
Mathematical Analysis of Fractal Kink-Antikink
Collisions in the �4 Model
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Abstract We analyze the fractal structure seen in kink-antikink collisions of the
�4 equation. The analysis is based on qualitative ODE models related to those
obtained using the variational approximation. We derive a discrete-time iterated
map approximation to the dynamics, from which many features of the model ODE
system may be derived. We discuss the problems with Sugiyama’s variational model
that have been pointed out recently by Takyi and Weigel.

1 Introduction

Intriguing behavior has long been observed in the dynamics of collisions between
kinks and antikinks of the �4 model

�tt � �xx � � + �3 = 0. (1)

This equation possesses a family of traveling-wave solutions called kinks

�(x, t) = �K(x � vt) = tanh (⇠/
p

2)

where ⇠ = (x � x0 � vt)/
p

1 � v2 for any velocity v, �1 < v < 1, and another family
called antikinks �K̄ = ��K.

Consider a solution described by a kink and an antikink propagating toward each
other from ±1 with equal and opposite velocities. Researchers began simulations
of this situation in the 1970’s. Kudryavstev and Sugiyama separately found, through
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simulations with a small number of incident velocities, that su�ciently slow kinks
and antikinks could be captured into a localized bound state [1, 2]. Ablowitz, Ladik,
and Kruskal simulated a slightly larger number of initial conditions and made the
surprising discovery that at one particular velocity, the kink and antikink collided,
began to move apart, turned around, collided a second time, and then escaped [3].
More systematic numerical experiments by Campbell et al. showed a rich structure in
the dynamics following such collisions [4, 5]. Solitary wave pairs with speed above
some critical value vc reflected o� each other and escaped after colliding once. Most
initial speeds below vc led to capture: the kink and antikink form a bound state
and never escape, although the localized solution subsequently decays due to the
escape of radiation. However there exists a sequence of intervals such that, for initial
speeds lying in such an interval, the kink and antikink collide, begin to separate,
and then return to collide a second time before escaping. They called these intervals
two-bounce resonance windows. More recent numerical simulations, e.g. [6], have
shown that in between the two-bounce resonance windows are successively narrower
windows where the solitary waves collide three, four, or even more times before
escaping. This sensitive dependence of the output state on the input state is known
as chaotic scattering [7]. These window intervals are interwoven in a manner that
has been described as fractal. One such computation is shown in Figure 1. Plots
of various solutions are shown in Figure 2. Careful inspection of panels (a) and
(c) shows that in each successive two-bounce window, the dynamics contains one
more internal oscillation than in the previous window. The initial condition in (c)
was chosen to miss the peak of the resonance window, and the escaping solution is
clearly more oscillatory than in panel (a).

collisions Campbell and his collaborators hypothesized that the two-bounce reso-
nance phenomenon is due to a resonant exchange of energy between the propagating
solitary waves and an internal mode, i.e. an eigenfunction corresponding to a discrete
eigenvalue in the linearized operator of the �4 equation (1) about �K. The authors
ran a series of numerical experiments in similar nonlinear KG systems, which al-
lowed them to investigate this hypothesis. One such system, the double sG equation
possesses a tunable parameter ⌘. The existence/non-existence of the internal mode
depends on the value of this parameter, and the authors of the paper concluded that
the existence of the two-bounce resonance phenomenon depends on the internal
mode.

This conclusion has, in recent years, been reversed by a group that includes
Dorey, RomaÒczukiewicz, Shnir and collaborators [8, 9, 10], who have shown that
the phenomenon exists in systems with no internal mode. This is covered in more
detail in Chapter 2 of this volume.

The collective coordinates method, usually derived using the variational approxi-
mation (VA), has been the most common tool in analyzing this phenomenon. These
methods go back at least to Bondeson et al. [11], and are well-described in the review
article of Malomed [12]. Such methods are applied to PDEs such as (1) describing
the time evolution of a spatially dependent field �(x, t) that minimizes a Lagrangian
action
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Fig. 1 (Top) The input velocity vs. the output velocity, showing solutions that escaped after five
or fewer collisions. Other initial conditions either led to capture or to escape after more than five
collisions. (Bottom) Magnification of the interval indicated by the dashed line in the top image.

A =
∫

L(�)dx dt.

Instead of minimizing the action over all functions � in the appropriate space, one
chooses a solution ansatz dependent on a finite number of time-dependent parameters
and minimizes the Lagrangian over all functions in that finite-dimensional family
of functions. After integrating out the spatial dependence, one arrives at a finite-
dimensional Lagrangian, whose Euler-Lagrange equations describe the evolution
of the parameters. It is common to neglect higher-order terms that appear in this
approximation.

A variational model was derived for the kink-antikink collision by Sugiyama in
1979 [2], and was later studied by Anninos et al. [13]. We presented a thorough
analysis of this model in 2005, which we thought, together with some followups,
would close the books on this problem [6, 14, 15].

Recent work by Weigel and his students has cast doubt on the validity of the VA
models [16, 17]; this is covered in more detail in Chapter 3 of this volume, so the
account here will be brief. There are two main issues. The first, initially noted by
Caputo and Flytzanis [18] is that the mass matrix for the VA equations is singular at
the instant the kink and antikink collide. An attempt to remedy this is discussed in
Ref. [16]. The second is a mistake in the form of the term coupling the traveling wave
to the internal mode in the VA approximation derived by Sugiyama and used, without
correction in many subsequent studies, including [6]. Most damningly, they show
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Fig. 2 Kink-antikink solutions to the �4 equation, with initial velocities demonstrating (a,c) two
bounces, (b) capture, and (d) three bounces, corresponding to marked points in Fig. 1.

that replacing the incorrect term with its correct value further degrades the agreement
between the full system and its VA model. They then show that the inclusion of higher-
order terms ignored by Sugiyama, far from improving the model’s agreement with
PDE simulations, leads to additional disagreement, both quantitative and qualitative.

In addition, the inadequacy of the model equations has long been apparent due to
the energy conservation. While the �4 equation conserves energy, the total energy
available to the solitary waves after they collide is reduced by the propagation of
radiation away from the location of the collision, as is clearly visible in Fig. 2 as
ripples in the blue region emanating from the location of the collision. As a result
of this energy loss, the outgoing velocity of the escaping solitons shown in Fig. 1 is
never more than about ninety percent of that of the incoming soliton. By contrast,
there is no radiative mode to carry energy away in the collective-coordinate model
derived via the VA method. The condition used to define the resonant initial velocities
is that the incoming and outgoing speeds are precisely equal. Clearly if energy loss
due to radiation plays such a large role, then correct the form of the conservative
collective coordinates model will be insu�cient to account for its role.
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2 Analysis of collective-coordinate models

Work described in the previous section and elsewhere in this volume casts serious
doubt on the correctness of the collective coordinates model derived by Sugiyama and
analyzed by Goodman and Haberman. Nonetheless, in some cases the variational
models have been quite e�ective in reproducing dynamics seen in the PDE from
which they were derived. For example, Fei et al. derived a collective coordinate
model that describes the behavior of solitons colliding with localized defects in the
medium through which they propagate [19]. As in the case for the �4 equation, the
approximations used in deriving the reduced model are unjustified and probably
unjustifiable.

However the models derived by VA are important as phenomenological models.
They distill an essential feature of such systems: the interaction between the kink
and antikink is well described by a localized potential that decays at infinity, and
the interaction between a kink and its internal mode is mediated by the presence
of a nearby antikink. Therefore analyzing such models can provide insight into the
dynamics of collisions even if the model equations do not describe the full dynamics
in the sense of a convergent approximation.

2.1 The ODE Model

Sugiyama’s VA model is derived using the ansatz

�ansatz(x, t) = �K(x + X(t)) � �K(x � X(t)) + 1 + A(t)
�
�1(x + X(t)) � �1(x � X(t))

�
,

where X(t) is the undetermined position of the kink and �X(t) that of the antikink,
with the internal modes at the same location and with amplitude A(t). The internal
mode has the form

�1(⇠) =
✓

3
p

2

◆1/2
tanh ⇠ sech ⇠ .

The resulting system has a mass matrix that depends on the position X(t), and
which is singular at X = 0, when the kink and antikink profiles cancel each other
exactly. We present a qualitative model that retains the essential features of such a
model while avoiding this di�culty [14, 15, 20]. It consists of a system of second
order ODE

m ‹X +U 0(X) + ✏F 0(X)A = 0; (2a)
‹A + !2 A + ✏F(X) = 0. (2b)

This conserves an energy
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H =
m
2

€X2 +U(X) + 1
2
( €A2 + !2 A2) + ✏F(X)A. (3)

It is assumed that the potential U(X) and the coupling function F(X) decay
rapidly as X ! 1 and that U(X) grows rapidly with negative X to prevent the
waves from passing through each other. The other essential ingredient is that U(X)
has a minimum, so that, when uncoupled from the secondary oscillator A, the kink
and antikink may oscillate around this minimum and be trapped, or, if they have
su�cient energy, escape to infinity. Between these two regimes lies the separatrix
curve, which is an orbit homoclinic to the point at infinity. We will let U(X) be the
Morse potential and F(X) be a simple decaying exponential:

U(X) = e�2X � e�X ; F(X) = e�X . (4)

Setting ✏ = 0 decouples the dynamics, with X conserving an energy E =
m

2
€X2 + U(X). The phase plane for this system is plotted in Figure 3. The sepa-

ratrix corresponds to the level set E = 0 and to trapped orbits to negative energy.
Also plotted in this figure is the projection into the (X, €X) plane of one solution to
the equations with ✏ = 1

4 .

X

dX
/d
t

Fig. 3 The (X , €X) phase plane, and the projection of a solution to system (2) that begins in the
lower-right-hand corner, crosses to the inside of the separatrix, makes four bounces, and then crosses
out again at the upper-right.

Figure 4(a) shows the result of solutions to the model ODE system with initial
conditions

X(0) = Xmax � 1; €X(0) = �vin; a(0) = 0; €a(0) = 0
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with 50,001 evenly-spaced spaced values of vin and parameters m = 1, ! = 1, and
✏ = 1

4 . The color indicates how many collisions, i.e. minima of X(t) occurred before
escape, determined by X(t) > Xmax. True capture is possible for the �4 system, as
evidenced by figure 1(d). In these cases energy that escapes to infinity in the form of
radiation prevents the solitary waves from escaping. By contrast, in the model ODE
system (2), eventually, enough energy must be returned to the propagating mode
X(t) for it to escape, except for a measure-zero set of initial conditions that lie on
the stable manifold of a bounded orbit. Therefore, capture is not observable in this
figure. Note that this figure captures much of the structure of the PDE computation,
although not the quantitative details.

0.15 0.2 0.25 0.3
vin

0

0.1

0.2

v o
ut

1
2
3
4
5(a)

0.15 0.2 0.25 0.3
vin

0

0.1

0.2

v o
ut

(b)

1
2
3
4
5

Fig. 4 (a) Numerical simulation of chaotic scattering in the model ODE system (2) with parameters
m = 1, ! = 1, and ✏ = 1

4 . (b) Numerical simulation of the iterated map model (10).

2.2 Derivation of the discrete-map approximation

The chaotic scattering is analyzed by deriving a discrete map approximation to the
dynamics. Referencing Figure 5, we see that X(t) approaches�1 as t ! 1, achieves
a local minima at a discrete sequence of “bounce ” times tj , and following the last
minimum, at t = t4, escapes. Also defined are the times t̃j at which the solitary
waves achieve their largest separations. By definition t̃0 = 1 and the final separation
time t̃4 = 1. The second panel shows the energy E(t) in the (X, €X) component,
which is positive when the solution is outside the separatrix, and which jumps at



82 R.H. Goodman

each bounce. The third panel shows that a(t) oscillates sinusoidally, with a jump in
amplitude and phase at each bounce. The map we derive measures how the energy
E , and the amplitude and phase of a change between the bounces.
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Fig. 5 The solution to equation (2) plotted in Fig. 3. Top: X(t), showing the four bounce times
and three near-infinity approach times. Middle: a(t) showing that the amplitude and phase of the
oscillator a change at each bounce. Bottom: The energy, which is positive when the solution is
outside the separatrix, and negative inside.

Rather than describing a(t) by the amplitude and phase, we instead assume that
before bounce j,

A(t) ⇠ C
�
cj cos!(t � tj) + sj sin!(t � tj)

�
as t � tj ! �1

where the constant C must be chosen to normalize the variables (see below). This
represents the value of a(t) when X is large and the coupling is smallest. The map
we derive takes the form

(cj+1, sj+1,Ej+1) = F (cj, sj,Ej)

where Ej is the plateau energy level preceding the jth bounce time tj .
Near time tj , X(t) can be represented by the solution along the separatrix XS(t�tj),

and we can solve equation (2b) for A(t) by variation of parameters:
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A(t) ⇠C
�
cj cos!(t � tj) + sj sin!(t � tj)

�
� ✏
!

sin!(t � tj)
π

t

�1
F(XS(t � tj)) cos!(t � tj)dt

+
✏

!
cos!(t � tj)

π
t

�1
F(XS(t � tj)) sin!(t � tj)dt

(5)

Since XS is an even function of t, this gives, as t � tj ! 1,

A(t) ⇠C
�
cj cos!(t � tj) + sj sin!(t � tj)

�
� ✏
!

sin!(t � tj)
π 1

�1
F(XS(t � tj)) cos!(t � tj)dt

Defining

C = ✏
!

π 1

�1
F(XS(t)) cos!tdt =

✏

!

π 1

�1
F(XS(t))ei!tdt, (6)

we may rewrite this as

A(t) ⇠ C
�
cj cos!(t � tj) + (sj � 1) sin!(t � tj)

�
as t � tj ! 1.

However, this should be written instead in terms of t � tj+1. Note that the value of
C is the first instance in this calculation where the particular form of the coupling
function F(X) is important.

Letting ✓ j+1 = �!(tj+1 � tj), then !(t � tj) = !(t � tj+1) � ✓ j+1 and using angle
addition formulas, we arrive at

A(t) ⇠ C
�
cj+1 cos!(t � tj+1) + sj+1 sin!(t � tj+1)

�
,

where ✓
cj+1
sj+1

◆
=

✓
cos ✓ j+1 � sin ✓ j+1
sin ✓ j+1 cos ✓ j+1

◆ ✓
cj

sj � 1

◆
.

We introduce a complex variable zj = cj + isj , which renders this as

zj+1 = ei✓ j+1
�
zj � i

�
. (7)

Now it remains to approximate (tj+1 � tj). This requires matching a solution in
a neighborhood of the bounce, where X(t) is approximated by the separatrix orbit,
with the solution near X = 1. Here the leading-order behavior of U(X) for large X
is su�cient to describe the dynamics. The most important quantity for describing
the large-X behavior is the energy in the X-component of the solutions

E =
m
2

€X2 +U(X).

The time tj+1 � tj is related to the energy on the j th approach to infinity, so we
must calculate how the energy changes. To do so, we integrate dE

dt
between the two
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near-infinity approach times. The trajectory is assumed to be in a neighborhood of the
separatrix, so that the collision times are far apart, and the domain of integration can
be replaced by (�1,1). An integral of this type is known as a Melnikov integral [21].

Ej+1 � Ej =

π
t̃j

t̃j�1

dE
dt

dt ⇡
π 1

�1

dE
dt

dt

=

π 1

�1

� ‹X +U 0(X)
� €Xdt =

π 1

�1
�✏AF 0(X) €X dt = ✏

π 1

�1
F(X) €A dt,

and the integration by parts is justified since F(X(t)) vanishes su�ciently rapidly as
|t ! 1|.

In the above calculation, the only assumption so far is that the domain of integra-
tion can be approximated by the whole line, so the integrand must vanish su�ciently
rapidly as |t ! 1|. We further approximate X(t) in the last expression by XS(t � tj).
The rest of the calculation depends on the specific form of functions F(X) and U(X)
in the Hamiltonian (3). For the particular form of U(X) specified in equation (4), the
separatrix orbit is XS(t) = log

⇣
1 + t

2

2m

⌘
and F(XS) = 2m

2m+t2 .
Using this form for F(X), calculating €A using equation (5), and integrating, taking

advantage of symmetries, we arrive at

Ej+1 � Ej =
C2!2

2
�
2sj � 1

�
. (8)

We define a rescaled energy by Ej =
C2!2

2 E j . Equations (7) and (8) then imply
the conservation of the quantity

H = E j +
��zj ��2 (9)

A delicate matching procedure that depends on U(X) is needed to determine the
functional form of ✓ j+1 = ⇥(E j+1). Using equation (7) and the conservation law (9),
the map becomes

zj+1 = ei⇥(H�|z j�i |2)(zj � i).

The integral (6) may be evaluated by residues and yields

C = ✏⇡
p

2m
!

e�
p

2m! .

When Ej+1 < 0, the time between bounces tj+1 � tj can be calculated via a
matched asymptotic procedure between the near-saddle approaches, described by the
separatrix orbit and the near-infinity approaches defined using the large X asymptotic
expansion of U(X), following [15]. Since the phase of ✓ j+1 enters the computation,
it is necessary to approximate this quantity to o(1). For this potential U(X) given
by (4), the time (tj+1 � tj) is simply the period of an orbit with energy Ej+1 < 0,
yielding
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⇥(E j) = �2⇡
C

r
m
�E j

.

Finally, following Stolovitsky et al. [22], we define a new variable

Z j = zj �
i
2

and a parameter ↵ = 2⇡
p

M/C =
p

2!e2m!/✏ . With respect to this coordinate, the
final form of the separatrix map is

F (Z j) = e�i↵/
q
|Z j� i

2 |2�H
✓
Z j �

i
2

◆
� i

2
, (10)

with inverse
F �1(Z j) = ei↵/

q
|Z j+

i
2 |2�H

✓
Z j +

i
2

◆
+

i
2
.

Despite being written in terms of a complex variable, these maps are non analytic
as they involve absolute values. Defining ⇢ to be the complex conjugation operator
⇢(z) = z⇤, the two maps are related by conjugation,

F �1 = ⇢�1F ⇢.

2.3 Interpretation and analysis of the map

The traditional set of tools may be applied to the map (10) such as the enumeration
of fixed points, period-n points, and stable and unstable manifolds. Much of this is
done in Ref. [15]. Here we concentrate on using the map to explain the structure
found in Figure 4. Each point in this figure corresponds to a di�erent initial velocity,
and thus a di�erent value of H , and a di�erent map, so computing such quantities
does not seem to be the most useful calculation.

For H > 0, the domain of F excludes the closed disk

Dout =

⇢
Z :

����Z � i
2

����  H
�
.

Its range, and the domain of F �1 is the complex plane excluding the closed disk

Din =

⇢
Z :

����Z + i
2

����  H
�
.

The two disks are shown in Figure 6. These sets have an important and simple
interpretation for the dynamics. For Z j 2 Dout, E j+1 > 0 is well-defined, but tj+1 is
not, because solutions with positive energy escape to infinity and there is no ( j+1)th
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Fig. 6 The two disks on which
the map F and its inverse are
undefined. On the intersection,
neither is defined.

bounce. Similarly points in Din have no pre-image under the map and correspond to
kink-antikink pairs arriving from infinity.

We assume that the internal mode is initially unexcited, i.e. c0 = s0 = 0 or to
Z0 = � i

2 , the point at the center of the disk Din. If H is su�ciently large, then the
point Z0 = � i

2 2 Dout and the solitary waves escape each other’s embrace after just
on interaction. Therefore the critical velocity is that such that H|v=vc = 1, i.e. that

H(vc) = E = 2
!2C2 E =

2
!2C2 · mv2

c
2
,

or
vc =

!C
p

m
. (11)

This gives a useful relation

H = v2

v2
c
. (12)

We will illustrate two features of this dynamics: the n-bounce resonant solutions
and the hierarchy of the resonance windows. The n-bounce resonant solutions satisfy
Z0 = � i

2 and Zn�1 =
i

2 ,

F n�1
✓
� i

2

◆
=

i
2

if n = 2m is even then

Fm

✓
� i

2

◆
= F �(m�1)

✓
i
2

◆
= ⇢F (m�1)

✓
� i

2

◆
,

i.e.
F (Zm) = Z⇤

m
. (13)
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If n = 2m + 1 is odd then

Fm

✓
� i

2

◆
= F �m

✓
i
2

◆
= ⇢Fm

✓
� i

2

◆
,

i.e.
Zm 2 R. (14)

The edges of the n-bounce resonance windows correspond to the points that land
on the boundary of the disk Dout after n � 1 iterates, i.e. those for which

����Zn�1 �
i
2

����
2
= H . (15)

Given Z0 = � i

2 , then

Z1 = �ie�i�1 � i
2

and Z2 = �ie�i�2
⇣
e�i�1 + 1

⌘
� i

2
,

where

�1 =
↵

p
1 �H

=
2⇡!p
v2

c � v2
and �2 =

↵q
4 cos2 �1

2 �H
=

2⇡!r
4v2

c cos2 ⇡!p
v

2
c �v2

� v2
.

These have all been put into a form where the dependence of the solution on the
initial velocity v has been made explicit.

The condition for a two-bounce resonant initial velocity (13) is then just Z1 = i,
which can be simplified to ei�1 = �1, or

v2,n =

s
v2
c �

4!2

(2n � 1)2
. (16a)

Since �1 diverges as v % vc, there is an infinite number of such solutions, indexed
by n, which here specifies the number of oscillations of the secondary oscillator A(t)
between the two collisions. This formula indicates that such a solution only exists
for

n >
1
2

✓
2!
vc
+ 1

◆
.

The edges of the two-bounce windows satisfy equation (15) with n = 2 which
can be simplified to

v2 = 4v2
c cos2 ⇡!p

v2
c � v2

.

The three-bounce resonant solutions solve equation (14) with m = 1, i.e. that
Z1 2 R. This can be simplified to cos �1 =

�1
2 , or
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v3,n± =

vuut
v2
c �

4!2⇣
2n � 1 ± 1

3

⌘2 . (16b)

Again, there is an infinite number of such solutions, immediately to the right and
left of each two-bounce window. The edges of the three-bounce windows satisfy
equation (15) with n = 3, which can be simplified to

v2 =

✓
1 + 8 cos

�1
2

cos
�2
2

cos
�1 + �2

2

◆
v2

c .

Since �2 ! 1 as v approaches the edge of each two-bounce window, there
must be an infinite number of three bounce windows accumulating outside of each
two-bounce window.

We find the four-bounce resonant solutions using equation (13) with m = 2. This
is more simply written as ei(�1+�2) = �1 or

�1 + �2 = (2n � 1)⇡, (16c)

but of course we can expand the LHS as a function of v. The five-bounce resonant
solutions solve equation (14) with n = 2, which requires

cos �2 + cos (�1 + �2) = �1
2
. (16d)

Here again, the divergence of �2 guarantees that there is an infinite number of four-
and five-bounce resonant solutions. With a little bit more work we can show that an
infinite sequence of n+1-bounce windows accumulates at the left and right edges of
each n-bounce resonance. However, beyond this point, it becomes di�cult to develop
such explicit formulas.

3 Computational exploration of map (10)

Figure 4(b) shows the chaotic scattering diagram for solutions to the map (10) with
initial condition Z0 = � i

2 . It is impossible to resolve this figure, since the angle
⇥(Z j) diverges as Z j approaches the boundary of its domain, i.e. the circle @Dout,
which implies that the full diagram consists of an infinite number of windows of
infinitesimal width.

In this figure, equation (12) is used to replace the asymptotic value of the critical
velocity (11) by the numerical value obtained from numerical simulation of the ODE
model (vc ⇡ 0.294 from simulation of (2), while formula (11) gives vc ⇡ 0.279).
Numerical comparisons in Ref. [14] show that as ✏ ! 0 (or as!! 1) the accuracy
of the formula (11), and the positions of the map’s predictions for resonance windows
improves. However, we elect to use a relatively large value of ✏ in this figure, as the
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window widths are smaller for small ✏ and it is harder for a reader to visualize the
intricate structure.

In Figure 7, we show three zoomed-in views of the ODE simulation shown
in Figure 4(a), with each figure showing the input velocities between the dashed
black lines in the previous figure. Surrounding each n-bounce window, we can see a
sequence of (n+1)-bounce windows, accumulating at its edges. These windows have
a clearly visible envelope, including a “tallest” window which may have a resonant
solution at its center. It is impossible to tell from the ODE simulations whether these
are truly resonances. The best we can do is to find the input velocities which locally
minimize vin � vout.

An analogous set of zooms is shown for the map (10) in Figure 8, zooming
in beginning between the dashed vertical lines in Figure 4(b). For the map, the
conditions (13) and (14), or more specifically equations (16) demonstrate which of
the apparent n-bounce resonant velocities are and which are not actual resonances.
In subplot (a), a two-bounce solution satisfying equation (16a) is flanked by two
three-bounce solutions satisfying equation (16b). In subplot (b) a non-resonant three-
bounce window has four-bounce windows on both sides, but the only four-bounce
window satisfying condition (16c) is on its right. Subplot (c) shows two four bounce
windows, each surrounded by five bounce windows, but the only five bounce window
satisfying equation (16d) is to the left of a non-resonant four-bounce window.
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Fig. 7 Three zooms of the ODE simulation shown in Figure 4(a). From the figure it is not possible
to determine which of the windows contains a resonance.

4 Conclusions and outlook

To conclude, the assumptions underlying the derivation of model ODE systems
like (2) have been shown, and their numerical infidelity to the underlying PDE
system has likewise been highlighted. Nonetheless, as qualitative models, they can
be used to guide thinking about the types of behaviors seen in solitary wave collisions.
These models are amenable to a deep analysis that allows for the explanation of many
of the features seen in numerical simulations.
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Fig. 8 Three zooms of the map simulation shown in Figure 4(b). The marked points indicate
resonant solutions as determined by equations (16). Several of the points that appear to be resonances
in this figure can be rejected as resonances by calculating that the quantities appearing on the LHS
of the equations (16) are nonzero, indeed not close to zero.

Clearly a collective coordinates model that more completely captures the dynam-
ics of the full PDE will be needed. Such a model should capture at least some of
the energy lost due to radiation and will, ideally, be amenable to analysis like that
presented here. An interesting twist is that the map will no longer obey a conserved
quantity as in equation (9), and thus not be reducible from three dimensions to two.
An ODE model was derived to include radiative dissipation in the interaction be-
tween sG solitons and localized defects in Ref. [23]. However the additional terms
did not allow us to extend the analytic methods described in the present chapter.
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