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Abstract. We describe QGLAB, a new MATLAB package for analyzing partial differential
equations on quantum graphs. The software is built on the existing, object-oriented MATLAB
directed-graph class, inheriting its structure and adding additional easy-to-use features. The package
allows one to construct a quantum graph and accurately compute the spectrum of elliptic operators,
solutions to Poisson problems, the linear and nonlinear time evolution of a variety of PDEs, the con-
tinuation of branches of steady states (including locating and switching branches at bifurcations),
and more. It overcomes the major challenge of discretizing quantum graphs---the enforcement of
vertex conditions---using nonsquare differentiation matrices. It uses a unified framework to imple-
ment finite-difference and Chebyshev discretizations of differential operators on a quantum graph.
For simplicity, the package overloads many built-in MATLAB functions to work on the class.
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1. Introduction. This paper introduces the main ideas used to build QGLAB,
a software package written in MATLAB for computations on quantum graphs, and
provides several examples of its use and accuracy [34]. The supplementary materials
present more thorough operating instructions and additional computational examples.

Quantum graphs, networks of one-dimensional edges interacting via vertex con-
ditions, appear in the literature going back many years. The modern study of the
subject begins with an analysis of their spectral statistics in [41], whose authors coined
the term ``quantum graphs."" The spectral theory and properties of quantum graph
operators were further developed in [29], where quantum graphs were realized as the
limits of quantum equations on thin wire-like domains; see also [30, 37] and the refer-
ences therein. Quantum graphs provide effectively one-dimensional model equations
that enable explicit calculations that serve as a backbone for representing geometric
and spectral theoretic properties of more complicated higher-dimensional quantum
models. For further introduction and history, we recommend [9, 11].

Numerical packages are essential to facilitate further study for several common
reasons: making progress on larger-scale problems and those with nonlinearities and
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QGLAB: A PACKAGE FOR QUANTUM GRAPH COMPUTATIONS B429

time dependence all depend on intuition built from numerical experimentation and
visualization. This project provides high-level tools that allow users to quickly and
easily set up, solve, and visualize the solutions to problems posed on quantum graphs.
It overloads many built-in MATLAB commands for basic calculations and plotting.

The package's foundation is a quantum graph class built on the MATLAB directed-
graph class. While we have striven to write a general-purpose software package for
quantum graph computations, the direction of development has been guided by two
classes of problems of research interest to its authors:

1. Computing bifurcation diagrams: standing waves of the nonlinear Schr\"odinger
equation (NLS) occur along one-parameter families or branches rather than at
isolated points. Such branches must be computed using continuation methods
to understand the solutions' parameter dependence. Branches may cross, and
the stability of solutions changes at isolated bifurcation points. The package
can detect the most common bifurcations and switch branches; see [12, 35].

2. Spectral accuracy in space and high-order time-stepping: a planned future
project is to compute time-periodic and time-relative-periodic orbits of the
full time-dependent NLS on a compact quantum graph.

QGLAB grew from numerical studies in the authors' research [35, 39, 45]. Other
works have developed numerical packages for quantum graphs. The most complete is
GraFiDi, a Python-based package described in [14], which overlaps with QGLAB but
has fewer features. Malenova built a small quantum graph package using Chebfun [44].
Others have studied finite-difference, finite-element, and Galerkin-based numerical
methods without creating a software package for general use [3, 12, 18, 19].

QGLAB is distinguished by the breadth of problems it can handle: linear and
nonlinear, stationary and time-dependent, constant and variable coefficient. It sepa-
rates the solution of differential equations along a graph's edges from the constraint
of solving the vertex conditions. This has allowed us to develop a language in which
the numerical algorithms for solving problems on quantum graphs can be expressed
in just a few lines, as demonstrated in numerous examples.

1.1. Defining a quantum graph. A quantum graph \Gamma consists of a directed
metric graph, considered as a complex of edges, on which a function space and differ-
ential operators are defined. To be more specific, we define the graph \Gamma = (\scrV ,\scrE ) as
a set of vertices \scrV = \{ \ttv n, n= 1, . . . , | \scrV | \} and a set of directed edges \scrE = \{ \tte m = (\ttv i \rightarrow 
\ttv j), m= 1, . . . , | \scrE | \} and to each edge assign a positive length \ell m and impose upon the
edge a coordinate x that increases from 0 to \ell m as the edge is traversed from the \ttv i to
\ttv j . In general, we may consider the lengths of some or all of the edges infinite, in which
case that edge will be connected to a single vertex, but we defer this to later publica-
tions. Define the degree dnof vertex \ttv n as the number of edges that include that vertex
as an initial or final point, counting twice if an edge connects the vertex to itself.

A graph with | \scrV | = 3 vertices and | \scrE | = 5 edges is shown in Figure 1.1. The
vertices have degrees d1 = 5, d2 = 3, and d3 = 4. Under our definition, multiple edges
may share the same initial and final vertex, as do edges \tte 1 and \tte 2.

A function \Psi (x) defined on \Gamma is defined as a collection of functions on each of the
edges \Psi | \tte m =\psi m(x). The Laplace operator on the graph is defined by1

\bigtriangleup | \tte m =
d2

dx2
 - Vm(x) for 0<x< \ell m,(1.1)

1With the inclusion of such a potential, the operator  - \bigtriangleup is more properly called a Schr\"odinger
operator, but we abuse terminology for simplicity.
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B430 R. H. GOODMAN, G. CONTE, AND J. L. MARZUOLA

Fig. 1.1. A directed graph with three vertices and five edges.

subject to appropriate compatibility conditions at the vertices, given the presence
of a potential V (x) with V (x)| \tte m = Vm(x) which we usually set to zero. To define
a Laplacian requires a function space. The graph and vertex conditions define a
quantum graph, and we are most concerned with vertex conditions giving rise to a
self-adjoint operator. The text [11] describes general criteria for self-adjoint vertex
conditions. We discuss some of these here.

We assume the function is continuous at each vertex, yielding dn  - 1 conditions
at vertex \ttv n. Let \scrV n be the set of edges adjacent to this vertex, double counting
self-directed edges. Continuity defines a function value at the vertex to be

\Psi (\ttv n)\equiv \psi i(\ttv n) =\psi j(\ttv n)\forall \tte i,\tte j \in \scrV n.(1.2)

We define the weighted Robin--Kirchhoff vertex condition as\sum 
\tte m\in \scrV n

wm\psi 
\prime 
m(\ttv n) + \alpha n\Psi (\ttv n) = 0,(1.3)

where the derivative is, in all cases, taken in the direction pointing away from the
vertex. In the case wm \equiv 1, \alpha n \equiv 0, this reduces to the Neumann--Kirchhoff vertex
condition, which is the natural generalization of the Neumann boundary condition on
a line segment. Interpreting the equation \bigtriangleup \Psi = 0 as describing a steady state of the
heat equation, the Neumann--Kirchhoff vertex condition states that the net heat flux
into the vertex vanishes. Associating nonunit weights wm to the edges then specifies
that the flux from each edge is proportional to its weight. Such weights define balanced
star graphs in [39]. Setting \alpha n \not = 0 generalizes a Robin vertex condition and may be
interpreted as a delta function potential at the vertex. The Dirichlet condition is

\Psi (\ttv n) = 0.(1.4)

Setting the right-hand side of (1.3) or (1.4) to a value \phi n \not = 0 defines nonhomogeneous
vertex conditions.

We define norms and function spaces, e.g., Lp(\Gamma ),

\| \Psi \| pLp(\Gamma ) =

| \scrE | \sum 
m=1

wm\| \psi m\| pLp ,(1.5)

and the L2 inner product

\langle \Psi ,\Phi \rangle =
| \scrE | \sum 
m=1

wm

\int \ell m

0

\psi \ast 
m(x)\phi m(x)dx.(1.6)
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QGLAB: A PACKAGE FOR QUANTUM GRAPH COMPUTATIONS B431

The weights wm must appear in these definitions for the conservation laws for evolu-
tion equations below and to make the Laplace operator (1.1) self-adjoint. We define
H1(\Gamma ) as the space of square-integrable functions with square-integrable first deriva-
tives. More subtly, we define L2(\Gamma ), H1(\Gamma ), and H2(\Gamma ) to be the space of functions
that are in each of these function spaces edgewise, but we define L2

\Gamma to be the space
L2(\Gamma ) equipped with the inner product (1.6). Similarly, H1

\Gamma is the space of functions
in H1(\Gamma ) satisfying the continuity condition (1.2), and H2

\Gamma consists of functions in
H2(\Gamma ) satisfying both (1.2) and either the vertex condition (1.3) or (1.4).

1.2. The eigenvalue problem. The first natural question about the Lapla-
cian operator defined on \Gamma is its spectrum and eigenfunctions. Such properties have
been studied extensively; for a small subset of relevant works, see, for instance,
[2, 6, 9, 10, 11, 38] and the references therein.

The compact quantum graph Laplacian has only a discrete spectrum, so we must
compute the set of eigenvalues \lambda and eigenfunctions \Psi such that

\bigtriangleup \Psi = \lambda \Psi .(1.7)

The spectrum is countable, is unbounded below, and has finitely many positive values.
The nonpositive eigenvalues \lambda = - k2 can be found by seeking the analytic solution

\psi m(x) = ame
ikx + bme

ik(\ell m - x), m= 1,2, . . . , | \scrE | .(1.8)

The vertex conditions form a homogeneous system of 2| \scrE | linear equations. Its solution
requires the vanishing of the determinant of the associated matrix S(k), a function
\Sigma (k) called the secular determinant which can be normalized to take real values when
k \in \BbbR [11]. The recent dissertation [21] shows this holds under the more general
vertex conditions (1.3). In addition to QGLAB's many numerical features, it can
symbolically compute the graph's real-valued secular determinant.

Two recent publications note numerically computing a determinant and finding
its zeros have high complexity and low accuracy, so that finding the zeros of \Sigma is
a poor method for computing the spectrum [18, 19]. Both suggest that finding the
values k\ast where the condition number of S(k) diverges is faster and more accurate;
they subsequently find the eigenfunction as null vectors of S(k\ast ). Further, both
suggest using the null vectors of S(k\ast ) as the basis for Galerkin methods to solve
stationary and evolutionary PDE on metric graphs. This approach is ill-suited to
nonlinear problems and those with edgewise-defined potentials or semi-infinite edges:
nonlinearities are cumbersome to implement in Galerkin methods, eigenfunctions in
the presence of potentials do not take the form (1.8), and graphs with infinite edges
may not even have a point spectrum. The present work demonstrates numerical
solutions to the first two problems. Extension to infinite edges is planned.

1.3. PDE on a quantum graph. Our primary motivating problem for building
QGLAB is the NLS

i
\partial \Psi 

\partial t
=\bigtriangleup \Psi + (\sigma + 1) | \Psi | 2\sigma \Psi ,(1.9)

where \sigma \geq 0 and \sigma = 1 is the most commonly studied cubic case. We are especially
interested in the stationary NLS obtained by assuming \Psi (x, t) = ei\Lambda t\Psi (x),

\scrF (\Psi ,\Lambda )\equiv \Lambda \Psi +\bigtriangleup \Psi + (\sigma + 1) | \Psi | 2\sigma \Psi = 0.(1.10)
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B432 R. H. GOODMAN, G. CONTE, AND J. L. MARZUOLA

The evolution of (1.9) conserves both the L2 norm defined in (1.5) and an energy

E(\Psi ) = \| \Psi \prime \| 2L2(\Gamma )  - \| \Psi \| 2(\sigma +1)

L
2(\sigma +1)
\Gamma 

+
\sum 
\tte m\in \scrE 

wm

\int 
\tte m

Vm(x) | \Psi m(x)| 2 dx+
\sum 
\ttv n\in \scrV 

\alpha n | \Psi (\ttv n)| 2 ,

(1.11)

where \Psi \prime is defined edge by edge. The NLS equation on the real line also conserves
a momentum functional, but NLS on quantum graphs does not unless certain other
restrictions to the weights and initial conditions hold; see [39].

Linear and nonlinear PDEs on quantum graphs are longstanding and active sub-
jects. Many groups have studied (1.10) as surveyed in [16, 50]. The existence of ground
states and the solution stability of stationary solutions are two important questions
often studied from a variational perspective. There are too many works in this direc-
tion to properly do the subject justice, but see, for instance, [1, 15, 20, 22, 23, 55] and
the references within to get a sense of the field. Others have studied the existence
and stability of stationary states for Dirac and KdV equations [15, 53]. Recent works,
including [12, 32, 35, 45, 51], use asymptotic and bifurcation-theoretical approaches to
analyze the existence of multiple branches of solutions to (1.10). The book [47] gives
an excellent introduction to time-dependent PDE on graphs. References including
[39, 48, 54] analyze the time-dependent phenomena exhibited by Schr\"odinger, Dirac,
and KdV equations on graphs. This short overview gives a flavor of the questions
that can be posed on quantum graphs and the breadth of topics yet to be explored.

QGLAB has been explicitly written for PDE with Laplacian spatial derivative
terms. In addition to the previously discussed NLS equation, these include the
wave equation [50], the heat equation [8, 17], and their nonlinear cousins such as
the nonlinear Klein--Gordon equations, including sine-Gordon [33, 43, 54, 56] and
the Kolmogorov--Petrovsky--Piskunov equation [26], all of which can be defined on a
quantum graph. QGLAB provides examples of solving all of these PDEs.

1.4. Organization of the paper. Section 2 discusses the numerical methods
QGLAB uses to discretize and solve equations posed on quantum graphs. The long-
est part, subsection 2.1, discusses the overall framework of the discretization and its
implementation using both finite-difference and Chebyshev approximations of deriv-
atives and the implementation of the vertex conditions. We apply this framework to
discretize eigenvalue problems in subsection 2.2, where we also discuss the symbolic
calculation of the secular determinant for the general class of vertex conditions dis-
cussed. Subsection 2.3 describes the nonlinear solvers and continuation algorithms,
while subsection 2.4 describes the implementation of time-steppers for evolution equa-
tions. Section 3 is devoted to the MATLAB implementation of the tools discussed in
QGLAB, including a discussion of the MATLAB directed-graph class in section 3.1
and the QGLAB quantum graph class, which is built on top of this, in section 3.2.
Section 3.3 discusses basic operations on class objects. In section 4, we consider three
examples illustrating QGLAB in practice: a Poisson problem, an eigenvalue prob-
lem, and an initial-value problem for the cubic NLS equation. We summarize our
contributions and give an outlook on potential future features and applications in
section 5. The supplement contains extensive additional materials in two sections.
The first, section SM1, is devoted to demonstrating both the implementation and effi-
cacy of QGLAB on a variety of examples, including stationary problems---eigenvalue
problems, the Poisson equation, and the computation and continuation of standing
waves and evolutionary PDE problems. The second, section SM2, contains a complete
listing of user-callable function definitions and explicit instructions for their use.
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QGLAB: A PACKAGE FOR QUANTUM GRAPH COMPUTATIONS B433

2. Numerical methods. This section discusses the numerical methods used to
implement the quantum graph class and solve various problems. It briefly presents
some examples described in detail in section 4 of the supplement.

2.1. Discretization and vertex conditions. QGLAB can perform tasks in-
cluding solving for nonlinear standing waves and numerically integrating evolution
equations on a quantum graph. Most important is discretizing the Laplace opera-
tor and solving the Laplace and Poisson equations. It provides two discretizations:
centered differences and Chebyshev collocation. They can be used interchangeably,
although the Chebyshev discretization is, by construction, more accurate.

The two discretizations are implemented using a common framework: the function
\Psi (x) is approximated on an extended grid xext with enough points to approximate
both the PDE solution and the vertex conditions. In contrast, the discretized PDE is
satisfied on a smaller interior grid xint containing two fewer points per edge. Thus, the
discrete Laplacian matrix is nonsquare, with 2| \scrE | more columns than rows, mapping
from approximations on xext to approximations on xint. The vertex conditions are
implemented as constraints, not incorporated directly into the discretized Laplacian
matrix. This choice has several attractive features described below.

Driscoll and Hale introduced nonsquare differentiation matrices using rectangular
discretization matrices for use in the Chebfun package [24, 25]. Aurentz and Trefethen
have written an excellent review, developing the theory for the block operators that
implement these ideas via a sequence of well-chosen examples [5].

2.1.1. Finite-difference discretization. The finite-difference method is im-
plemented using second-order centered differences with the boundary conditions en-
forced at so-called ghost points, as discussed, for example, in the textbook [28, sect.
4.2.2]. We review this technique for discretizing the two-point boundary value problem

d2u

dx2
 - V (x)u(x) = f(x),0<x< \ell , u\prime (0) + \alpha 0u(0) = \phi 0,  - u\prime (\ell ) + \alpha \ell u(\ell ) = \phi \ell (2.1)

and then discuss the straightforward extension to quantum graphs. The sign on
the u\prime term in the boundary conditions is chosen to agree with our quantum graph
convention that all derivatives are taken in the direction pointing away from a vertex
of the quantum graph in the definition of vertex conditions. Given a discretization
length h = \ell 

N , place points on a grid offset by half a step size xk = (k  - 1
2 )h for

0\leq k\leq N +1 as shown in Figure 2.1. The first and last points lie outside the interval
of interest, and the endpoints of the desired interval do not appear on the list of points.
Letting uk approximate u(xk), the discretized equation at the interior points is then

u\prime \prime (xk) - V (xk)u(xk)\approx 
uk - 1  - 2uk + uk+1

h2
= fk = f(xk) for k= 1, . . . ,N,

up to an error of \scrO h2. The value of u(0) and u\prime (0) may be approximated to second
order via suitable linear combinations of u(\pm h/2), yielding a second-order approxi-
mation of the boundary condition (2.1),\biggl( 

\alpha 0

2
 - 1

h

\biggr) 
u0 +

\biggl( 
\alpha 0

2
+

1

h

\biggr) 
u1 = \phi 0,(2.2)

Fig. 2.1. Discretization of the interval [0, \ell ] using ghost points.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/3

1/
25

 to
 7

1.
24

7.
26

.6
0 

by
 R

oy
 G

oo
dm

an
 (

go
od

m
an

@
nj

it.
ed

u)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



B434 R. H. GOODMAN, G. CONTE, AND J. L. MARZUOLA

and a similar approximation for the right boundary condition. In the case of a Dirich-
let boundary condition at x= 0, this is replaced by 1

2 (u0 + u1) = \phi 0.
Assembling the equations for the second derivatives and the boundary conditions

into matrix-vector form, we define the vectors

u= (u0, u1, . . . , uN+1)
T
, f = (f0, f1, . . . , fN+1)

T
, and \bfitphi = (\phi 0, \phi \ell )

T
,(2.3)

as well as the N \times (N + 2) interior projection matrix

Pint =
\bigl( 
0N\times 1 IN 0N\times 1

\bigr) 
,(2.4)

the N \times (N + 2) interior Laplacian matrix

Lint =
1

h2

\left(     
1  - 2 1

1  - 2 1
. . .

. . .
. . .

1  - 2 1

\right)      - Pint \cdot diagV (xk),(2.5)

and the 2\times (N + 2) boundary condition matrix

MBC =

\left(    
\biggl( 
\alpha 0

2
 - 1

h

\biggr) \biggl( 
\alpha 0

2
+

1

h

\biggr) 
\cdot \cdot \cdot 0 0

0 0 \cdot \cdot \cdot 
\biggl( 
\alpha \ell 
2

+
1

h

\biggr) \biggl( 
\alpha \ell 
2

 - 1

h

\biggr) 
\right)    ,(2.6)

where IN is the N -dimensional identity matrix and 0M\times N is a matrix of size (M\times N)
of all zeros. The matrices Lint and Pint are linear maps from approximation of u
on the extended grid xext = \{ x0, . . . , xN+1\} to its approximation on the interior grid
xint = \{ x1, . . . , xN\} . With this, we discretize the differential equation as

Lintu=Pintf ,(2.7)

and the boundary conditions as

MBCu=\bfitphi .(2.8)

We can then combine these into a single system of N+2 equations in N+2 unknowns\biggl( 
Lint

MBC

\biggr) 
u=

\biggl( 
Pint

02\times (N+2)

\biggr) 
f +

\biggl( 
0N\times 2

I2

\biggr) 
\bfitphi .(2.9)

We make two brief remarks on this approach. First, it is more common to solve the
discretized boundary condition (2.8) for u0 and uN+1 [19]. Inserting these values into
(2.7) yields a reduced system with N unknowns. We leave the system in form (2.9)
for two reasons: first, it makes implementing nonhomogeneous boundary conditions
very easy, and the other is that it makes the approach more similar to how we handle
boundary conditions using Chebyshev discretization. Second, the null space of the
matrix Lint mimics that of the second derivative: it consists of vectors v with vn =
an+ b and is two-dimensional.

This scheme extends easily to the Poisson problem on the quantum graph,
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QGLAB: A PACKAGE FOR QUANTUM GRAPH COMPUTATIONS B435

\bigtriangleup \Psi (x) = f(x), i.e., \psi \prime \prime 
m(x) - Vm(x)\psi m(x) = fm(x),\tte m,1\leq m\leq | \scrE | (2.10a)

\psi i(\ttv n) =\psi j(\ttv n)\forall \tte i,\tte j \in \scrV n, i.e., continuity,(2.10b) \sum 
\tte m\in \scrV n

wm\psi 
\prime 
m(\ttv n) + \alpha n\Psi (\ttv n) = \phi n or \Psi (\ttv n) = \phi n,1\leq n\leq | \scrV | .(2.10c)

We discretize each edge \tte m with the ghost-point formulation, with Nm+2 discretiza-
tion points defining xext

m , and a mesh size hm = \ell m/Nm, generating (Nm)\times Nm + 2

matrices L
(m)
int and P

(m)
int of the same forms as matrices (2.5) and (2.4). Thus, letting

Nint =
\sum | \scrE | 
m=1Nm and Next =Nint + 2| \scrE | , this results in Next unknowns arranged as

\bfitpsi =

\left(   \bfitpsi (1)

...

\bfitpsi (| \scrE | )

\right)   , where \bfitpsi (m) =

\left(    
\bfitpsi 

(m)
0
...

\bfitpsi 
(m)
Nm+1

\right)    .(2.11)

The vector f is assigned similarly, and the vector of nonhomogeneous boundary terms
is \bfitphi = (\phi 0, . . . , \phi | \scrV | )

T
. Enforcing the continuity condition (2.10b) at the vertex \ttv n

requires (dn - 1) rows and the Robin--Kirchhoff condition (2.10c) at vertex \ttv n involves
the 2dn adjacent discretization points in one row. The derivative and function values
at the vertex are approximated to second order using a straightforward generalization
of the reasoning leading to (2.2) and (2.6). Altogether, these form a matrix M

(n)
VC of

dimension (2dn)\times Next. We let

LVC =

\biggl( 
Lint

MVC

\biggr) 
=

\left(           

L
(1)
int

. . .

L
(| \scrE | )
int

M
(1)
VC
...

M
(| \scrV | )
VC

\right)           
,(2.12)

and

P0 =

\biggl( 
Pint

02| \scrE | \times N\mathrm{e}\mathrm{x}\mathrm{t}

\biggr) 
=

\left(      
P

(1)
int

. . .

P
(| \scrE | )
int

02| \scrE | \times (N\mathrm{e}\mathrm{x}\mathrm{t})

\right)      .(2.13)

We define the nonhomogeneity matrix MNH in two steps. First define a matrix M of
size 2| \scrE | \times | \scrV | such that

M(i, j) =

\Biggl\{ 
1 if the jth Neumann - Kirchhoff condition is enforced by row i of M,

0 otherwise,

and then define

MNH =

\biggl( 
0N\mathrm{i}\mathrm{n}\mathrm{t},| \scrV | 

M

\biggr) 
.(2.14)

This assigns each entry of the nonhomogeneous term \bfitphi to the row of the system enforc-
ing the vertex conditions. The discretization of system (2.10) can now be represented
as

LVC\bfitpsi =P0f +MNH\bfitphi .(2.15)
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B436 R. H. GOODMAN, G. CONTE, AND J. L. MARZUOLA

The use of this discretization is demonstrated in section 4.1.
We introduce some notation to simplify our discussion of the numerical problems

addressed below. The matrices Pint and Lint, of dimension Nint \times Next, represent
linear maps from the function space \BbbF ext, of functions defined on the extended grid
xext, to the function space \BbbF int, of functions defined on the interior grid xint. Of
course, \BbbF ext = \BbbR Next and \BbbF int = \BbbR Nint, but thinking of these spaces merely as high-
dimensional Euclidean spaces neglects the meaning to which we have assigned the
elements of each space. Further, we denote by \BbbF ext

\bfitphi the set of functions in \BbbF ext which,
in addition, satisfy the discretized boundary conditions represented by the final 2| \scrE | 
rows of system (2.15). Note that if \bfitphi \not = 0, i.e., for nonhomogeneous vertex conditions,
then \BbbF ext

\bfitphi is an affine space of dimension Nint, while for \bfitphi = 0, \BbbF ext
0 is a linear vector

space of dimension Nint. Thus the first Nint rows of (2.15) use the points from xext to
approximately evaluate the underlying Laplace equations at the points in xint, while
the remaining 2| \scrE | rows ensure that the solution lies on \BbbF ext

\bfitphi .
In what follows, we will apply similar reasoning to discretize other problems on

the quantum graph. As above, we apply the differential equations at the interior
points and supplement these equations with 2| \scrE | additional equations representing
the vertex conditions, which suffice to specify a unique solution. In addition to the
matrices LVC and P0, we will use the matrices

L0 =

\biggl( 
Lint

02| \scrE | \times N\mathrm{e}\mathrm{x}\mathrm{t}

\biggr) 
and PVC =

\biggl( 
Pint

MVC

\biggr) 
(2.16)

to develop time-stepping schemes for evolution equations in section 2.4.
Our choice of this ghost-point discretization stems from an effort to preserve the

Laplacian's self-adjointness and, consequently, the realness of its eigenvalues postdis-
cretization. Ghost points have an important advantage over the standard on-point
discretization for enforcing the boundary conditions in the BVP (2.1). The simplest
second-order discretization uses a nonstaggered grid. It approximates the boundary
condition at x= 0 to second-order accuracy at the boundary by applying a one-sided
difference to du

dx | x=0 using the values u0, u1, and u2, and similarly at x= 1. Solving the
two discretized boundary conditions eliminates the values of u0 and uN+1 from the
system, leaving a system of N unknowns, but with an asymmetric finite-difference
matrix, even though the differential operator which it approximates is self-adjoint.
The ghost-point discretization, by contrast, preserves self-adjointness (after the two
ghost points are first eliminated from the system).

This changes slightly when we extend this construction to the quantum graph
Poisson problem (2.10). If all edges are discretized with the same step size h, the
discretization matrix constructed above is symmetric. However, choosing all dis-
cretization lengths to be equal may be impossible or inconvenient. In that case, we
may measure the magnitude of the asymmetry by considering the largest element, in
absolute value, of the asymmetric part 1

2 (A - AT). Assume that edge \tte m is discretized
with a step size hm = h+ \delta m with \delta m =O(\delta )\ll h. Then using one-sided centered dif-
ferences introduces terms of O( 1

h2 ) into the asymmetric part of A. By contrast, using
ghost points introduces terms of O( \delta h2 ). Therefore, if all the discretization lengths hm
are roughly equal, the nonsymmetric part of A will be significantly smaller so that
the matrix A is ``more symmetric."" Since A is not symmetric, we cannot guarantee
that all of our eigenvalues are purely real, as they are for the underlying differential
operator. However, by an informed choice of the discretization sizes, we may minimize
the effects of the asymmetry

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 2.2. (a) The lasso graph, showing interior discretization points. (b) The structure of the
nonzero entries in the matrix L\mathrm{V}\mathrm{C}, the Laplacian matrix extended with vertex conditions.

An example discretization. We display the structure of the discretized Lapla-
cian matrix of a lasso graph with two vertices and two edges in Figure 2.2. The edge
\tte 1 points from \ttv 1 to \ttv 2 and the edge \tte 2 points from \ttv 2 to itself. The discretization has
N1 = 4 and N2 = 8 points. The figure shows the interior points of the discretization
and the vertices but not the ghost points. The figure also shows the nonzero structure
of the matrix LVC. The 16\times 2 matrix MNH is nonzero at (13,1) and (14,2).

2.1.2. Chebyshev discretization. To achieve spectral accuracy, QGLAB al-
lows discretization using rectangular collocation, a method based on Chebyshev poly-
nomials due to Driscoll and Hale [24], with further implementation details described
in [57]. Enforcing nontrivial boundary conditions based on a nonsquare differentiation
matrix with this method is especially simple. To introduce the idea, we again consider
the Robin problem on a line segment defined in (2.1). The method uses two separate
grids, as shown in Figure 2.3. The exterior grid xext is given by the N+2 (increasing)
Chebyshev points of the second kind,

xextk =
\ell 

2

\biggl( 
1 - cos

\biggl( 
k\pi 

N + 1

\biggr) \biggr) 
, k= 0,1, . . . ,N,N + 1.(2.17)

We adapt the notation of (2.3) to define the vectors u, f , and \bfitphi on the dis-
cretization points defined in (2.17). The main observation motivating rectangular
collocation is that applying a second derivative matrix defined over a finite space of
polynomials should reduce the order of that space by two, naturally leading to ma-
trices of size N \times (N + 2). This is realized by first operating on the vector u with
the standard (N +2)\times (N +2) Chebyshev derivative matrix D2 and then resampling
these polynomials onto the interior grid xint of first-kind Chebyshev points,

xintk =
\ell 

2

\biggl( 
1 - cos

\biggl( 
(2k - 1)\pi 

2N

\biggr) \biggr) 
, k= 1,2, . . . ,N.(2.18)

As in the finite-difference discretization above, we define exterior and interior
grids xext and xint. The approximate solutions are defined on xext, but derivatives,
and thus approximations to the differential equations, are evaluated at the points of
xint. By contrast, the two grids are disjoint sets and the first and last points of the
exterior grid xext are the endpoints of the interval, not the ghost points.
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B438 R. H. GOODMAN, G. CONTE, AND J. L. MARZUOLA

xext
0 = 0 xext

1 xext
N xext

N+1 = `

xint
1 xint

2 xint
N!1 xint

N

Fig. 2.3. Discretization of the interval [0, \ell ] using a grid x\mathrm{e}\mathrm{x}\mathrm{t} of Chebyshev points of the second
kind (in blue) and a grid x\mathrm{i}\mathrm{n}\mathrm{t} first-kind Chebyshev points (in red). (Color figures are available
online.)

Resampling is a linear operation and is represented by an N\times (N+2)-dimensional
barycentric resampling matrix Pint whose construction uses the barycentric interpola-
tion formula proposed in [13]. Given the set of points xext = \{ xextk \} N+1

k=0 , the barycen-
tric weights are

\~wk =

N+1\prod 
l=0
l \not =k

(xextk + xextl ) - 1, k= 0, . . . ,N + 1.(2.19)

These are used to construct a unique interpolating polynomial pN+1(x) which inter-
polates the set of data points \{ (xextk , fk)\} N+1

k=0 . The polynomial is evaluated at both
\{ xextk \} N+1

k=0 and \{ xintk \} Nk=1 so that the barycentric resampling matrix is given by

(Pint)j,k =

\left\{       
\~wk

xintj  - xextk

\Biggl( 
N+1\sum 
l=0

\~wl
xintj  - xextl

\Biggr)  - 1

, xintj \not = xextk ,

1, xintj = xextk ,

(2.20)

and satisfies

pN+1(x
int) =Pint pN+1(x

ext),(2.21)

i.e., the barycentric resampling matrix maps a polynomial's values at the gridpoints
xext to its values at the gridpoints xint. Driscoll and Hale generalize this in [24].

Putting this all together, the product

Lint =PintD
2(2.22)

defines an N \times (N + 2) differentiation matrix. The right-hand side of the differential
equation (2.1) must be resampled to the same grid, so the differential equation is
discretized by the N equations Lintu = Pint\bfitphi , leaving two equations to define the
boundary conditions (2.1). These may be compactly rewritten as

MBCu=

\biggl( 
\phi 0
\phi L

\biggr) 
,

where MBC is a matrix of size 2\times (N + 2) conveniently expressed using unit vectors

MBC =

\Biggl( 
eT1D+ \alpha 0e

T
1

 - eTN+2D+ \alpha Le
T
N+2

\Biggr) 
.(2.23)

The matrices Lint and Pint are blockwise dense, in contrast to the banded matrices
arising in the uniform discretization, defined in (2.6). We have constructed all the
necessary elements to reinterpret (2.9) as a spectral collocation of (2.1).
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QGLAB: A PACKAGE FOR QUANTUM GRAPH COMPUTATIONS B439

Extending this argument from the ODE boundary problem proceeds as for the
centered-difference approximation. Defining the matrices LVC, P0, andMNH in (2.15)

is straightforward once we construct the submatrix M
(n)
VC defining the discretized ver-

tex condition (2.12) and (2.13), extending the construction in (2.23). Figure 2.4 shows
a coarse discretization of the example shown in Figure 2.2, in which the blocks defining
the second derivative are dense, as are the rows defining the Robin--Kirchhoff vertex
condition, whereas the rows enforcing continuity contain only two nonzero entries.

Two of the authors used this method to solve the Laplacian eigenproblem on an
interval perturbed by several delta function potentials in [7].

2.2. Numerical and symbolic eigenproblems. Following the steps used above
to discretize the Poisson problem, the eigenvalue problem (1.7) becomes

LVCu= \lambda P0u(2.24)

in both the finite-difference and Chebyshev discretizations. Since P0 is not the
identity matrix and is singular, this is a generalized eigenvalue problem which can
be solved using \tte \tti \ttg \tts in MATLAB. QGLAB has overloaded the \tte \tti \ttg \tts command so
that [\ttd ,\ttv ]=\ttG .\tte \tti \ttg \tts (\ttm ) returns the m eigenvalues of the smallest absolute value.
Figure 2.5 shows the eigenfunctions of the four smallest eigenvalues of the Lapla-
cian on a Y-shaped graph with Dirichlet conditions at the ends of the two shorter
edges. The example is described further in section 4.2. QGLAB's plotting features
are described in section 3.3.1.

The zeros kn of the secular determinant function \Sigma (k), described in section 1.2,
correspond to eigenvalues \lambda n =  - k2n of the Laplacian operator. The QGLAB func-

e1
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v1

v2

(a)

0 5 10 15
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(b)
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Fig. 2.4. (a) The lasso graph, shown with interior discretization points in the Chebyshev dis-
cretization. (b) The structure of the nonzero entries in L\mathrm{V}\mathrm{C}, the Laplacian matrix extended with
vertex conditions. (c) The structure of P0, the barycentric resampling matrix extended with zeros.

Fig. 2.5. Four eigenfunctions of a Y-shaped quantum graph.
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B440 R. H. GOODMAN, G. CONTE, AND J. L. MARZUOLA

tion \tts \tte \ttc \ttu \ttl \tta \ttr \ttD \tte \ttt uses the MATLAB Symbolic Math Toolbox to construct \Sigma (k) for the
boundary conditions (1.3) with wj \equiv 1 and for Dirichlet boundary conditions and sim-
plify it for typesetting and plotting. This is described in the dissertation [21]. It pro-
vides a check on the numerical calculation of eigenvalues for the discretized problem.

2.3. Nonlinear solvers, continuation, and bifurcation algorithms. After
discretizing the spatial derivatives, we use QGLAB to construct the Newton--Raphson
method to find standing wave solutions of the stationary NLS (1.10) with \sigma = 1. Fixing
\Lambda , it proceeds by the iteration \Psi n+1 =\Psi n + \delta where \delta \in \BbbF ext

0 solves D\scrF (\Psi n,\Lambda ) \cdot \delta =
 - \scrF (\Psi n,\Lambda ). Enforcing the vertex conditions gives an iteration of the form\bigl( 

LVC +P0

\bigl( 
6diag(\Psi 2

n) + \Lambda I
\bigr) \bigr) 
\delta = - L0\Psi n  - P0

\bigl( 
\Lambda \Psi n + 2diag(\Psi 3

n)
\bigr) 
.(2.25)

Two examples of such solutions are shown in Figure 2.6 and section 4.3.
Solutions to (1.10) do not occur at isolated points but along one-parameter fam-

ilies that, away from singularities, can be parameterized by the frequency \Lambda . Pseu-
doarclength continuation provides a way to follow this family as it traces a smooth
path. It is due originally to Keller [40] and is well summarized in the textbook of
Nayfeh and Balachandran [49], who cite many additional contributors to the method.
The method allows curves to be continued around fold singularities, and other tech-
niques can detect branch points, which encompass both pitchfork and transcritical
bifurcations, and initiate new families of solutions branching off from the computed
branch; see also Govaerts [36]. QGLAB's pseudoarclength continuation was first used
to calculate bifurcation diagrams in [12].

QGLAB's contribution here is not a novel numerical method but the integration
of pseudoarclength continuations into quantum graph software. Failure to use these
methods has led to some seemingly impossible phenomena in the quantum graph
literature: a solution branch that appears to end abruptly in [45], subsequently fixed
in [35], and solutions with different symmetries seeming to lie on a single branch
in [14], fixed in the example below.

The main step of the continuation algorithm is a Newton step like (2.25), in which
the parameter \Lambda is left unknown. A predictor-corrector algorithm introduces one more
equation to close the system. QGLAB is novel among quantum graph software because
it implements continuation algorithms and because the operator language developed
in section 2.1 allows a compact representation of the equations that arise.

An example computation demonstrates QGLAB's capabilities. Section SM1.1.2 of
the supplement contains further examples, but these computations involve too many

(a) (b)

Fig. 2.6. (a) A standing wave of cubic NLS on a dumbbell graph with \Lambda = - 1. (b) A standing
wave on a spiderweb graph with \Lambda = - 1.
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Fig. 2.7. (a) Layout of the necklace graph, with 54 ``strings"" and 54 ``pearls."" (b) Partial
bifurcation diagram plotting the solution's mass as a function of its frequency. (c) Solutions along
the color-coded branches with frequency \Lambda \approx  - 4.

lines of code to include in the published article, so these programs are understood most
easily from the live script \ttc \tto \ttn \ttt \tti \ttn \ttu \tta \ttt \tti \tto \ttn \ttI \ttn \tts \ttt \ttr \ttu \ttc \ttt \tti \tto \ttn \tts .\ttm \ttl \ttx . Figure 2.7(a) shows a
so-called necklace graph, similar to an example in [14], consisting of 54 segments
alternating between ``strings"" and ``pearls."" The cited paper allows the numerical
domain to widen as the amplitude decreases, demonstrating the ground state scaling
at small amplitude. However, because it does not employ continuation and branch-
switching, it does not demonstrate the relationships between the branches.

Panel (b) of the figure shows a partial bifurcation diagram of standing wave so-
lutions to cubic NLS, plotting N = \| \Psi \| 22 as a function of \Lambda . Branch 1 contains
solutions with \Psi (x,\Lambda ) constant on \Gamma . At the point marked A, branches 2 and 3
bifurcate from the first branch. Solutions on branch 2 are symmetric around their
maxima on the center of a string and those on branch 3 are symmetric around the
centers of the pearls. At points B, C, and D, new branches arise due to symmetry-
breaking (pitchfork) bifurcations. The figure shows five solutions with frequency
\Lambda \approx  - 4. Solution 4 is the minimal mass solution at that frequency.

2.4. Time-stepping for evolution problems posed on a quantum graph.
Our goal in this section is to adapt well-known time-dependent PDE solvers to work
on quantum graphs using the framework described above for stationary problems. The
first subsection contains two examples, while the second discusses the construction of
a general solver for a certain class of such problems.

2.4.1. Elementary methods. We first adapt two standard methods to quan-
tum graphs: the Crank--Nicholson method for the heat equation and the leapfrog
method for the sine-Gordon equation. In the following, \tau is the time step, tn = n\tau 
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B442 R. H. GOODMAN, G. CONTE, AND J. L. MARZUOLA

is the discretized times, and \psi n represents the solution at time n discretized in time
only and \bfitpsi n the spatially discretized solution at time n.

Crank--Nicholson for the heat equation. The Crank--Nicholson method is a
common second-order method for the heat equation \partial \psi 

\partial t = \bigtriangleup \psi . Discretizing only in
time, the update at time tn+1 is found by solving the equation

\psi n+1  - \psi n
\tau 

=
\bigtriangleup \psi n +\bigtriangleup \psi n+1

2
.

In QGLAB, this is discretized and evaluated on the interior grid to give\Bigl( 
Pint  - 

\tau 

2
Lint

\Bigr) 
\bfitpsi n+1 =

\Bigl( 
Pint +

\tau 

2
Lint

\Bigr) 
\bfitpsi n.

Combining this with homogeneous vertex conditions yields

L - \bfitpsi n+1 \equiv 
\Bigl( 
PVC  - \tau 

2
L0

\Bigr) 
\bfitpsi n+1 =

\Bigl( 
P0 +

\tau 

2
L0

\Bigr) 
\bfitpsi n =L+\bfitpsi n.(2.26)

The method iterates the MATLAB code \tty = \ttL \ttm \tti \ttn \ttu \tts (\ttL \ttp \ttl \ttu \tts *\tty ). An example
in section SM1.2.1 in the supplement computes a solution to the heat equation on the
dumbbell graph and demonstrates convergence.

Leapfrog for nonlinear Klein--Gordon equations. The following example,
contained in the live script \tts \tti \ttn \tte \ttG \tto \ttr \ttd \tto \ttn \ttO \ttn \ttT \tte \ttt \ttr \tta .\ttm \ttl \ttx , solves the sine-Gordon equation
on the tetrahedron quantum graph, considered previously in [27], which consists of a
wave equation with a sinusoidal nonlinearity,

\psi tt  - \bigtriangleup \psi + sin\psi = 0.(2.27)

Discretizing in time only and applying second-order centered differences in time gives

\psi n+1  - 2\psi n +\psi n - 1

\tau 2
=\bigtriangleup \psi n  - sin\psi n.(2.28)

Applying the discretization in space and solving gives

Pint\bfitpsi n+1 =Pint

\bigl( 
2\bfitpsi n  - \bfitpsi n - 1  - \tau 2 sin\bfitpsi n

\bigr) 
+ \tau 2Lint\bfitpsi n

and enforcing the vertex conditions gives

PVC\bfitpsi n+1 =P0

\bigl( 
2\bfitpsi n  - \bfitpsi n - 1  - \tau 2 sin\bfitpsi n

\bigr) 
+ \tau 2L0\bfitpsi n.(2.29)

The iteration requires an approximation \bfitpsi 1 \in \BbbF ext
0 at time t1, which may be found

from the initial conditions \bfitpsi | t=0 =\bfitpsi 0 and \partial 
\partial t\bfitpsi 

\bigm| \bigm| 
t=0

=\bfitphi 0 using O(\tau 2) approximation

PVC\bfitpsi 1 =P0

\biggl( 
\bfitpsi 0 + \tau \bfitphi 0  - 

\tau 2

2
sin\bfitpsi 0

\biggr) 
+
\tau 2

2
L0\bfitpsi 0.

The time-stepper in (2.29) is implemented by the line
\ttu \tttwo = \ttP \ttV \ttC \setminus (\ttP \ttzero *(\tttwo * \ttu \ttone - \ttu \ttzero - \ttt \tta \ttu \^\tttwo *\tts \tti \ttn (\ttu \ttone )) + \ttt \tta \ttu \^\tttwo *\ttL \ttzero *\ttu \ttone ).

In section SM1.2.2 in the supplement, we compute an example from section 4.1
of [27] in which solitary waves collide with vertices on a tetrahedron metric graph and
demonstrate convergence.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/3

1/
25

 to
 7

1.
24

7.
26

.6
0 

by
 R

oy
 G

oo
dm

an
 (

go
od

m
an

@
nj

it.
ed

u)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



QGLAB: A PACKAGE FOR QUANTUM GRAPH COMPUTATIONS B443

2.4.2. A general-purpose higher-order time-stepper. We now construct a
general-purpose solver for differential equations of the form

\partial \psi 

\partial t
= \mu \bigtriangleup \psi + f(\psi ),(2.30)

posed on the quantum graph subject to any homogeneous vertex conditions imple-
mented in QGLAB and such that f(\psi ) contains any terms involving a potential or non-
linearity. Depending on the constant \mu , which could be real, imaginary, or complex,
this formulation includes heat, Schr\"odinger, Ginzburg--Landau, and scalar reaction-
diffusion equations. The vertex condition constraints make the straightforward ap-
plication of standard methods somewhat difficult. Here, we construct a method that
overcomes these problems.

The main issues in constructing a time-stepping algorithm for an evolutionary
PDE defined on a quantum graph using the spatial discretization described in sec-
tion 2.1 can be illustrated using Euler methods. These ideas then extend straightfor-
wardly to Runge--Kutta algorithms. The forward Euler method is

\psi n+1 =\psi n + \tau (\mu \bigtriangleup \psi n + f(\psi n)) ,

subject to vertex conditions applied to \psi n+1. After we discretize in space and enforce
the vertex conditions, this yields a time-stepper

PVC\bfitpsi n+1 =P0 \cdot (\bfitpsi n + \tau f (\bfitpsi n)) + \tau \mu L0\bfitpsi n.(2.31)

The matrix PVC on the left makes the method implicit, but the implicitness is linear,
requiring no Newton iterations. However, the stiff Laplacian term on the right is
evaluated explicitly, imposing a step-size restriction, so the method is impractical.

Similarly, the backward Euler method is

\psi n+1 =\psi n + \tau (\mu \bigtriangleup \psi n+1 + f(\psi n+1)) ,

subject to vertex conditions on \psi n+1. After we discretize in space and enforce the
vertex conditions, this yields a time-stepper

(PVC  - \tau \mu LVC)\bfitpsi n+1  - \tau P0f(\bfitpsi n+1) =P0\bfitpsi n.(2.32)

The stiff Laplacian term is handled implicitly and imposes no time-step restrictions,
but the implicit nonlinear term requires Newton iterations at each step and slows
down the method.

To resolve this difficulty, we may treat the stiff term involving the Laplacian
implicitly and the nonstiff term involving the nonlinearity explicitly. This idea was
introduced for Runge--Kutta methods, which include the Euler method, by Ascher,
Ruuth, and Spiteri [4]. There exist several such implicit-explicit (IMEX) Euler meth-
ods, including one they call forward-backward Euler (1,1,1):

\psi n+1 =\psi n + \tau (\mu \bigtriangleup \psi n+1 + f(\psi n))

subject to vertex conditions on \psi n+1. After we discretize in space and enforce the
vertex conditions, this yields a time-stepper

(PVC  - \tau \mu LVC)\bfitpsi n+1 =P0 \cdot (\bfitpsi n + \tau f(\bfitpsi n)) .(2.33)
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B444 R. H. GOODMAN, G. CONTE, AND J. L. MARZUOLA

Fig. 2.8. Collision of an NLS soliton with the vertex of a star graph. Top: (Left) Initial time.
(Center) Final time, balanced graph. (Right) Final time, unbalanced graph. Bottom: Relative change
in mass (left), energy (center), and momentum (right) with the balanced graph in solid blue and the
unbalanced graph in dashed red.

This method combines the best aspects of the forward and backward Euler methods.
Moving the operator \tau \mu LVC to the left-hand side resolves the stiffness issue without
requiring \tau to be small. Keeping the nonlinear term on the right-hand side eliminates
the need to solve a nonlinear equation on each step. However, the method is only first
order in time, requiring small time steps for accuracy.

Reference [4] applies similar ideas to derive IMEX Runge--Kutta methods, which
at each stage handle the stiff part of the evolution equation implicitly and the nonstiff
part explicitly. The implicit terms are strongly diagonal, so each substage of a time
step can be found in terms of the previous substages. QGLAB comes with a four-
stage third-order Runge--Kutta method \ttq \ttg \ttd \tte \ttS \ttD \ttI \ttR \ttK \ttfour \ttfour \ttthree , based on the method denoted
(4,4,3) in [4].

Figure 2.8 shows the collision of a soliton with a vertex on a star graph with
both so-called balanced and unbalanced Kirchhoff conditions, as considered in [39]
and explained further in section 4.3. The soliton passes through the balanced vertex
but is largely reflected by the unbalanced vertex. NLS dynamics conserves the mass
(squared L2 norm (1.5)) and energy (1.11); for certain initial conditions, the dynamics
on the balanced graph also conserve momentum.

3. Understanding the MATLAB implementation.

3.1. The MATLAB digraph class. MATLAB provides tools for computa-
tions on undirected and directed graphs. The main component of QGLAB is a
class \ttq \ttu \tta \ttn \ttt \ttu \ttm \ttG \ttr \tta \ttp \tth , which builds upon the MATLAB \ttd \tti \ttg \ttr \tta \ttp \tth class used for defining
directed-graph objects. The graph in Figure 1.1 is constructed using

\tts \tto \ttu \ttr \ttc \tte =[\ttone \ttone \ttone \tttwo \tttwo ]; \ttt \tta \ttr \ttg \tte \ttt =[\ttone \ttone \tttwo \tttwo \ttthree ];

\ttG = \ttd \tti \ttg \ttr \tta \ttp \tth (\tts \tto \ttu \ttr \ttc \tte , \ttt \tta \ttr \ttg \tte \ttt );

\ttp \ttl \tto \ttt (\ttG ) \% \ttA \ttc \ttt \ttu \tta \ttl \ttf \tti \ttg \ttu \ttr \tte \ttc \ttr \tte \tta \ttt \tte \ttd \ttu \tts \tti \ttn \ttg \ttq \ttu \tta \ttn \ttt \ttu \ttm \ttG \ttr \tta \ttp \tth \ttp \ttl \tto \ttt \ttf \ttu \ttn \ttc \ttt \tti \tto \ttn 

The vectors \tts \tto \ttu \ttr \ttc \tte and \ttt \tta \ttr \ttg \tte \ttt specify, respectively, the initial and final vertices of
the four edges. The digraph object \ttG contains two fields, \ttG .\ttE \ttd \ttg \tte \tts and \ttG .\ttN \tto \ttd \tte \tts , each
in the form of a table---a MATLAB array type that holds column-oriented data, each

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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column stored as a variable. The methods \ttG .\ttn \ttu \ttm \ttn \tto \ttd \tte \tts and \ttG .\ttn \ttu \ttm \tte \ttd \ttg \tte \tts return the
number of vertices (nodes) and edges, respectively. The array of edges contains one
variable \ttG .\ttE \ttd \ttg \tte \tts .\ttE \ttn \ttd \ttN \tto \ttd \tte \tts , an | \scrE | \times 2 array whose two columns contain, respectively,
the indices of the source vertices and the target vertices. The nodes table is initially
empty. We add fields to the two tables to create the quantum graph class.

3.2. Understanding the quantum graph class and initializing a quan-
tum graph object. The graph and matrix shown in Figure 2.2 were generated with
the code

\tts \tto \ttu \ttr \ttc \tte =[\ttone \tttwo ]; \ttt \tta \ttr \ttg \tte \ttt =[\tttwo \tttwo ]; \ttL =[\ttfour \tttwo *\ttp \tti ]; \ttn \ttx =[\ttfour \tteight ];

\ttG =\ttq \ttu \tta \ttn \ttt \ttu \ttm \ttG \ttr \tta \ttp \tth (\tts \tto \ttu \ttr \ttc \tte ,\ttt \tta \ttr \ttg \tte \ttt ,\ttL ,`\ttn \ttx \ttV \tte \ttc ',\ttn \ttx )

The last line initializes a \ttq \ttu \tta \ttn \ttt \ttu \ttm \ttG \ttr \tta \ttp \tth object. The three required arguments \tts \tto \ttu \ttr \ttc \tte ,
\ttt \tta \ttr \ttg \tte \ttt , and \ttL must be entered in that order. The last, \ttn \ttx , is an optional argument.
If \ttn \ttx is a vector of length \ttG .\ttn \ttu \ttm \tte \ttd \ttg \tte \tts , it defines the number of interior points on
each edge. If it is a scalar, the constructor will assign \ttn \ttx points per unit length to
each edge, rounding if necessary.

The constructor takes several optional arguments, which will be discussed below.
Some have default values if not specified in the function call. Optional arguments are
listed in the function call using a key/value syntax after required arguments. In older
releases of MATLAB, this is entered as \ttG =\ttq \ttu \tta \ttn \ttt \ttu \ttm \ttG \ttr \tta \ttp \tth (\tts \tto \ttu \ttr \ttc \tte ,\ttt \tta \ttr \ttg \tte \ttt ,\ttL ,`\ttk \tte \tty \ttone ',
\ttv \tta \ttl \ttu \tte \ttone ,`\ttk \tte \tty \tttwo ',\ttv \tta \ttl \ttu \tte \tttwo ), while more recent releases allow the more compact syn-
tax \ttG =\ttq \ttu \tta \ttn \ttt \ttu \ttm \ttG \ttr \tta \ttp \tth (\tts \tto \ttu \ttr \ttc \tte ,\ttt \tta \ttr \ttg \tte \ttt ,\ttL ,\ttk \tte \tty \ttone =\ttv \tta \ttl \ttu \tte \ttone ,\ttk \tte \tty \tttwo =\ttv \tta \ttl \ttu \tte \tttwo ). Complete
instructions, including optional arguments, are presented in section SM2 of the sup-
plement.

The above commands return the following in the MATLAB command window:

\ttG = \ttq \ttu \tta \ttn \ttt \ttu \ttm \ttG \ttr \tta \ttp \tth \ttw \tti \ttt \tth \ttp \ttr \tto \ttp \tte \ttr \ttt \tti \tte \tts :

\ttd \tti \tts \ttc \ttr \tte \ttt \tti \ttz \tta \ttt \tti \tto \ttn : `\ttU \ttn \tti \ttf \tto \ttr \ttm '

\ttw \tti \ttd \tte \ttL \tta \ttp \ttl \tta \ttc \tti \tta \ttn \ttM \tta \ttt \ttr \tti \ttx : [\ttone \tttwo \ttx \ttone \ttsix \ttd \tto \ttu \ttb \ttl \tte ]

\tti \ttn \ttt \tte \ttr \ttp \tto \ttl \tta \ttt \tti \tto \ttn \ttM \tta \ttt \ttr \tti \ttx : [\ttone \tttwo \ttx \ttone \ttsix \ttd \tto \ttu \ttb \ttl \tte ]

\ttd \tti \tts \ttc \ttr \tte \ttt \tte \ttV \ttC \ttM \tta \ttt \ttr \tti \ttx : [\ttfour \ttx \ttone \ttsix \ttd \tto \ttu \ttb \ttl \tte ]

\ttn \tto \ttn \tth \tto \ttm \tto \ttg \tte \ttn \tte \tto \ttu \tts \ttV \ttC \ttM \tta \ttt \ttr \tti \ttx : [\ttone \ttsix \ttx \tttwo \ttd \tto \ttu \ttb \ttl \tte ]

\ttd \tte \ttr \tti \ttv \tta \ttt \tti \ttv \tte \ttM \tta \ttt \ttr \tti \ttx : [\ttone \ttsix \ttx \ttone \ttsix \ttd \tto \ttu \ttb \ttl \tte ]

\ttp \tto \ttt \tte \ttn \ttt \tti \tta \ttl : []

The most important property of this \ttq \ttu \tta \ttn \ttt \ttu \ttm \ttG \ttr \tta \ttp \tth object is \ttq \ttg , which specifies the
quantum graph itself and its discretization. It is not visible in the above listing
because it is a private property of the object. The user cannot directly access it, but
class methods may act on it. We will discuss it last. The remaining properties are
publicly viewable but can only be set by class methods. They are as follows:

\bullet \ttd \tti \tts \ttc \ttr \tte \ttt \tti \ttz \tta \ttt \tti \tto \ttn may take three values, `\ttU \ttn \tti \ttf \tto \ttr \ttm ' (default), `\ttC \tth \tte \ttb \tty \tts \tth \tte \ttv ',
or '\ttN \tto \ttn \tte '. With the '\ttN \tto \ttn \tte ' property, only secular determinant computations
function.

\bullet \ttw \tti \ttd \tte \ttL \tta \ttp \ttl \tta \ttc \tti \tta \ttn \ttM \tta \ttt \ttr \tti \ttx The rectangular Laplacian matrix Lint defined in (2.12)
for either the uniform or Chebyshev discretization.

\bullet \tti \ttn \ttt \tte \ttr \ttp \tto \ttl \tta \ttt \tti \tto \ttn \ttM \tta \ttt \ttr \tti \ttx The interpolation or resampling matrix Pint as de-
fined in (2.13) for either the uniform or the Chebyshev discretization.

\bullet \ttd \tti \tts \ttc \ttr \tte \ttt \tte \ttV \ttC \ttM \tta \ttt \ttr \tti \ttx The matrix MVC defining the discretization of the vertex
conditions defined in (2.12) and (2.13) for either discretization.
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B446 R. H. GOODMAN, G. CONTE, AND J. L. MARZUOLA

\bullet \ttn \tto \ttn \tth \tto \ttm \tto \ttg \tte \ttn \tte \tto \ttu \tts \ttV \ttC \ttM \tta \ttt \ttr \tti \ttx The matrix MNH defined in (2.14) which maps
nonhomogeneous terms in the vertex condition to the appropriate row.

\bullet \ttd \tte \ttr \tti \ttv \tta \ttt \tti \ttv \tte \ttM \tta \ttt \ttr \tti \ttx The square matrix used to calculate the first deriva-
tive on each edge. It is used to compute time-dependent solutions' energy
and momentum functionals and to plot solution branches in continuation
problems.

\bullet \ttp \tto \ttt \tte \ttn \ttt \tti \tta \ttl The optional potential V (x).
The property \ttq \ttg is a MATLAB directed-graph object consisting of a \ttN \tto \ttd \tte \tts table

and an \ttE \ttd \ttg \tte \tts table with added fields needed to define a quantum graph. Because \ttq \ttg is
a private property, viewing these tables using the syntax \ttG .\ttq \ttg .\ttN \tto \ttd \tte \tts and \ttG .\ttq \ttg .\ttE \ttd \ttg \tte \tts 

is disabled. Instead, \ttN \tto \ttd \tte \tts and \ttE \ttd \ttg \tte \tts \ttq \ttu \tta \ttn \ttt \ttu \ttm \ttG \ttr \tta \ttp \tth methods have been written that
return each of these tables, so we may view the tables using the syntax \ttG .\ttN \tto \ttd \tte \tts and
\ttG .\ttE \ttd \ttg \tte \tts , as in this code listing. In addition, a method exists that returns each default
table column; for example, the Robin coefficients can be returned by \ttG .\ttr \tto \ttb \tti \ttn \ttC \tto \tte \ttf \ttf .
We examine the node data, which has two fields:

> > \ttd \tti \tts \ttp (\ttG .\ttN \tto \ttd \tte \tts )

\ttr \tto \ttb \tti \ttn \ttC \tto \tte \ttf \ttf \tty 

\ttzero \ttN \tta \ttN 

\ttzero \ttN \tta \ttN 

The fields are as follows:
\bullet \ttr \tto \ttb \tti \ttn \ttC \tto \tte \ttf \ttf The Robin coefficients \alpha n used to define the vertex condition

(1.3). To implement a Dirichlet vertex condition (1.4), use a not-a-number
(\ttN \tta \ttN ). Default value 0 for Neumann--Kirchhoff conditions.

\bullet \tty The values of \psi at the vertices, set to \ttN \tta \ttN on initialization. Used only for
plotting.

We then examine the edges table, which has seven required fields:

> > \ttd \tti \tts \ttp (\ttG .\ttE \ttd \ttg \tte \tts )

\ttE \ttn \ttd \ttN \tto \ttd \tte \tts \ttW \tte \tti \ttg \tth \ttt \ttL \ttn \ttx \ttx \tty \ttF \tti \tte \ttl \ttd \ttseven 

\ttone \tttwo \ttone \ttfour \ttfour \{ \ttsix \ttx \ttone \ttd \tto \ttu \ttb \ttl \tte \} \{ \ttsix \ttx \ttone \ttd \tto \ttu \ttb \ttl \tte \} \ttone 

\tttwo \tttwo \ttone \ttsix .\tttwo \tteight \tteight \{ \ttone \ttzero \ttx \ttone \ttd \tto \ttu \ttb \ttl \tte \} \{ \ttone \ttzero \ttx \ttone \ttd \tto \ttu \ttb \ttl \tte \} \ttzero .\ttseven \ttnine 

The fields are as follows:
\bullet \ttE \ttn \ttd \ttN \tto \ttd \tte \tts This | \scrE | \times 2 array contains the indices of the initial and final vertices

of the edges, i.e., the content of the input variables \tts \tto \ttu \ttr \ttc \tte and \ttt \tta \ttr \ttg \tte \ttt .
\bullet \ttW \tte \tti \ttg \tth \ttt The weight wj in vertex condition (1.3). Defaults to one if unset.
\bullet \ttL The array of edge lengths.
\bullet \ttn \ttx The number of discretization points on the interior of each edge.
\bullet \ttx The (\ttn \ttx + 2) discretization points on each edge, including ghost points for

the uniform discretization and vertices in the Chebyshev discretization.
\bullet \tty The value of \psi at the discretization points, initially set to \ttN \tta \ttN .
\bullet \ttF \tti \tte \ttl \ttd \ttseven This field, named \tti \ttn \ttt \tte \ttg \ttr \tta \ttt \tti \tto \ttn \ttW \tte \tti \ttg \tth \ttt , is the spatial discretization \ttd \ttx 

for uniform discretizations and the Curtis--Clenshaw weights used to compute
integrals with the Chebyshev discretization.

Plotting coordinates are defined in a separate program, e.g., Figure 2.2(a) was
created using the program \ttl \tta \tts \tts \tto \ttP \ttl \tto \ttt \ttC \tto \tto \ttr \ttd \tts .\ttm . The coordinates are assigned to the
graph \ttG with the command \ttG .\tta \ttd \ttd \ttP \ttl \tto \ttt \ttC \tto \tto \ttr \ttd \tts (@\ttl \tta \tts \tts \tto \ttP \ttl \tto \ttt \ttC \tto \tto \ttr \ttd \tts ) after \ttG has been
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created. Alternately, it can be included in the constructor by setting the optional
argument \ttP \ttl \tto \ttt \ttC \tto \tto \ttr \ttd \tti \ttn \tta \ttt \tte \ttF \ttc \ttn to the value @\ttl \tta \tts \tts \tto \ttP \ttl \tto \ttt \ttC \tto \tto \ttr \ttd \tts .

The plot coordinates are stored in fields \ttx \ttone and \ttx \tttwo in both the \ttE \ttd \ttg \tte \tts and \ttN \tto \ttd \tte \tts 

tables. The MATLAB \ttp \ttl \tto \ttt command is overloaded so \ttG .\ttp \ttl \tto \ttt plots the \tty coordinate
over a skeleton of the graph in the \ttx \ttone and \ttx \tttwo coordinates. Some graphs, such as those
formed from the edges and vertices of a platonic solid, are best depicted in three space
variables, so the user may define a third plot coordinate \ttx \ttthree . If \ttx \ttthree exists, the graph is
plotted in three dimensions with the \tty coordinate represented by a color scale.

QGLAB includes templates for various commonly studied graphs and a template
syntax that allows the quick creation of such graphs, such as the lasso and tetrahedron
templates used in section 3.3.1. These have default parameters that can be overridden.
A gallery of graph templates is included in the documentation.

3.3. Basic operations. A MATLAB live script is a rich document that includes
runnable code and formatted text, entered with a simple word processor--like interface,
and which integrates outputs including text and graphics, which can be exported
to formats including PDF, LaTeX, and HTML. QGLAB includes many examples
created as live scripts and exported to HTML. Basic operations are described in the
file \ttd \tto \ttc \ttu \ttm \tte \ttn \ttt \tta \ttt \tti \tto \ttn /\ttq \ttu \tta \ttn \ttt \ttu \ttm \ttG \ttr \tta \ttp \tth \ttR \tto \ttu \ttt \tti \ttn \tte \tts .\ttm \ttl \ttx .

3.3.1. Function evaluation/plotting. The command \tta \ttp \ttp \ttl \tty \ttF \ttu \ttn \ttc \ttt \tti \tto \ttn \ttT \tto \ttE \ttd \ttg \tte 

evaluates a function specified by a function handle, anonymous function, or constant
value and assigns its value to edge \tte j . The command \tta \ttp \ttp \ttl \tty \ttF \ttu \ttn \ttc \ttt \tti \tto \ttn \tts \ttT \tto \ttA \ttl \ttl \ttE \ttd \ttg \tte \tts 

applies a cell array of functions to all the edges; for example, the following commands
define and plot a dumbbell quantum graph with the default parameters, plotted in
Figure 3.1(a):

\ttG =\ttq \ttu \tta \ttn \ttt \ttu \ttm \ttG \ttr \tta \ttp \tth \ttF \ttr \tto \ttm \ttT \tte \ttm \ttp \ttl \tta \ttt \tte (`\ttd \ttu \ttm \ttb \ttb \tte \ttl \ttl ');
\ttG .\tta \ttp \ttp \ttl \tty \ttF \ttu \ttn \ttc \ttt \tti \tto \ttn \tts \ttT \tto \ttA \ttl \ttl \ttE \ttd \ttg \tte \tts (@\tts \tti \ttn ,@(\ttx )\tte \ttx \ttp (-(\ttx -\tttwo ).\tttwo ),\ttzero );

\ttG .\ttp \ttl \tto \ttt 

QGLAB also provides some three-dimensional templates, for which the \tty values
are plotted using a color scale, as in Figure 3.1(b), where we plot Gaussians on all
edges of a regular tetrahedron using the commands

\ttG =\tts \tto \ttl \tti \ttd \ttT \tte \ttm \ttp \ttl \tta \ttt \tte \tts (`\ttt \tte \ttt \ttr \tta \tth \tte \ttd \ttr \tto \ttn ');
\ttf =@(\ttx )(\tte \ttx \ttp ((-\ttone \ttzero *(\ttx -.\ttfive ).\tttwo )));
\ttG .\tta \ttp \ttp \ttl \tty \ttF \ttu \ttn \ttc \ttt \tti \tto \ttn \tts \ttT \tto \ttA \ttl \ttl \ttE \ttd \ttg \tte \tts (\ttf ,\ttf ,\ttf ,\ttf ,\ttf ,\ttf );

\ttG .\ttp \ttl \tto \ttt ;

(a) (b)

Fig. 3.1. (a) A function defined on the edges of a dumbbell graph. (b) A function defined on
the edges of a tetrahedral graph.
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Finally, on some graphs with many edges, plots in three dimensions become a con-
fusing tangle of curves, and it is more illuminating to visualize them as a color scale,
using an overloaded \ttp \ttc \tto \ttl \tto \ttr command, demonstrated in section SM2.

3.3.2. Getting data on and off the graph. The discretized numerical prob-
lems, including the Poisson problem (2.15) and the eigenvalue problem (2.24), are
posed in terms of unknown column vectors. By contrast, this data is stored edge by
edge in the \ttq \ttu \tta \ttn \ttt \ttu \ttm \ttG \ttr \tta \ttp \tth object in \ttG .\ttq \ttg .\ttE \ttd \ttg \tte \tts .\tty . The command \ttg \ttr \tta \ttp \tth \tttwo \ttc \tto \ttl \ttu \ttm \ttn cre-
ates such a column vector from the data in graph \ttG , while the command \ttc \tto \ttl \ttu \ttm \ttn \tttwo \ttg \ttr \tta \ttp \tth 

loads the data from a column vector onto the edges of the graph including the ver-
tices (Chebyshev) or ghost points (uniform). Under the uniform discretization, the
command also interpolates the data to the vertices. The \ttc \tto \ttl \ttu \ttm \ttn \tttwo \ttg \ttr \tta \ttp \tth command is
also called by the command \ttG .\ttp \ttl \tto \ttt (\tty ) to plot the contents of the vector \tty over the
graph's skeleton.

3.3.3. Other overloaded functions. Many methods from the MATLAB
directed-graph class have been overloaded so that, for example, a call to \ttG .\ttn \ttu \ttm \ttn \tto \ttd \tte \tts 

returns the number of nodes and \ttG .\ttn \ttu \ttm \tte \ttd \ttg \tte \tts the number of edges. An overloaded
\tts \ttp \tty command (along with additional formatting) was used to visualize the Laplacian
matrix in Figures 2.2 and 2.4. Overloaded versions of the \ttn \tto \ttr \ttm and \ttd \tto \ttt commands are
used frequently throughout the package. Section SM2 of the supplement lists these
functions.

4. Extended examples. Here, we give some brief examples of problem setup
and accuracy. The supplement contains some additional details and other examples.
A MATLAB live script for each, featuring plots and a convergence study, is included
in the QGLAB GitHub repository and indexed in the readme file [34].

4.1. The Poisson problem. We construct a discretization (2.15) of the Poisson
problem (2.10) using the graph in Figure 1.1 with edges of lengths (\pi ,2\pi ,1,2\pi ,2). The
vertex conditions at \ttv 1 and \ttv 2 are Kirchhoff--Robin with \alpha 1 = \alpha 2 = 1 and at \ttv 3 the
vertex condition is Dirichlet. The weight vector is w = (1,1,2,1,1). The potential
vanishes except on edge \tte 1 where V1 = 2cos2x. The nonhomogeneous terms are

f =
\bigl( 
 - sin3x,2cos2x, - 4; - sinx, sechx - 2 sech3 x

\bigr) 
and \psi = (8,3, sech2).

The exact solution is

\psi =
\bigl( 
sinx, sin2 x,3x - 2x2,1 + sinx, sechx

\bigr) 
.

A minimal code to solve this problem is

1 s=[1 1 1 2 2]; t=[1 1 2 2 3]; L=[pi 2*pi 1 2*pi 2];

2 rc = [1 1 nan]; w = [1 1 2 1 1]; V = {@(x)(2* cos (2*x)) ,0,0,0 ,0};

3 G=quantumGraph(s,t,L,’RobinCoeff ’,rc ,’Weight ’,w,’Potential ’,V);

4 f = G.applyFunctionsToAllEdges ({@(x)-sin (3*x);@(x)2*cos (2*x);...

5 -4;@(x)-sin(x);@(x)sech(x) -2* sech(x).^3});

6 phi = [8;3; sech (2)];

7 psi = G.solvePoisson(’edgeData ’,f,’nodeData ’,phi);

Lines 1 and 2 define the quantum graph, the parameters that define the vertex con-
ditions, and the potential. The variables \tts , \ttt , and \ttL define the source vertices, target
vertices, and lengths of the five edges. The first two elements of \ttr \ttc define the Robin
coefficients at vertices \ttv 1,2, and the third component is \ttn \tta \ttn (not-a-number), indicat-
ing the Dirichlet condition. The weight vector and the potential are given by \ttw and \ttV .
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Fig. 4.1. The secular determinant \Sigma (k), of the Y-shaped graph discussed in the text, along with
the computed values kj =

\sqrt{} 
 - \lambda j , which sit right on top of the zeros.

Line 3 constructs the quantum graph from this data. It used the default centered-
difference discretization and the default value \ttn \ttX = \tttwo \ttzero , so it uses h= 1

20 or a slightly
smaller value on each edge to achieve an integer number of subintervals per edge. Lines
4--6 define the nonhomogeneous terms, and line 7 solves the discretized problem.

The maximum pointwise error of this solution is 1.02\times 10 - 3. Doubling the reso-
lution by inserting the arguments `\ttn \ttX ',\ttfour \ttzero at line 3 reduces the error to 2.56\times 10 - 4, a
factor of 4.01. This is consistent with the expected second-order convergence. Adding
the arguments `\ttD \tti \tts \ttc \ttr \tte \ttt \tti \ttz \tta \ttt \tti \tto \ttn ',`\ttC \tth \tte \ttb \tty \tts \tth \tte \ttv ' at line 3 switches to Chebyshev dis-
cretization. With 16 points per edge, this gives a maximum error of 1.80\times 10 - 7; with
32, the error is 1.56\times 10 - 12. This is consistent with spectral convergence.

4.2. Eigenproblems. The example plotted in Figure 2.5 is computed in the
live script \tts \ttt \tta \ttr \ttE \tti \ttg \tte \ttn \ttf \ttu \ttn \ttc \ttt \tti \tto \ttn \tts \ttD \tte \ttm \tto .\ttm \ttl \ttx . The Y-shaped graph has edges of lengths
\{ 3
2 ,1,1\} . Its Kirchhoff conditions at both ends of the longer edge \tte 1 and Dirichlet

conditions at the remaining vertices are defined by setting the first two elements of
the \ttr \tto \ttb \tti \ttn \ttC \tto \tte \ttf \ttf vector to zero the remaining two to \ttn \tta \ttn :

1 G = quantumGraphFromTemplate (’star’,’LVec’,LVec =[1.5 1 1],...

2 ’robinCoeff ’ ,[0 0 nan nan],’nX’ ,40);

3 [V,lambda ]=G.eigs (4); % Compute 4 eigenvalues

4 for k=1:4; G.plot(V(:,k));end;

Running \ttG .\tts \tte \ttc \ttu \ttl \tta \ttr \ttD \tte \ttt returns the following secular determinant plotted in
Figure 4.1,

\Sigma (k) =
4

3
sin

k

2
(cosk+ 1)

\bigl( 
6cos2 k - 3cosk - 1

\bigr) 
.

The \Sigma (k) plot shows that the eigenvalue \lambda = - \pi 2 \approx  - 0.9865 has multiplicity two.
Generally, a numerical eigenvalue solver will return two closely spaced eigenvalues
rather than a double eigenvalue. The graph \Gamma is symmetric under the interchange
of the edges \tte 2 and \tte 3. The multiplicity-one eigenfunctions respect this symmetry,
but the multiplicity-two eigenfunctions returned by \tte \tti \ttg \tts do not. The script takes
appropriate linear combinations of the two computed eigenvectors to produce odd
and even eigenvectors with respect to this symmetry; see panels 3 and 4 of Figure 2.5.
Section SM1.1.1 of the supplement discusses the convergence, which is standard.

4.3. Time-dependent problems. The NLS equation (1.9) is the prototype of a
dispersive nonlinear PDE and many studies have considered its evolution on quantum
graphs. Kairzhan, Pelinovsky, and Goodman consider the cubic NLS equation posed
on a ``star graph"" consisting of three half-lines joined at a single vertex [39]. The
evolution conserves mass, i.e., the squared L2 norm (1.5), and the energy (1.11), but
in general, it does not conserve momentum. If, however, the parameters wm are
appropriately chosen in the weighted Kirchhoff--Robin vertex condition (1.3) to form

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/3

1/
25

 to
 7

1.
24

7.
26

.6
0 

by
 R

oy
 G

oo
dm

an
 (

go
od

m
an

@
nj

it.
ed

u)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y
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a so-called balanced star graph, and the initial condition is chosen to lie in a particular
invariant subspace, then the dynamics on this graph do conserve momentum.

We simulate the collision of a soliton propagating on edge e1 toward the vertex in
Figure 2.8 using the IMEX Runge--Kutta solver \ttq \ttg \ttd \tte \ttS \ttD \ttI \ttR \ttK \ttfour \ttfour \ttthree . The first simulation
is computed on a ``balanced"" graph whose vertex condition is defined by the weight
vector w= (2,1,1) in the first line of the following script.

1 G =quantumGraphFromTemplate (’star’,’LVec’,30,’weight ’ ,[2 1 1]);

2 soliton =@(x,t,v,x0)exp(1i*(-v*x/2-(1-v^2/4)*t)).*sech(x-x0 -v*t);

3 init1 = @(x)soliton(x,0,-2,15); init2 =@(x)soliton(x,0,2,-15);

4 u0 = G.applyFunctionsToAllEdges ({init1 ,init2 ,init2 });

5 mu = -1i; F =@(z) -2i * z.^2.* conj(z);

6 tFinal = 11; dt = 0.01; tPrint =0.5; nSkip = tPrint/dt;

7 [t,u] = G.qgdeSDIRK443(mu ,F,tFinal ,u0 ,dt ,’nSkip ’,nSkip);

The soliton splits into two, each new soliton propagating along the edge with its orig-
inal amplitude and velocity. At this discretization, the mass, energy, and momentum
are all conserved to 5, 4, and 4 digits, respectively.

We next set w = (1,1,1). Now, a significant fraction of the soliton is reflected
and propagates backward along the incoming edge. Mass and energy conservation are
slightly worse, but momentum changes by O(1). The standard test of computing the
numerical solution with time steps \tau , \tau /2, and \tau /4 shows that the difference between
subsequent solutions decreases about eight times, indicating third-order convergence.

5. Conclusions. QGLAB is a robust and versatile MATLAB package for com-
puting solutions to the spectral accuracy of linear and nonlinear problems on quan-
tum graphs. It allows users to build graph models quickly, analyze their spectrum,
compute nonlinear bifurcations, and solve evolution equations. The algorithms are
implemented at a high level, hiding most implementation details and allowing the user
to focus on the mathematical problem, not the numerical and algorithmic details.

Linear and nonlinear PDEs on quantum graphs remain a vibrant area of analysis
in spectral geometry in which the interaction of geometry, topology, and symmetry
gives rise to diverse mathematical questions [2, 10, 31] with many open problems left
to explore. Many previously studied problems on combinatorial graphs have analogies
on metric graphs that remain open and where the spectrum of behaviors is likely to be
much richer. For example, the spectral optimization of combinatorial graphs has been
studied in [52], and others have examined how the symmetries of discrete Laplacians
can lead to interesting spectral features such as Dirac points and flat bands [42, 46].
The study of time-dependent evolution equations on quantum graphs remains in its
infancy [27, 39]. QGLAB is an ideal tool for exploring these problems.

Reproducibility of computational results. This paper has been awarded
the ``SIAM Reproducibility Badge: Code and data available"" as a recognition that
the authors have followed reproducibility principles valued by SISC and the scientific
computing community. Code and data that allow readers to reproduce the results in
this paper are available at https://github.com/manroygood/Quantum-Graphs/ and
in the supplementary materials (Quantum-Graphs-master.zip [local/web 13.5MB]).
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long funded visit to the IMA at the University of Minnesota in 2016 for providing the
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