entropy by ®?, yielding the
following matrix-valued equation for W

Tij=GP(W) + OGP (W)+0(0%), ij=1....N,i#] (4.18)

where T;; = @ >TE/~"
Formally, we can solve (4.18) for W as a series in @, as follows:

w=w"+ew?" +0(e’)
and find the two equations
. —_~@ (O
om:  T=G2(WY),

0(0): 0 :iG@(w)
dw

(1 @) (O
S+ G (WO).
J

w=W;
These have formal solutions
W = [6O] @, (4.192)
= _ffﬂ . (4.19b)
LG w)| o

ij
Ultimately, we compute any element of W by following these steps: (i) For every pair i # j, we
solve (4.19a) to compute the value Wl.(J(.)) and we assemble the matrix W (with zeros on the diagonal).
(ii) For every pair i # j, we compute the correction Wl.(jl) by using the entire matrix W©.
To shed light on the topological underpinnings of the correction WV that relate TE/~ to weights

beyond that between i and j, we can perform a further perturbation analysis. Specifically, we can
estimate the correction term in (4.19b) in the case that the entries in W are small using Taylor series.
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2
As shown in [19], GP(W; i)~ % Similarly, expanding (4.16) under the assumption that all elements

of W are small, i.e., W;; < 1, we find

2
GO(W) ~ % (dj - di + W) + O(IWIF). (4.20)

Interestingly, this result holds even if assumption (1.2) is not satisfied. Therefore the correction (4.19b)

approximately satisfies
0)

W~ S (a - a2+ W) + oW @21

where dfo) is the in-degree of node i with respect to matrix WO which, based on (4.19a) encapsulates
the overall information transfer to node i from its neighbors. The same expansion holds, with a different
remainder, if W;; < 1 but the other weights in (4.16) are O (1).

Overall, (4.21) indicates that Wl.(;) depends on all the transfer entropy values associated with

incoming information to nodes i and j. Note that a’l@ and d;o) have opposite signs in the term (4.21).
Specifically, the correction in the inference of the weight between nodes i and j can be split into two

terms W}}“k = %(Wl.(?))Z and W;;p(’logy = %Wg.))(d;o) - dl@). The first of these, W}Ji.“k, represents a
correction that depends only on the computed transfer entropy for the pair (i, j). The second, by
contrast, depends on the mismatch between their weighted in-degrees from W© measures the
differing rate at which information is transferred to the two nodes from the network. Stretching the
thermodynamics analogy, we could refer to this mismatch as a common uncertainty bath upon which

we must tackle the inference problem. The computation of Wi(J(.)) treats the pair (7, j) in isolation, while

the correction term W;;pomgy accounts for the information which both nodes i and j receive from the
rest of the network; see Figure 3. We attribute the different behaviors of the simulations reported in

Section 2 to this observation, as we relate in the next Section.

Figure 3. Schematic of a graph, showing a link from node j to node i with weight W;;, as
well as the additional links pointing to these nodes from other parts of the graph. Node j
has in-degree 3 and out-degree 1. Node i has in-degree 4 and out-degree 0. Whereas only
the edge labeled W;; contributes TE/~ at leading order. The correction depends on all the
pictured edges.

We further comment that to this order in the expansion, Eq. (4.16) yields that if W;; = 0 then T;; = 0.
Since transfer entropy TE/~' computed by time series is never exactly zero, this suggests that the third

order approximation will do no better than the second-order approximation at discriminating between
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W;; = 0 and W;; positive but small. However, it can contribute to the accuracy of the identification of
nonzero weights, in terms of both the mean and variance of the prediction.

5. Continued numerical example

If transfer entropy TE/~ were a function solely of the weight W; ; and not of further topological
properties of the graph, then the inferred weights for a network I' and its transpose, computed to
leading order, should be identical. That they were not found to be identical in Section 2 motivated
the computation, via perturbation expansion, of the next order correction terms, detailed in Section 4.
Eq. (4.21) provides an intuitive explanation for the differing behaviors. The correction term W;;’p ology
is proportional to the mismatch between the weighted in-degrees of nodes i and j, with an additional
factor of W;;. Figure 1(b) shows that the weighted in-degrees for I' vary more widely than the weighted
in-degrees of I'" (which equal the weighted out-degrees of I'). Therefore, the range in their mismatch
is larger, giving rise to the wider variation in the inferred weights for I than for I'T.

We now apply the correction (4.19b) to the numerical simulations described in Section 2. In Figure 4
we compare the second and third order approximations for the computation with the networks T and I'T.
Subfigures (a) and (b) show the second and third order approximations to the weights for the network
I'. With respect to I, the variance of the error is reduced in the improved approximation, while the
mean error, which was already close to zero, stays about the same. For the network I'", as shown in
Subfigures (c) and (d), the mean error is reduced while the error variance is improved only slightly.
After the correction is applied, the inferred weights for both the networks I" and I'" are computed to
about the same accuracy.

Clearly, the correction term accounts for the marked difference between the inferred weights seen in
the initial numerical experiment. When the correction term is included in the computation, then transfer
entropy, already demonstrated to be a useful tool for network reconstruction, only improves. A notable
study by Sun et al. demonstrates that TE/~ is in itself insufficient for reconstructing W; ; since it fails
to condition on the dynamics of the remaining nodes in the network [28]. That paper proposes an
alternative measure of influence which the authors call causation entropy, and which is conditioned on
a higher number of terms. The terms exerting influence are then identified by an optimization over
the terms included. The procedure outlined in Section 4.3 provides an alternative method to measure
indirect influence while relying only on dyadic interactions, allowing us to nonlinearly combine the
transfer entropies of all node-pairs in order to effectively approximate such a conditioning.

6. Additional numerical example

The analysis performed in this paper applies only to the RBN model (1.1). It is tempting, however,
to draw from it a more general conclusion about transfer entropy. Namely, consider models in which
the coupling between the nodes of the network is weak. To leading-order, transfer entropy between
two nodes should depend only on the strength of the coupling between them, but this is subject to a
correction like that given in (4.20), dependent on the difference in total weighted in-degree of the two
nodes forming the pair.
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Figure 4. (a) Computed values of the nonzero weights vs. the exact values for the networks
I' and I'" using second and third order approximations. (b) Normalized histograms of
the error in the two computed approximations for the weight matrix I'. Blue points and
(normalized) histogram repeated from Figure 2. (c) and (d). As in (a) and (b) but for the
matrix I'" witgammah red points and (normalized) histogram repeated from Figure 2. For T
the inference error, including the correction has mean 2.9 x 10~* and variance 4.8 x 10, For
I'T the inference error has mean 3.1 x 10~* and variance 3.5 x 10~*. These compare favorably
with the values reported in the caption for Figure 2.
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In this section, we explore this hypothesis with a numerical example. We consider a coupled system
of chaotic tent maps subject to additive noise. The evolution of the ith state is given by the following

equation:
N

(e +1) = F(x(0)+0 > Wy (F(x®) - F (¥ ) + on'o. (6.1)
=1
Here, n'(¢) is additive noise drawn from a normal distribution, with small multiplier o and the nonlinear

function F, known as the tent map, is

2x 0$x<%,
F(x)=42-2x 1<x<I, (6.2)
0 x<Qorx>1.

In the absence of noise—that is, when o = O—solutions to (6.2) may synchronize, so that their
trajectories will tend to be identical and follow the individual dynamics of single tent map, bounded in
the [0, 1] interval. A condition for the existence of stable synchronous solutions for this system can be
derived, based on the earlier work of [18], as follows. The condition is derived as follows. Define an

N X N matrix L by
Wi, E
L, =" ‘7 (6.3)
= 2t Wik, 1= ]
Then stable solutions exist if, for all nonzero eigenvalues A of L,
1
1+ 04 < 3 (6.4)

We were unable to find any examples of networks of the type used in Section 2 for which
synchronization was possible for both the weighted network I' and its transpose I'". Instead, we
construct the following simple family of weighted networks that may lead to synchronization. Let I
be a directed Erdds-Rényi network [11]. In this class of networks, the nodes are connected randomly
such that a directed link exists from j to i # j, with a fixed probability p < 1. Then, for each node i,
we choose random weights W;; such that d; = }; iWii=1.

Thus, the term W, °l°%Y s identically zero for I' but nonzero for the network I'". We expect
from (4.21) that the cdmputed transfer entropy for (6.2) using I'" will be have larger variance than the
computed transfer entropy for I'. Figure 5 shows the results of this computation, performed with
N =30,p = % ® = 0.96, which satisfies the synchronization condition for both networks, and
o = 0.1. The in-degree of each node of I' equals one by construction, while for I'", the in-degree has
mean one and variance 0.049. It is clear from the simulations that the computed transfer entropy is
more widely scattered for I' than for I'".

Therefore, we conclude that the wider variation in in-degree for I' than for I'" is responsible for
the difference in the behaviors. This supports the idea that the claims analytically derived for the RBN
apply to a wider class of coupled dynamical systems. The main message of this work is that the success
of pairwise inference through transfer entropy depends on the topological features of the network to
be discovered. Networks with homogeneous in-degree can be more accurately inferred than those
with heterogeneous in-degree. The out-degree plays a surprisingly marginal role on the quality of the
inference.
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Figure 5. The pairwise transfer entropy computed as a function of the nonzero weights for
(a) the network T and (b) the network I'T, together with best-fit linear functions. The root-
mean-square deviation from the best-fit line is 9.6 x 1073 for I', and 3.3 x 1072 for I'".

7. Conclusion

Transfer entropy is emerging as a promising approach to carry out network reconstruction from the
time-series of the network nodes. In this vein, one utilizes the value of transfer entropy between a
pair of network nodes to decide whether a link exists between them and, potentially, predict its weight.
This process is based on the premise that transfer entropy maps one-to-one with the weight of the link
between two nodes, which is in general difficult to guarantee. In fact, the definition of transfer entropy
between two nodes deliberately excludes the effect of any other node in the network, thereby neglecting
indirect influence between the two nodes that could be supported by the entire network.

In this work, we seek to offer a precise quantification of the topological features that challenge
transfer-entropy network reconstruction in the context of a simple Boolean network model, inspired by
policy diffusion. Through perturbation analysis of the high-dimensional Markov chain associated with
the model evolution on the entire network, we establish a closed-form expression for the stationary
distribution. This is, in turn, utilized to derive our main result, consisting of a third-order accurate form
of transfer entropy between any two nodes in the network.

Our closed-form result indicates that, for sufficiently slow dynamics, transfer entropy between two
nodes maps injectively to the corresponding weight of the link between them. As the perturbation
parameter increases to encompass dynamics that could evolve at a faster scale, the one-to-one map
breaks down, in favor of a more complex relationship between topology and transfer entropy.
Specifically, we discover that inferring the weight between two nodes calls for examining transfer
entropy from any other node in the network to the node pair under scrutiny. The higher the mismatch
between the two nodes in terms of their total incoming transfer entropy, the less accurate is the
one-to-one mapping between transfer entropy and influence.

This finding is particularly important when studying heterogeneous networks, such as scale-free
models where wide variations in the incoming information flow should be expected as we seek to
discover links around potential hubs. To detail this aspect, we have examined two instances of a
weighted, directed scale-free network: one in which heterogeneity manifests in terms of out-degree
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and, the other, constructed through simple matrix transposition that displays heterogeneity in terms
of the in-degree distribution. In the former case, transfer entropy between each pair of nodes offers
an unbiased measure of the mutual influence between the nodes, such that one might estimate the
corresponding weight from transfer entropy reading with an uncertainty of zero mean. In the latter
case, we observe a systematic bias of transfer entropy-based inference, such that the uncertainty in
the estimation has a non-zero mean, although it is characterized by a narrower variance. Accounting
for the high-order correction derived in this paper, we successfully address network inference in both
cases, attaining an unbiased, tight reconstruction of every weight in the network from transfer entropy
measures.

Although numerical results on coupled chaotic tent maps seem to align with our analytical
predictions, the generality of our results remains an open question for future research. Specifically,
our future work should seek to establish a general framework for error quantification in transfer
entropy-based network inference, beyond the case of Boolean network model examined herein. While
it is unlikely that one could determine a closed-form expression of transfer entropy for general
dynamics in terms of the network topology as proposed in this paper, it may be tenable to establish
conservative bounds on information transfer associated with indirect influence between nodes.
Another area of future inquiry includes the extension of the analytical framework to encompass
time-varying dynamics, leading to a non-stationary Markov process, and self-loops in the network,
which would likely exacerbate the role of heterogeneity on transfer entropy.
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