# SUPPLEMENTARY MATERIAL FOR: A NEW CANONICAL REDUCTION OF THREE-VORTEX MOTION AND ITS APPLICATION TO VORTEX-DIPOLE SCATTERING 

ATUL ANURAG, R. H. GOODMAN, AND E. K. O’GRADY

Note: Equation and figure numbers refer to numbering in the published paper. Local equation and figure labels begin with the letters "SM."

In this supplement, calculate the change in angle $\Delta \alpha$ on trajectories with initial conditions as $t \rightarrow-\infty$ given in Fig. 6. The result is equivalent to one calculated in the supplementary material to [3]. We include it for completeness and to highlight the connection with the phase planes of Fig. 8.

To obtain an explicit integral form, we divide $\frac{\mathrm{d} \alpha}{\mathrm{d} t}$ from Eq. (30) by $\frac{\mathrm{d} Y}{\mathrm{~d} t}$, given by Eq. (28b), yielding $\frac{\mathrm{d} \alpha}{\mathrm{d} Y}$. We remove the dependence on $X$ and $Z$ using the conservation laws (27) and (25), and then replace $H$ by its value given the initial condition in Fig. 6. We will use $\Theta$ instead of $\rho$ as the parameter in what follows because it gives somewhat simpler formulas and can use Eq. (33) to rewrite this in terms of the parameter $\rho$ defining the initial conditions. Integrating this, we find

$$
\begin{equation*}
\Delta \alpha=\int_{Y_{\min }}^{\infty} \frac{-8 \Theta^{2} \mathrm{~d} Y}{\left(Y^{2}+\Theta^{2}\right) \sqrt{p_{4}\left(Y^{2} ; \Theta\right)}}+\int_{Y_{\min }}^{\infty} \frac{8\left(\Theta^{2}-8 \Theta\right) \mathrm{d} Y}{\left(Y^{2}+\Theta^{2}-8 \Theta\right) \sqrt{p_{4}\left(Y^{2} ; \Theta\right)}} \tag{SM1}
\end{equation*}
$$

where

$$
p_{4}\left(Y^{2} ; \Theta\right)=Y^{4}+2\left(\Theta^{2}-4 \Theta-8\right) Y^{2}+(\Theta-8) \Theta^{3}
$$

These are complete elliptic integrals [1]. To place them in standard form, we must first factor $p_{4}\left(Y^{2} ; \Theta\right)$. We plot its zero locus in Fig. SM1 as a function of $\Theta$ and $Y^{2}$. From this image, it is clear that $p_{4}$ can be factored as follows

$$
p_{4}\left(Y^{2}, \Theta\right)= \begin{cases}\left(Y^{2}-(a+i b)^{2}\right)\left(Y^{2}-(a-i b)^{2}\right), & a>0, b>0, \text { if } \Theta<-1  \tag{SM2}\\ \left(Y^{2}-a^{2}\right)\left(Y^{2}-b^{2}\right), & a>b>0, \text { if }-1<\Theta<0 \\ \left(Y^{2}-a^{2}\right)\left(Y^{2}+b^{2}\right), & a>0, b>0, \text { if } 0<\Theta<8 \\ \left(Y^{2}+a^{2}\right)\left(Y^{2}+b^{2}\right), & a>b>0, \text { if } 8<\Theta\end{cases}
$$

The first two cases correspond to the left phase plane of Fig. 8, the last two to the right phase plane; the first and last cases correspond to direct scattering, and the second and third to exchange scattering. The lower limit of integration is $Y_{\min }=0$ in the first and fourth cases, while in the second and third $Y_{\min }=a$. Both integrals in Eq. (SM1) can be evaluated with the help of references such as Gradshteyn/Ryzhik and Byrd/Friedman[1, 2]. It is quite possible that these expressions can be simplified further. For example, Lydon derived formulas in which $\alpha$ is the sum of one complete elliptic integral of the first kind and one of the third kind.


Figure SM1. The solutions to $p_{4}\left(Y^{2}, \Theta\right)=0$, with the transitions between the factored form in Eq. (SM2) marked be vertical lines.

In the four regions, the constants evaluate to the following

$$
\binom{a^{2}}{b^{2}}= \begin{cases}\frac{1}{2}\binom{\sqrt{\Theta-8} \Theta^{3 / 2}-\Theta^{2}+4 \Theta+8}{\sqrt{\Theta-8} \Theta^{3 / 2}+\Theta^{2}-4 \Theta-8} & \text { if } \Theta<-1 \\ \binom{-\Theta^{2}+4 \Theta+8 \sqrt{\Theta+1}+8}{-\Theta^{2}+4 \Theta-8 \sqrt{\Theta+1}+8} & \text { if }-1<\Theta<0 \\ \binom{-\Theta^{2}+4 \Theta+8 \sqrt{\Theta+1}+8}{\Theta^{2}-4 \Theta+8 \sqrt{\Theta+1}-8} & \text { if } 0<\Theta<8 \\ \binom{\Theta^{2}-4 \Theta+8 \sqrt{\Theta+1}-8}{\Theta^{2}-4 \Theta-8 \sqrt{\Theta+1}-8} & \text { if } 8<\Theta\end{cases}
$$

In each of the four $\rho$ intervals, the scattering angle can be written as a linear combination of complete elliptic integrals of the first kind

$$
K(m)=\int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{\left(1-x^{2}\right)\left(1-m x^{2}\right)}}=\int_{0}^{\frac{\pi}{2}} \frac{\mathrm{~d} \theta}{\sqrt{1-m \sin ^{2} \theta}} .
$$

and the third kind

$$
\Pi(n, m)=\int_{0}^{1} \frac{\mathrm{~d} x}{\left(1-n x^{2}\right) \sqrt{\left(1-x^{2}\right)\left(1-m x^{2}\right)}}=\int_{0}^{\frac{\pi}{2}} \frac{\mathrm{~d} \theta}{\left(1-n \sin ^{2} \theta\right) \sqrt{1-m \sin ^{2} \theta}}
$$

The convention is to define these functions for $0<m<1$, though they are analytic for all $m$ except for a branch cut from $m=1$ to $m=\infty$.

We report the values found in each of the cases.

## DIRECT SCATTERING WITH $\rho<-1$

Here $\Theta<-1$, and

$$
\Delta \alpha=\frac{64 \sqrt[4]{\Theta-8}(-K(m)+\Pi(n, m))}{\sqrt[4]{\Theta}\left(\Theta-8+\sqrt{\Theta^{2}-8 \Theta}\right)\left(\Theta+\sqrt{\Theta^{2}-8 \Theta}\right)}
$$

with

$$
m=\frac{1}{2}+\frac{4-\Theta}{2 \sqrt{\Theta^{2}-8 \Theta}} \quad \text { and } \quad n=\frac{1}{2}-\frac{\Theta^{2}-4 \Theta-8}{2 \Theta \sqrt{\Theta^{2}-8 \Theta}}
$$

## EXCHANGE SCATTERING WITH $-1<\rho<-\frac{1}{2}$

In this case $-1<\Theta<0$, and

$$
\Delta \alpha=\frac{4 \Theta K(m)+8 \sqrt{1+\Theta}\left(\Pi\left(n_{1}, m\right)-\Pi\left(n_{2}, m\right)\right)}{\sqrt{-\Theta^{2}+4 \Theta+8 \sqrt{\Theta+1}+8}}
$$

where

$$
\begin{aligned}
m & =\frac{8+4 \Theta-\Theta^{2}-8 \sqrt{\Theta+1}}{8+4 \Theta-\Theta^{2}+8 \sqrt{\Theta+1}}, \\
n_{1} & =\frac{\Theta-2+2 \sqrt{\Theta+1}}{\Theta+2-2 \sqrt{\Theta+1}}, \\
\text { and } \quad n_{2} & =\frac{\Theta+2-2 \sqrt{\Theta+1}}{\Theta+2+2 \sqrt{\Theta+1}} .
\end{aligned}
$$

THE BORDERLINE CASE $\rho=-\frac{1}{2}$
This is the case $\Theta=0$ discussed in Fig. 9. Vortex 2 travels along a straight line with no deflection, so the scattering angle is $\alpha=0$.

## EXCHANGE SCATTERING WITH $-\frac{1}{2}<\rho<\frac{7}{2}$

Here $0<\Theta<8$, and

$$
\Delta \alpha=\frac{-\Theta^{2}+4 \Theta+8 \sqrt{\Theta+1}+8}{2 \sqrt[4]{\Theta+1}(\Theta+2 \sqrt{\Theta+1}+2)}\left(\Pi\left(n_{1}, m\right)-\Pi\left(n_{2}, m\right)\right)
$$

where

$$
\begin{aligned}
m & =\frac{1}{2}+\frac{\Theta^{2}-4 \Theta-8}{16 \sqrt{1-\Theta}} \\
n_{1} & =\frac{2-\Theta-2 \sqrt{1+\Theta}}{4} \\
\text { and } \quad n_{2} & =\frac{2+\Theta-2 \sqrt{1+\Theta}}{4}
\end{aligned}
$$

## DIRECT SCATTERING WITH $\frac{7}{2}<\rho$

In this last case, $\Theta>8$ and

$$
\Delta \alpha=c_{K} K(m)+c_{\Pi, 1} \Pi_{1}\left(n_{1}, m\right)+c_{\Pi, 2} \Pi\left(n_{2}, m\right)
$$

where

$$
\begin{gathered}
m=\frac{16 \sqrt{\Theta+1}}{\Theta^{2}-4 \Theta-8+8 \sqrt{\Theta+1}}, n_{1}=-\frac{4}{\Theta+2 \sqrt{\Theta+1}-2}, n_{2}=\frac{4(\Theta+2 \sqrt{\Theta+1}+2)}{\Theta^{2}} \\
c_{K}=-\frac{4 \Theta}{\sqrt{\Theta^{2}-4 \Theta+8 \sqrt{\Theta+1}-8}}, c_{\Pi, 1}=\frac{-2 \Theta^{3}+4 \Theta^{2}+64 \Theta+64-4 \sqrt{\Theta+1}\left(\Theta^{2}-8 \Theta-16\right)}{\sqrt{(\Theta-8) \Theta^{3}((\Theta-4) \Theta-8(\sqrt{\Theta+1}+1))}}, \\
\text { and } c_{\Pi, 2}=\frac{-2 \Theta^{3}+12 \Theta^{2}-32 \Theta-64+4\left(\Theta^{2}-16\right) \sqrt{\Theta+1}}{\sqrt{(\Theta-8) \Theta^{3}((\Theta-4) \Theta-8(\sqrt{\Theta+1}+1))}}
\end{gathered}
$$

## REFERENCES

[1] P. Byrd and M. Friedman. Handbook of Elliptic Integrals for Engineers and Scientists. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2nd edition, 1971.
[2] I. Gradshteyn and I. Ryzhik. Table of Integrals, Series, and Products. Elsevier Science, 2014.
[3] K. Lydon, S. V. Nazarenko, and J. Laurie. Dipole dynamics in the point vortex model. J. Phys. A: Math. Theor., 55:385702, 2022.

Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, nJ Email address: aa2894@njit.edu

Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, nj Email address: goodman@njit.edu

Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ
Email address: eo244@njit.edu

