
SUPPLEMENTARY MATERIALS: QGLAB: A MATLAB PACKAGE
FOR COMPUTATIONS ON QUANTUM GRAPHS∗

ROY H. GOODMAN† , GRACE CONTE‡ , AND JEREMY L. MARZUOLA§

This supplement contains two sections. The first, Section SM1, is devoted to
demonstrating both the implementation and efficacy of QGLAB on a variety of ex-
amples, including stationary problems—eigenvalue problems, the Poisson equation,
and the computation and continuation of standing waves—in Section SM1.1 and evo-
lutionary PDE problems in Section SM1.2. All the examples are included as live
scripts (MATLAB .mlx files) in the directory source/examples. The second part,
Sec. SM2, contains a complete listing of user-callable function definitions and explicit
instructions for their use.

SM1. Extended examples.

SM1.1. Stationary problems.

SM1.1.1. Eigenproblems. Here, we report in greater detail on the accuracy of
the eigenproblem calculated in Sec. 4.2. We find the exact eigenvalues from the zeros
of the secular determinant. Then we compute the finite-difference approximation with
h = 1

40 and h = 1
80 . The ratio of these is about 4, which shows the method is second

order. Finally, we compute the same eigenvalues using the Chebyshev discretization
with 30 points on the long edge and 20 on the short edges. Since all errors are less
than 10−10, we conclude the accuracy is spectral.
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SM1.1.2. Nonlinear standing waves and bifurcation diagrams.
Computing individual solutions. We begin with an example computing a

single solution to the stationary cubic NLS (1.10) on a dumbbell graph:

1 G = quantumGraphFromTemplate(’dumbbell ’);

2 fcns = getNLSFunctionsGraph(G);

3 Lambda = -1;

4 f = @(z)fcns.f(z,Lambda); M = @(z)fcns.fLinMatrix(z,Lambda);

5 y0 = G.applyFunctionsToAllEdges ({0,@(x)sech((x-2)) ,0});

6 y = solveNewton(y0 ,f,M); G.plot(y)
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The function getNLSFunctionsGraph defines the discretized version of the nonlin-
ear functional and several of its partial derivatives and assigns them to a structure
array called fcns. By default, this uses the function f(z) = 2z3 from Eq. (1.10).
The user may provide a symbolic function of one variable as an optional argument,
and MATLAB will compute all the required partial derivatives symbolically. The
Newton-Raphson solver that is iterated to solve the system requires both the func-
tional and its linearization with respect to Ψ. These are stored in two fields fcns.f

and fcns.fLinMatrix, which are functions of two inputs z and Lambda. The continu-
ation algorithm considers Eq. (1.10) as a function of both Ψ and Λ, but in this first
example, we fix Λ = −1 and consider only Ψ as unknown. In line 4, anonymous
functions are used to instruct MATLAB to consider them as functions of Ψ alone.
We search for a unimodal solution to Eq. (1.10) with Λ = 1 centered on the central
edge of a dumbbell graph, so we prepare an initial guess in line 5 consisting of a
hyperbolic secant centered on the central edge and zeros on the two looping edges.
The solveNewton command finds the standing wave. The result of the plot command
is shown in Fig. 2.6(a).

For graphs with a large number of edges, generating an initial guess with the
approach of line 6 would be impractical, so QGLAB provides a convenient function
applyGraphicalFunction which applies a function to the coordinate functions used to
plot the graph. In Fig. 2.6(b), we find a standing wave on a spiderweb graph, found
in the QGLAB template library, using as an initial guess the function sech (r) where
r is the Euclidean distance from the central point to a point on the graph as laid out
in two dimensions.

Continuation of solutions. We can learn more about the stationary problem
by considering branches of standing waves and their bifurcations than by computing
individual solutions. Well-established and sophisticated software packages for such
computations include AUTO and MatCont for ODE systems and pde2path for elliptic
PDE [SM5, SM6, SM7, SM12]. The capabilities of QGLAB are much more modest
but allow for the simple setup and solution to continuation and bifurcation problems
on quantum graphs, following branches around folds, detection of bifurcation points,
and changing branches at such points.

An extended example of numerical continuation is presented in the live script that
is titled continuationInstructions.mlx, which presents a computation of a partial
bifurcation diagram of the cubic NLS equation on a dumbbell graph in Fig. SM1.1,
reproducing a figure from [SM10], which contains far more details and graphs of
several of the solutions at various points on the bifurcation diagram.

This figure comprises nine separately-computed curves, each representing dozens
of solutions to Eq. (1.10). The curves were initialized in three different ways. The
first type, plotted in blue, consists of nonlinear continuations of linear eigenfunctions.
We have plotted three such branches but focus on the branch labeled 1. This branch
represents the nonlinear continuation of the null eigenvector of the Laplacian on this
quantum graph. The value of Ψ is constant on all solutions on this branch, with

(SM1.1) Ψ =

√
−Λ

2
.

It is straightforward to show that if λ is an eigenvalue of the operator −4, then
branch 1 has a bifurcation point at Λ = −λ/2 [SM10, SM11]. QGLAB automatically
computes the direction in which branches fork from bifurcation points, and the dia-
gram shows two families that emerge from such points. At the points marked A, B,
and C, QGLAB has detected bifurcation points on branch 1, and we have chosen to
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(a) (b)

Fig. SM1.1. (a) A partial bifurcation diagram for the dumbbell graph. The three blue curves
are the continuations of linear eigenfunctions. The red curves were computed by continuing from
branching bifurcations. The green curve was computed by computing a single large amplitude solution
and then continuing it. Branching bifurcations marked with squares and folds with triangles. (b)
The same diagram, plotted in different variables.

follow the first two. The branch that bifurcates from branch A, which seems to inter-
sect branch 1 transversely, is a pitchfork bifurcation, while the branch that bifurcates
from B tangentially to branch 1 and extends in both directions is a transcritical bifur-
cation. This last branch itself has a limit (fold) point at E and a pitchfork bifurcation
at D. The final branch, plotted in green, was generated by first computing a single
high-frequency bifurcation with large amplitude pulses on the dumbbell handle and
one ring, saving it to a file, and then continuing that solution.

QGLAB stores all the data for branches, bifurcation points, and individual so-
lutions logically and hierarchically and has routines for retrieving and plotting indi-
vidual solutions and curves of solutions so that the user can largely avoid low-level
interactions with the data. By default, it plots the frequency of standing waves versus
their power, but it can also plot the energy (1.11), as shown in the right image of
Fig. SM1.1.

The nonlinear term in stationary NLS (1.10) can be changed by simply chang-
ing the definition of f(z) to any analytic function satisfying f(0) = 0 (so that the
linearization at zero remains unchanged and the continuation of linear eigenfunctions
from zero can be easily computed). In the example dumbbellcontinuation35.mlx, we
change the right hand side to f(z) = −2z3 + 3z5 which is defocusing for small values
of |z| and focusing for large values. A partial bifurcation diagram for this system
is shown in Fig. SM1.2, consisting of three branches that bifurcate from zero in the
direction of the eigenfunctions, albeit with a frequency that initially increases with
increasing power before changing direction and decreasing. The leftmost branch re-
mains constant in space, and its power increases monotonically along the branch. In
contrast, the other two branches have decreasing power as the frequency decreases
past a certain point.

Especially interesting is the branch that bifurcates from the point A on the middle
branch. This middle branch is the continuation of the first excited eigenfunction,
which has an odd symmetry about the central point on the dumbbell. At this point,
we find a symmetry-breaking pitchfork bifurcation, with two asymmetric branches
related by a reflection symmetry. This asymmetric branch continues to the point B,
at which point it collides again with the same branch from which it bifurcated at
A and begins retracing its original path. This branch traces out a closed curve in
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Fig. SM1.2. A partial bifurcation diagram of the stationary NLS equation on a dumbbell
quantum graph with a cubic-quintic nonlinearity.

solution space, with the sign of the perturbation term flipping each time the branch
passes the bifurcation points. Thus, we instructed the continuation program to stop
after a finite number of points on the curve are computed by setting the parameter
maxPoints as described in Sec. SM2.5.

An advantage of the continuation/bifurcation approach is that it illuminates how
branches relate to each other. This is well illustrated using the example of a “necklace”
quantum graph, also considered by Besse et al. [SM4]. This graph consists of loops
alternating with single edges. The necklace graph shown above in Fig. 2.7(a) consists
of 54 such alternating pairs, with segments of length 1 and pearls comprised of two
edges, each of length π/2. Fig. 2.7(b) shows a partial bifurcation diagram for the
focusing cubic NLS equation on this graph.

We focus on branch 1 and a few branches arising from bifurcations from this
branch and its descendants. As in the first example, the constant-valued solution
on this branch satisfies Eq. (SM1.1), and bifurcations occur where the frequency is
half of an eigenvalue of the linear problem. However, this eigenvalue has a geometric
multiplicity of two in this case. In bifurcation theory, the system is said to undergo a
codimension-two bifurcation at this point. QGLAB has not implemented methods for
detecting higher codimension bifurcation points and calculating branches emanating
from bifurcations of codimension two or higher. Such methods exist and are imple-
mented in the packages cited above; an approach that obviates the need to calculate
higher-order normal forms is the deflated continuation method due to Farrell and
collaborators [SM9].

The double-zero eigenvalue at this bifurcation has two orthogonal eigenfunctions
plotted in Fig. SM1.3. These may be thought of as the analog of the sine and cosine
modes of the second derivative operator on the circle. While any linear combination
of these two eigenfunctions is also an eigenfunction, we have chosen the two modes so
that one has its maximum at the center of a single strand and the other at the center
of a double strand. The nonlinear standing waves that bifurcate from branch 1 at the
point A do so in the direction of these two eigenfunctions. Close to the bifurcation,
the two solution curves are indistinguishable when plotted in these coordinates but
separate for more negative frequencies. The standard algorithm that QGLAB uses
to detect bifurcations works not by computing all the eigenvalues of the linearization
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Fig. SM1.3. The eigenfunctions corresponding to the smallest nonzero eigenvalue on the neck-
lace quantum described in the text. The left eigenfunction has two nodes on “strings” and four local
extrema on “pearls”, while the right eigenfunction has four nodes on “pearls” and two local extrema
on “strings.”

and counting their eigenvalues, which would be slow, but by efficiently calculating
the sign of the associated determinant using an LU -decomposition and detecting
when it changes. This works efficiently at codimension-one bifurcations but fails
at codimension-two bifurcations like this one. As this would predict, the algorithm
that detects bifurcations fails to find a bifurcation at A and does not compute the
branching direction.

The branches 2 and 3 are calculated by first computing a single standing wave
with frequency Λ = −4 and either a single sech-like hump centered on a string or
two sech-like humps centered on the two edges on the pearl and then continuing
the branches toward the bifurcation point A. Branch 4 bifurcates from branch 3
at the point B, breaking the symmetry between the two edges of the pearl. By
plotting this bifurcation diagram in the same coordinates as in the right image of
Fig. SM1.1, we confirm the statement of Ref. [SM4] that this branch represents the
ground state at large amplitude. At point C, Branch 3 undergoes a second symmetry-
breaking bifurcation, giving rise to branch 5, on which the two-humped standing
wave on the pearl moves from the center of the pearl’s edges toward either vertex. A
similar symmetry bifurcation occurs on Branch 2 at point D, giving rise to Branch 6,
along which the standing wave on the string moves away from the string’s center and
toward a vertex. Branches 5 and 6 appear to converge as Λ is further decreased.
Representative standing waves along these five branches of the bifurcation diagram
at Λ ≈ −4 are shown in Fig. 2.7(c) above.

Finally, conducting a proper continuation study of standing waves on an infinite
necklace is difficult. For a fixed number of pearls, the total width of the standing
wave is restricted by the circumference, but in the infinite limit, branches 2 and 3
bifurcate not from the solution of constant amplitude, but from the zero solution, with
a width that diverges as the amplitude goes to zero. The limiting behavior exists for
the standing waves of the standard cubic NLS problem. However, in that case, a
standard method allows the width of the interval to increase, namely using a non-
uniform discretization that widens to accommodate the slowing spatial decay rate.
Such a trick is unavailable on the quantum graph, where the length scale imposed by
the graph’s edges precludes this approach.
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Fig. SM1.4. The initial (blue) and final (red) states of the heat equation on a dumbbell graph
computed using the Crank-Nicholson code in the text.

SM1.2. Evolutionary PDE. We now discuss the full MATLAB implementa-
tion of the heat and sine-Gordon examples constructed in the article.

SM1.2.1. The heat equation. In Sec. 2.4.1 we derived Eq. (2.26) to evolve the
solution of the heat equation over one time step. We apply this code to a dumbbell
graph in the live script heatOnDumbbell. After removing the code for plotting and
calculating the conserved total heat, the code reads

1 G = quantumGraphFromTemplate(’dumbbell ’);

2 y=G.applyFunctionsToAllEdges ({@(x)(2-2*cos(x-pi/3)),1,@cos

});

3 dt =0.01; tFinal =10; nStep=tFinal/dt;

4 L0 = Phi.laplacianMatrixWithZeros;

5 P0 = Phi.interpolationMatrixWithZeros;

6 LVC = Phi.laplacianMatrixWithVC;

7 PVC = Phi.interpolationMatrixWithVC;

8 LPlus = P0 + (h/2)*L0;

9 LMinus = PVC - (h/2)*LVC;

10 for k=1: nStep

11 y = LMinus \ (LPlus*y);

12 end

This solution’s initial and final states are shown in Fig. SM1.4. The total heat is
conserved to twelve digits by this calculation.

SM1.2.2. The sine-Gordon equation. The sine-Gordon equation on the line
supports solitons, traveling solutions of the form

ψ(x, t) = 4 tan−1
(
e(x−ct)/

√
1−c2

)
, for any − 1 < c < 1.

Following [SM8], we initialize kinks on three edges of the graph formed by the edges
of a regular tetrahedron, heading away from their common vertex. We consider two
initial conditions: the first with c = 0.9 and the second with c = 0.95. These are
plotted in Fig. SM1.5, with the tetrahedron flattened into the shape of a wheel with
three spokes (thus, distance in the plot does not uniformly represent distance on the
metric graph). The top row shows the first case, in which the three solitons are
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Fig. SM1.5. Evolution of sine-Gordon solitons propagating along the edges of a tetrahedron
(deformed for plotting). (Top) the vertices reflect solitons with c = 0.9 while (Bottom) those with
c = 0.95 are transmitted.
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Fig. SM2.1. Directory structure of QGLAB

reflected after encountering vertices, while in the second case, the faster solitons can
pass through the vertices.

SM2. Function Listing and Detailed Instructions. QGLAB is implemented
as a MATLAB Project. After starting MATLAB, the user should open the folder titled
Quantum-Graphs, whose subfolder structure is shown in Fig. SM2.1. Among the files
listed in the MATLAB Desktop’s Current Folder pane is the project file QGobject.prj,
which can be opened by double clicking. This opens the Project Window, adds the
necessary QGLAB directories to MATLAB’s search path, and changes the plotting
preferences needed to render the graphics correctly. To end the QGLAB session, close
the Project Window or quit MATLAB. This will remove the QGLAB directories from
the search path and restore the user’s default plotting preferences, which are held in
the folder tmp while QGLAB is running.
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The MATLAB code is contained in the subfolders of the folder source. Most
importantly, the folder @quantumGraph contains the constructor file quantumgraph.m,
which defines the class and initiates an instance, as well as all the class methods,
i.e., the functions that act on quantum graph objects. As their first input argument,
all MATLAB methods must have a qg object G. For example, the overloaded eigen-
solver method eigs is defined as function [v,d]=eigs(G,n), where n is the number of
eigenvalues to calculate. It can be called using either the standard function syntax
[v,d]=eigs(G,n) or with the preferred syntax for methods [v,d]=G.eigs(n).

SM2.1. The Quantum Graph Constructor. The first step to working with
QGLAB is initializing a quantum graph object using its constructor function titled
quantumGraph. As detailed in Sec. 3.2, it takes three required arguments
• source and target are two vectors of positive integers. The entries source(m) and

target(m) represent the initial and final nodes of the edge em. Thus, these two
vectors must be of the length |E| and each integer m satisfying 1 ≤ m ≤ |V|
must appear in at least one of the two vectors to guarantee that the graph
is connected. MATLAB’s digraph constructor automatically sorts the edges
to avoid confusion, quantumGraphchecks to make sure the edges are sorted the
same way and throws an error if they are not.

• L May be either a positive real number or a vector of length |E| of positive real
numbers. If L is scalar, the constructor assumes all edges are the same length.

It also may take the following optional arguments
• Discretization One may take the values ’Uniform’ (default), ’Chebyshev’, or ’

None’. If ’None’, then no discretization is constructed, and the only avail-
able method, besides simple methods that query the graph’s properties, is
secularDet, which computes the secular determinant.

• nxVec Defines the number of points used to discretize the edges. A vector value gives
the number of discretization points on each edge, but if scalar, its behavior
depends on the discretization; if ’Uniform’, then it gives the approximate
number of points per unit edge length, while if ’Chebyshev’, then it gives the
number of discretization points on each edge. Default: 20.

• RobinCoeff The vector of Robin coefficients αn in Eq. (1.3). Use the value NaN to
indicate the Dirichlet boundary condition (1.4). If scalar, apply the same
value at all vertices. Default: 0.

• Weight The vector of weights wm in Eq. (1.3). If scalar, apply the same value at all
vertices. Default: 1.

• nodeData The vector of nonhomogeneous vertex terms φn in the Poisson prob-
lem (2.10c). If scalar, apply the same value at all vertices. Default: 0.

• plotCoordinateFcn The handle of a function defining the layout of the edges and
vertices for plotting. Associates coordinate arrays x1, x2, and (optionally) x3

to each edge and to the vertices. If left unset, then plotting is not possible.
It can be set later using the function addPlotCoordinates.

The constructor runs several checks on the inputs to ensure they are consistent and
meaningful, returning descriptive error messages if these checks fail.

SM2.2. Properties of a quantumGraph object. Many of the properties of a
designated quantumGraph object are detailed in Sec. 3.2, a complete list is given here,
filling in some additional details
• qg The digraph object, consisting of Edge and Node tables, each of which has the

additional required fields described in Sec. 3.2 as well as the optional fields
x1, x2, and x3 used for plotting.
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• discretization A string labeling the discretization type is used to choose between
uniform and Chebyshev algorithms.

• wideLaplacianMatrix The Laplacian matrix Lint, with discretized boundary condi-
tion rows at the bottom, defined in Eq. (2.12) and illustrated by the two
upper matrix blocks in Figs. 2.2(b) and 2.4(b).

• interpolationMatrix The matrix Pint that interpolates from the extended grid to
the interior grid as defined in Eq. (2.13), as illustrated by the two upper
matrix blocks in Figs. 2.2(c) and 2.4(c).

• discreteVCMatrix The matrix MVC containing the discretization of the vertex con-
ditions, as defined in Eq. (2.12), (2.13) and illustrated by the two lower matrix
blocks in Figs. 2.2(b) and 2.4(b).

• nonhomogeneousVCMatrix The matrix MNH defined in Eq. (2.14) used to define non-
homogeneous terms in the vertex condition to the correct rows.

• derivativeMatrix The square first derivative matrix which does not include bound-
ary conditions. This is used for calculating integrals, including the energy
and momentum, which may or may not be conserved based on the vertex
conditions.

SM2.3. Methods defined for a quantumGraph object.

SM2.3.1. MATLAB digraph methods overloaded for quantumGraph ob-
jects. MATLAB features many functions for analyzing, querying, and manipulating
directed graphs. The command indegree(G,1) returns the incoming degree of the
vertex v1 of a graph G. This could be applied to the qg field of a quantum graph Φ
by using the command indegree(G.qg,1), but it is preferable in object-oriented pro-
gramming to overload this function so that can be applied directly as indegree(Phi,1)
Several other low-level directed graph functions have been similarly overloaded:
• Edges, Nodes, indegree, outdegree, numedges, numnodes, rmnode.

SM2.3.2. Other quantumGraph methods. The following provide directed graph
related functionality not in MATLAB’s digraph toolbox:

• source, target, follows, sharednode, incomingedges, outgoingedges, isleaf.

The following functions query specific properties of quantum graphs, edges, or vertices:
• nx, dx, weight, L, robinCoeff, isUniform, isChebyshev, isDirichlet.

The following are utilities for working with quantumGraph objects:
• addPlotCoords Given a user-provided script defining the plotting coordinates x1, x2,

and, optionally, x3, runs the script and associates the coordinates to both the
edge and vertex tables.

• graph2column and column2graph transfer data back and forth between the edge-
vertex representation and a single-column vector. The latter function uses
the discretized vertex conditions to interpolate the data at the vertices.

• applyFunctionToEdge The call G.applyfunctionToEdge(fhandle,m) applies the func-
tion represented by the function handle fhandle to the edge em and stores the
result in G.Edges.y{m}. If fhandle is a number c, then the output G.Edges.y{m}
will be a constant-valued vector of the appropriate length.

• applyFunctionsToAllEdges If handleArray is a cell array containing |E| function han-
dles and constants, this function applies applyFunctionToEdge to each func-
tion/constant and edge in the quantum graph. If an output argument is
specified, then graph2column is used to assign the function to a column vec-
tor.

• addPotential Adds a potential to the graph structure using the same syntax as
applyFunctionsToAllEdges.
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• applyGraphicalFunction This applies a function, input as its function handle, to
the plotting coordinates x1, x2, and (optionally) x3 defined for each function
and edge. This convenience function creates initial guesses for the nonlinear
standing wave solvers.

• addEdgeField and addNodeField can be used to assign other fields to the Edge and
Node tables.

The following functions perform mathematical operations on quantumGraphobjects,
automatically choosing the appropriate program for the discretization method used:

• integral Computes the weighted integral
∫

Γ
Ψ dx =

∑|E|
m=1 wm

∫
em
ψm(x) dx .

• norm Uses integral to compute the Lp norm (1.5).
• dot Uses integral to compute the L2 inner product (1.6).
• energyNLS Uses integral to compute the NLS energy (1.11).
• eigs Computes n eigenvalues closest to zero.
• secularDet Computes the real-valued secular determinant defined briefly in Sec. 1.2

using the MATLAB Symbolic Mathematics Toolbox. This works for all the
boundary conditions discussed in this article but requires the edge weights to
satisfy wm ≡ 1.

• solvePoisson Solves the Poisson problem (2.10).
The following functions are for visualizing quantumGraph objects:
• plot The call G.plot plots the data currently stored in the yentries of the Edges and

Nodes tables, using the coordinates stored in the x1, x2 and x3 table entries.
If x3 is not defined, then it plots the function in three dimensions over the
skeleton of the graph. If it is defined, then the function is plotted in false
color. The call G.plot(z) first calls G.column2graph(z) and then plots.

• pcolor Plots the function in false color on the quantum graph in two dimensions.
It is useful for visualizing highly complex graphs, as seen by comparing the
two plots of MATLAB’s peaks function defined over the edges of a randomly
generated Delaunay triangulation, shown in Fig. SM2.2.

1 G = delaunaySquare(’n’ ,8);

2 f = @(x1 ,x2)peaks (6*x1 -3,6*x2 -3);

3 G.applyGraphicalFunction(f);

4 G.plot; figure; G.pcolor

Fig. SM2.2. Visualization of a function defined on a random graph using (left) plot and
(right) pcolor, where zeros are indicated with black dots.
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Fig. SM2.3. The default bubbleTower quantum graph, with five vertices and seven edges.

• spy The call G.spy uses the MATLAB spy function to plot the nonzero entries in
the three matrices G.wideLaplacianMatrix, G.interpolationMatrix, and
G.nonhomogeneousVCMatrix.

• animatePDESolution Given a vector of times t and an array u whose columns give
the numerical solution to a PDE at those times, animates the solution, taking
special care that the viewing axes are fixed throughout the visualization.
Automatically uses false color to plot graphs with a three-dimensional layout.
To animate a PDE solution using false color on a two-dimensional layout, use
animatePDESolution2DColor.

Additional programs not called by the end-user exist, which we do not document.

SM2.4. The template library. The package features a library of graphs, many
of which have been studied in the quantum graph literature, which is stored in the
folder source/templates. Their use is demonstrated in the live script that is titled
templateGallery.mlx. These fall into a few groups. Almost all depend on several
user-provided parameters for which default values are provided.

Individual graphs. Several simple graphs are provided in the template library
and are called using the command G=quantumGraphFromTemplate(tag,varargin), where
tag is the name of the template and varargin is used by MATLAB to indicate a
variable-length input argument list, and is here used to enter using the same key-
value syntax as the quantumGraph command. The graph produced by running:
G=quantumGraphFromTemplate(’bubbleTower’,’L’,10,’circumferences’,[6 4 2]*pi)

is shown in Fig. SM2.3. The default graph in this family has five vertices and seven
edges. Bubble tower graphs with infinite-length base edges have featured extensively
in the quantum graph literature as examples where one can still find a ground state
even though a certain graph topology condition is satisfied by this family that would
normally preclude the existence of a ground state, see [SM1, SM2, SM3]. The under-
lying symmetry of the construction here is crucial to the analysis.

The quantumGraphFromTemplate function calls two separate functions
• A template function, here bubbleTower.m, that builds the quantum graph,

setting the lengths of the two straight line segments to 10 and the circum-
ferences of the three bubbles to [6π, 4π, 2π], setting the discretization, and
building the necessary matrices.

• A plot coordinates function, here bubbleTowerPlotCoords.m, that places
the vertices at locations consistent with the above-defined lengths. In this
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example, two edges are laid out as line segments, created using the com-
mand straightEdge, four edges are laid out as semicircular edges by using the
command semicircularEdge, and there is one circular edge, created using the
command circularEdge. A fourth function circularArcEdge can connect two
nodes by a circular arc subtending a central angle theta.

SM2.4.1. Two-dimensional lattices. The following templates exist to create
two-dimensional lattices. All have default values and can be customized to change
the number of cells per side. These programs are called directly and set plotting
coordinates without calling quantumGraphFromTemplate.
• rectangularArray creates a rectangular array. By default, the sides have unit length

but can be customized.
• triangularArray creates a triangular array. The unit cell is an equilateral triangle

by default, but the period vectors can be customized.
• hexagonalArray creates a hexagonal array, forming a parallelogram, the default

shown in Fig.
• hexGrid creates a rectangular array of hexagons.
• hexGridPeriodic identifies the left edge with the right and the top edge with the

bottom to create a periodic array.
• hexOfHexes A hexagonal array of hexagons.
• triangularArray A triangular array.

Three-dimensional geometric templates. The program solidTemplate con-
structs quantum graphs whose vertices and edges are the vertices and edges of geo-
metric solids, including the five Platonic solids (tetrahedron, cube, octahedron, do-
decahedron, and icosahedron), as well as the cuboctahedron, which has 24 edges and
12 vertices, and the buckyball (or truncated icosahedron) which has 90 edges and 60
vertices. This is called directly and sets up the plot coordinates. Sec. 3.3.1 gives an
example of constructing a tetrahedron.

SM2.5. Continuation and bifurcation routines. The live script that is ti-
tled continuationInstructions.mlx in the documentation directory uses all the follow-
ing subroutines in the given order after constructing a quantumGraph object named
Phi. We refer to line numbers in this live script to describe the steps taken to com-
pute the bifurcation diagrams. To run the continuation software, the user must use
a template from the source/templates or create one themselves, including a properly
named function to create the plotting coordinates. We will assume that the template’s
name is stored in a variable named tag. In the example tag=’dumbbell’. As explained
below, the results of the computation will be stored in the directory dataDir=’data/

dumbbell/001’ with the trailing number incremented each time a bifurcation diagram
is created. Each computed branch of solutions is stored in its own subdirectory, with
consecutively labeled names, beginning branch001, etc. Most of the programs given
below add a line to a log file named logfile.txt that resides in the data directory.
• makeContinuationDirectory After initializing the discretized quantum graph on which

families of solutions are to be computed, create a sequentially named direc-
tory to hold the data; see line 5. Saves a file template.mat containing the qg

object.
• saveEigenfunctions Calculate some eigenvalues and eigenfunctions of the Lapla-

cian matrix and save them to the data directory with names lambda.001 and
eigenfunction.001.
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• saveNLSFunctionsGraph Saves a file named fcns.mat to the data directory. This file
contains one variable: a structure x whose fields contain a function handle
to the discretized form of Equation (1.10), as well as several derivatives of
this function and the antiderivative of the nonlinearity, used in computing
the energy.

• continuerSet This function sets several parameters the continuation algorithms use.
It assigns them to a structure, usually named options, which is then passed
to the various continueFrom programs described below. It takes as input a
sequence of name-value pairs, imitating the programs odeset and optimset

used in MATLAB’s ODE and optimization routines. The parameters it sets
are:
• maxTheta The maximum angle, in degrees, between two consecutive seg-

ments on a branch of solutions. Default: 4◦.
• minNormDelta The minimum step length below which the continuation solver

does not attempt to refine the branch further. Default: 10−3.
• beta The weight in the inner product defined by〈

Φ1(x)eiΛ1t,Φ2(x)eiΛ2t
〉

= 〈Φ1,Φ2〉+ β〈Λ1,Λ2〉,

used in defining angles and distances in the above two variables. Default:
0.1.

• NThresh Threshold for the power N , i.e., the squared L2-norm, so the con-
tinuation routine terminates when this value is crossed. Default: 4.

• LambdaThresh Threshold for the frequency Λ. The continuation routine ter-
minates when this value is crossed. Default: -1.

• maxPoints The maximum number of points to compute on a given branch.
Default: 999.

• saveFlag A boolean variable. If true, then data is saved to files. Default:
true.

• plotFlag A boolean variable. If true, then data is plotted to screen. Default:
true.

• verboseFlag A boolean variable. If true, then some information is printed
on the MATLAB Desktop. Default: true.

• Four continuation programs that are initiated from different starting points.
• continueFromEig Compute a branch of stationary solutions that bifurcates

from Ψ = 0 with a frequency given by an eigenvalue, in the direc-
tion of an eigenfunction, using the data saved by the above command
saveEigenfunctions; cf. lines 13-15 of the live script.

• continueFromBranchPoint Compute a branch of stationary solutions that
bifurcates from a branch point. While computing a curve of solutions,
the continuation routines monitor for branching bifurcations (pitchfork
and transcritical, which are mathematically equivalent in the pseudo-
arclength formulation). When it detects a bifurcation between two com-
puted solutions, it computes the exact frequency at which the bifurcation
occurs and the solution at the bifurcation point.

• continueFromSaved Continue from a previously-computed solution to the
stationary computed using saveHighFrequencyStandingWave (called here),
which computes and saves a solution with an initial guess built from sech-
like functions defined on the edges,
saveHighFrequencyStandingWaveGraphical,
which computes a solution based on an initial guess that places a “bump”
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somewhere on the graph defined by its plotting coordinates or a user-
written function.
On line 35 of the example, a solution with positive sech pulses of edges
1 and 2 of the dumbbell is saved to files:
savedFunction.001 and savedFunction.001

in the folder data/dumbbell/001. A branch continuing from this solution
is computed at line 38.

• continueFromEnd Extends a previously-computed branch.
• bifurcationDiagram Draws a bifurcation diagram from the data in a given directory

and its subdirectories. By default, it plots the frequency on the x-axis and
the squared L2-norm on the y-axis, but these defaults can be overwritten.

• rmBranch Removes the subdirectory containing a given branch from the bifurcation
diagram directory.

• plotSolution Plots a single solution from a given diagram and branch.
• animateBranch Animates how the individual solutions change as a branch of the

bifurcation diagram is traversed.
• addComment Adds a string to the log file logfile.txt in the given directory.

We examine the files contained in the directory branch001, which was created
online 13 of the live script by continueFromEig.
• PhiColumn.xxx Where xxx is a three-digit integer n. The nth solution on the branch.
• NVec, LambdaVec, and energyVec Column vectors containing the squared L2-norm,

the frequency, and the energy, which are the three variables that can be
plotted using the bifurcationDiagram program. The nth entry in each vector
corresponds to the nth solution in the previous bullet point.

• k The number of PhiColumn files and the length of the vectors of integrals.
• initialization A one-word text file denoting which of the four continuation pro-

grams coninueFromXXX was used to initialize the branch, in this case
Eigenfucntion.

• eignumber The number of the eigenfunction from which the solution was continued.
• options.mat The options structure set by the continuerSet program.
• bifTypeVec A column vector of integers, with the value 0 if solution n is a regular

point on the branch, the value 1 at branching bifurcations, and the value -1
at folds.

• phiPerturbationXXX.mat and LambdaPerturbationXXX.mat Here xxx is a three-digit
number at which a branching bifurcation has been detected, and the files
contain the directions in which the new branch points from the bifurcation
location, used by the function continueFromBranchPoint.

SM2.6. Other folders.
• data An empty folder where the continuation routines store the data they produce.
• documentation Contains live scripts demonstrating the main features entitled

quantumGraphRoutines.mlx, continuationInstructions.mlx, and
continuationInstructionsChebyshev.mlx.

• source/chebyshev Contains many programs used to construct the Chebyshev dis-
cretization.

• source/examples Contains example programs sorted into three further subfolders:
• source/examples/chebyshev Contains examples involving the Chebyshev dis-

cretization, all of which are minor modifications of examples from the
stationary folder.

• source/examples/evolution Examples illustrating the solution to time-
dependent problems.
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• source/examples/stationary Examples of time-independent problems: eigen-
problems, Poisson problems, and continuation problems.

• source/startup_shutdown Contains programs that are run upon starting up and
shutting down QGLAB.

• source/user An empty folder intended to give end-users a place to store code they
write without mixing it with package code.

• source/utilities Some utilities used for file management and formatting plots.
• tmp A temporary folder created at startup and removed at shutdown, where the

user’s plotting preferences are stored to be automatically restored upon shut-
ting down quantumGraph.
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