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a r t i c l e i n f o

Article history:
Available online 16 December 2009

Keywords:
Stokes flow
Drops
Suspensions
Chaos
Structural transitions
Collective dynamics

a b s t r a c t

We investigate nonlinear phenomena in dispersed two-phase systems under creeping-flow conditions.
We consider nonlinear evolution of a single deformed drop and collective dynamics of arrays of
hydrodynamically coupled particles. To explore physical mechanisms of system instabilities, chaotic drop
evolution, and structural transitions in particle arrays we use simple models, such as small-deformation
equations and effective-medium theory. We find numerical and analytical solutions of the simplified
governing equations. The small-deformation equations for drop dynamics are analyzed using results of
dynamical systems theory. Our investigations shed new light on the dynamics of complex fluids, where
the nonlinearity often stems from the evolving boundary conditions in Stokes flow.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The Navier–Stokes equations contain the inertial term that
gives rise to numerous nonlinear phenomena, such as flow
instabilities [1], complex convective patterns [2], and turbulence
[3]. However, there also exist nonlinear hydrodynamic phenomena
that are not due to nonlinear inertial contributions. These
nonlinear phenomena occur under creeping-flow conditions in
interfacial and particulate flows. The Stokes equations governing
the fluid flow are linear so the nonlinearity stems entirely from the
evolving boundary conditions.
We present two examples of multiphase systems that exhibit

complex nonlinear behavior under creeping-flow conditions. The
first system is a deformable highly viscous drop subject to external
2D linear flow. The second example is an ordered array of
rigid spherical particles in strongly confined Poiseuille flow. The
nonlinear coupling in the first system results from the influence
of the external flow on the shape of the deformed drop. The
nonlinearity in the other system stems from the hydrodynamic
interactions between particles.
The interplay between the flow and moving phase boundaries

produces diverse nonlinear effects in the two systems under
discussion. For viscous drops, there occurs a hysteretic response
of the drop shape to quasistatic change of the external flow
vorticity, andwe also observe period-doubling bifurcations leading
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to chaos, for periodically varying vorticity [4]. In the other system
the interaction between regular particle arrays and Poiseuille flow
results in propagation of particle displacement waves, sudden
lattice rearrangements, order–disorder transitions, and fingering
instabilities [5]. We elucidate the underlying physical mechanisms
of these phenomena.
Our paper is organized as follows: In Section 2 we discuss the

dynamics of viscous drops in external 2D linear flowswith rotation.
In Section 3 we analyze the collective dynamics of ordered particle
arrays in Poiseuille flow in a parallel-wall channel. Our conclusions
are presented in Section 4.

2. Hysteretic and chaotic drop dynamics

The evolution of a deformable viscous drop is considered in
linear creeping flowswith rotation.We focus on systemswhere the
drop viscosity is much higher than the continuum phase viscosity.
In the creeping-flow regime, the evolving boundary conditions due
to themotion of the drop interface are the only source of nonlinear
dynamics.
We find that nonlinear coupling of the drop deformation

and rotation to the external flow results in drop bistability and
hysteresis in quasistatic drop shape evolution. We also analyze
a novel chaotic drop dynamics resulting from a period-doubling
bifurcation cascade.

2.1. Viscous drop in creeping flows

We consider a viscous drop immersed in an incompressible
fluid of a constant viscosity µ. The viscosity of the drop is µ̂ = λµ
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Fig. 1. Decomposition of a linear incident flow into pure strain and rigid-body
rotation.

(where λ is the viscosity ratio), and the interfacial tension between
the two phases is σ . The fluid velocity u and pressure p in the
regions inside and outside the drop are described by the Stokes
equations

µi∇
2u = ∇p, (1)

∇ · u = 0, (2)

where µi = µ̂ or µ is the corresponding fluid viscosity. The non-
linear boundary condition on the drop interface is the balance of
normal stress with the capillary pressure

[n̂ · τ · n̂] = 2κσ , (3)

where τ is the viscous stress tensor, n̂ is the outward normal unit
vector, and κ is the local curvature of the interface.
The drop is subject to a 2D linear incident flow

u0(r) = γ̇ (Es + β�) ·r, (4)

where γ̇ is the strain rate, β is the dimensionless vorticity
parameter, r is the position, and

Es =
1
2

(0 1 0
1 0 0
0 0 0

)
, � =

1
2

( 0 1 0
−1 0 0
0 0 0

)
(5)

are the symmetric and antisymmetric parts of the velocity gradient
tensor. The symmetric part describes a purely straining flow, and
the antisymmetric part corresponds to rigid-body rotationwith the
angular velocity ω = 1

2βγ̇ . The decomposition of incident flow
(4) into the straining and vorticity components associated with
tensors Es and� is sketched in Fig. 1.
Three dimensionless parameters characterize the dynamics of

the viscous drop. The viscosity ratio λ describes the relative mag-
nitude of dissipative forces in the drop phase and continuous phase
fluids. The capillary number Ca = aµγ̇ /σ (where a is the radius of
an undeformed drop) gives the ratio between the deforming vis-
cous forces produced by the imposed flow (4) and the capillary
forces driving the drop towards the equilibrium spherical shape.
Finally, the vorticity parameter β describes the magnitude of the
rotational component of the external flow relative to the exten-
sional component.

2.2. Bistable stationary states and hysteresis

For sufficiently large viscosity ratios (λ > 100) and moderate
capillary numbers (below the critical value for drop-breakup
instability), two stable stationary drop shapes are found for a
range of β between critical values β1 and β2. These two stationary
states are illustrated in Fig. 2. The drop shape shown in Fig. 2(a) is
elongated and nearly aligned with the extensional axis x = y; the
shape shown in Fig. 2(b) is nearly spherical [6].
The elongated stationary shape results from the balance

between drop deformation by the extensional flow component and
drop relaxation due to the capillary forces. The respective time
scales for the drop deformation and relaxation are tγ = λγ̇−1 and
tσ = λµaσ−1, both of which are proportional to the viscosity ratio
b
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Fig. 2. (a) Surface-tension-stabilized elongated drop. (b) Rotationally stabilized
compact drop. (c) Hysteresis of a highly viscous drop in 2D linear flowwith varying
vorticity. Results are from boundary-integral simulations with λ = 200 and Ca =
0.20. Inset shows the dependence of vorticity on time.

for λ� 1. The drop deformation D = (l− 2a)/a (where l denotes
the drop length) is determined by the time scale ratio

D ∼ tσ /tγ = Ca. (6)

Therefore, D is independent of the viscosity ratio in the limit
λ→ ∞. The O(λ−1) internal circulation inside an elongated high
viscosity drop isweak for large λ. Thus the drop behaves like a rigid
bodywhose equilibriumorientation results from the balance of the
torques produced by the straining and rotational components of
the external flow, as depicted in Fig. 2(a).
The compact stationary shape is stabilized by the circulation of

the fluid inside the drop,which rotateswith an angular velocityωd,
nearly equal to the angular velocity ω of the external flow. Within
each period of rotation the drop undergoes a small deformation
produced by the straining component of the external flow, as
schematically illustrated in Fig. 2(b). However, the deformation
does not grow, because it is constantly convected away by the
rotational component of the flow. Since the rotation occurs on the
time scale trot = (βγ̇ )−1, and the drop deforms on themuch longer
timescale tγ = λγ̇−1, we find that the drop deformation in the
compact state,

D ∼ trot/tγ = (βλ)−1, (7)

is small for λ� 1.
The existence of two stationary states implies a hysteretic drop

response to quasistatic variation of vorticity β . Such hysteresis in
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the drop length l is depicted in Fig. 2(c). The results are from direct
numerical simulations using the boundary-integral method [7].
For β in the range between β1 and β2 (the two critical values

labeled in 2(c)), the drop assumes either an elongated or compact
shape, which correspond to two stationary values of the drop
length. When the maximal torque τγ exerted on the drop by
the straining flow component marginally balances the torque
τrot resulting from the vorticity flow component, there occur
transitions between the elongated and compact drop shapes. Since
the straining component produces a non-zero torque only on
elongated shapes, and τrot is approximately independent of D, we
obtain the scaling relations

τγ ∼ D, τrot ∼ β. (8)

Assuming torque balance τγ ≈ τrot near a transition point and
combining relations (8) with the estimates (7) and (6) for the
drop deformation in the compact and elongated states, we find the
scaling relations

β1 ∼ λ
−1/2, (9)

β2 ∼ Ca (10)

for the lower and upper critical vorticity parameters. These
scaling relations can also be derived from the small-deformation
equations discussed in Section 2.3.2.

2.3. Period-doubling bifurcations and chaotic drop dynamics

The existence of bistable stationary states of a dynamical
system often leads to interesting nonlinear response to periodic
forcing.We examine drop evolution in straining flowwith periodic
vorticity variation

β(t) = β̄ + δβ sin(2π t/T ), (11)

where β̄ is the average vorticity, δβ is the vorticity-oscillation
amplitude, T is the oscillation period, and t is time. We
show that despite the laminar nature of Stokes flow, the drop
evolution is chaotic for some parameter values. We present
numerical examples (Section 2.3.1), an analytical description
using asymptotic small-deformation equations (Section 2.3.2), and
dynamical systems analysis (Sections 2.3.3–2.3.5).

2.3.1. Drop response to harmonic vorticity variation
Fig. 3 shows our boundary-integral simulations for drop length

evolution in a system with periodic vorticity variation (11). The
mean value of the vorticity, β̄ = 0.21, is near the lower critical
value (9), and the oscillation amplitude δβ = 0.13 spans the range
of the hysteresis loop.
The results indicate that for short periods T of vorticity varia-

tion (compared with the drop relaxation time tσ ) the drop under-
goes regular oscillations around the compact stationary shape, as
shown in Fig. 3(a). Drop evolution is also periodic at large values
of T : for T ≈ 4tσ drop oscillates around the elongated stationary
shape (Fig. 3(d)), and for T � tσ quasistatic evolution is obtained
(Fig. 3(e)).
For intermediate values of the oscillation period T ≈ tσ the

drop response to periodic forcing is irregular, which is seen in
Figs. 3(b) and 3(c). Using small-deformation equations we argue
that this irregular response is associated with transition to chaos.

2.3.2. Small-deformation equations
In our further analysis we use small-deformation equations

based on the expansion of the drop shape into spherical harmonics
[8,9]. Near the bifurcation that leads to shape hysteresis, the
drop evolution can described by asymptotic small-deformation
equations in which only two modes are retained.
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Fig. 3. Evolution of drop length in planar linear flow with harmonic variation of
vorticity for different values of period T normalized by drop relaxation time (as
labeled). Mean vorticity β̄ = 0.21, vorticity amplitude δβ = 0.13, viscosity ratio
λ = 275, and capillary number Ca = 0.2. Panel (c) depicts chaotic dynamics.
(Results from boundary-integral simulations.).

Accordingly, the position of the drop interface rs is expanded
into the second-order spherical harmonics,

rs/a = 1+
√
2[f ReY22(Ω)+ g ImY22(Ω)], (12)

where Ω = (θ, φ) is the solid angle and f and g are the drop
shape perturbation amplitudes. Since ReY22 ∼ cos 2φ and ImY22 ∼
sin 2φ (where φ is measured from the axis x), the amplitude f
describes drop deformation along the symmetry axis x, and the
amplitude g corresponds to the deformation along the straining
axis x = y.
As shown in [6], the asymptotic small-deformation equations

for the shape amplitudes f and g have the form

df
dt
= −2ωdg − λ−1Ca−1D0f , (13a)

dg
dt
= 2ωdf − λ−1Ca−1D0g + λ−1d0. (13b)

Here D0 = 20/19 and d0 = (5π/6)1/2 are numerical coefficients,
and

ωd = −
1
2
β +

1
2
c0f (14)

(with c0 = (15/2π)1/2) is the angular velocity of a deformed
drop. Near the bifurcation point Eqs. (13) are accurate to O(λ−1)
for λ� 1.
The angular velocity (14) involves drop rotation by the vorticity

component of the flow (the first term on the right-hand side)
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Fig. 4. Bifurcation diagrams showing period doubling in flow with harmonic
vorticity variation (11), for a drop with the viscosity ratio λ = 275 and capillary
number Ca = 0.2. Vorticity variation parameters (a) β̄ = 0.22 and T/tσ = 1.82,
(b) β̄ = 0.21 and T/tσ = 1.14. (Results from small-deformation theory).

and rotation by the straining component (the second term). The
nonlinearity in the small-deformation equations (13) stems from
the coupling between the drop rotation and the drop shape.
The terms proportional to the capillary number in Eqs. (13)

describe drop relaxation, and the term λ−1d0 corresponds to
drop deformation by the external flow. The relaxation and
deformation terms are O(λ−1), whereas the rotation terms (the
terms proportional to ωd) are independent of the viscosity ratio.
All the terms in Eqs. (13) are necessary to describe the hysteretic

drop behavior. Otherwise, the solutions do not capture the key
features of the drop evolution.

2.3.3. Period doubling and chaotic dynamics
Numerical solutions of small-deformation equations for differ-

ent values of flow parameters indicate that drop evolution under-
goes a cascade of period-doubling bifurcations leading to chaos. A
cascade of such bifurcations is depicted in Fig. 4, where we show
the drop length at times t = nT (n = 1, 2, . . .) vs. the amplitude
of the vorticity oscillations for fixed values of the capillary number
Ca, period T and mean vorticity β̄ .1
Fig. 4(a) and (b) correspond to two slightly different sets of pa-

rameters T and β̄ . In both cases the first bifurcation occurs at δβ ∼

1 For better accuracy the results shown in Fig. 4were obtained using an expanded
set of small-deformation equations listed in [4,6]; however, the asymptotic
equations (13) yield similar results.
f n
+

1

fn

Fig. 5. Return map (filled circles) for the shape parameter f with λ = 276,
Ca = 0.2, β̄ = 0.21, δβ = 0.062, and T/tσ = 1.45. Solid line is a polynomial
fit to the return map, dash-dotted line is the third-iterate map, and the dashed line
is fn+1 = fn . Two additional sets of fixed points of the third-iterate map correspond
to the two orbits with period three: open circles to one period-three orbit and stars
to the other. The inset shows the closeup of the two fixed points on the right.

0.065, and there is an inverse bifurcation cascade at large values of
δβ . The bifurcation diagram also shows windows of periodic mo-
tion (in particular, a large window in the range 0.9 . δβ . 0.12 in
Fig. 4(a)). Such periodicwindows occur as a result of crises inwhich
chaotic attractor appears or disappears discontinuously [10,11]. As
explained in [10], discontinuous changes of the attractor may re-
sult from a collision of an unstable periodic orbit with a coexisting
chaotic attractor. A transition from chaotic evolution is accompa-
nied by a long chaotic transient before the system settles on a pe-
riodic orbit. We note that period doubling and chaotic evolution is
found not only in small-deformation calculations but also in our
boundary-integral simulations of high viscosity drops [4].

2.3.4. Return map
To ascertain the chaotic nature of drop evolution, we perform

an analysis of the return map for the small-deformation equations
(13). The return map fn+1 = P(fn) is constructed by plotting sub-
sequent iterations fn+1 vs. fn of the shape parameter fn = f (nT ), at
times equal to integer multiples n of the period T .
An example of the return map for specific values of the system

parameters is shown in Fig. 5. All points of the map lie along a
single curve (in fact the attractor has finite but very small thickness,
and the points are thus somewhat scattered.) The behavior of the
return map is consistent with the expectation that the period-
doubling cascade leads to chaos on a low-dimensional attractor.
The return map has one unstable fixed point at the intersection
with the dashed line fn = fn+1.
To demonstrate that drop dynamics is chaotic for a given set of

system parameters, we seek a period-three orbit of themap fn+1 =
P(fn). The existence of such an orbit implies chaos [12]. A period-
three orbit is obtained by analyzing the third iterate of the return
map, fn+3 = P3(fn). To calculate this iterate we first fit the return
map fn+1 = P(fn)with a polynomial (we used polynomials of order
20). The third iterate (a dash-dotted line in Fig. 5) is obtained by
recursively applying this polynomial approximation.
The results presented in Fig. 5 indicate that the third iterate

P3(fn) has six fixed points in addition to the period-one fixed point
of themap P . These six fixed points correspond to two period-three
orbits of themap P . The celebrated result of Li and Yorke [12] states
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that the presence of a period-three orbit implies the coexistence of
orbits of all periods and of an uncountable set of points on which
the dynamics is chaotic. Thus, the results of this figure constitute a
numerical proof of chaotic dynamics. An analytic proof follows.

2.3.5. Proof of chaos
In Section 2.3.4, we have shown that drop dynamic is

chaotic for a specific set of system parameters. We will now
delimit the parameter domain where the chaotic dynamics exists
(specifically, the existence of a hyperbolic invariant set on which
the dynamics are chaotic). Our analysis is based on the standard
Melnikov integral technique [13] applied to the small-deformation
equations (13).
We first introduce a convenient non-dimensional form of the

problem. Defining the dimensionless variables

x = c0f /β̄, y = c0g/β̄, t ′ = β̄t (15)

system (13) with periodically varying vorticity (11) in (14) can be
rewritten in the form

ẋ = y− xy+ ε(y cosΩt − µx) = F1(x, y)+ εG1(x, y);

ẏ = −x+ x2 + ν + ε(−x cosΩt − µy)
= F2(x, y)+ εG2(x, y), (16)

where the dot denotes the derivative with respect to the rescaled
time t ′, and the rescaled system parameters are defined by the
relations

ε = δβ/β̄, (17a)

Ω = 2π/β̄T , (17b)

µ = D0(δβλCa)−1 (17c)

ν = d0c0(λβ̄2)−1. (17d)

We assume that

ε � 1, (18)

and

Ω = O(1), µ = O(1), ν = O(1). (19)

According to relations (9), (10) and (17)–(19), the system thus
remains close to the lower critical vorticity parameter β1, and the
lower and upper vorticity parameters β1 and β2 are well separated
(i.e., in a stationary flow we would have a large hysteresis loop).
We note that in Eqs. (16) the capillary term (17c) plays a role of

damping parameter: In the absence of interfacial tension, (Ca →
∞ andµ→ 0) the drop in a stationary flow undergoes undamped
periodic oscillations, and for finite capillary forces, it tends to a
stationary solution. In the rescaled formulation (16) the system
with no capillary forces and stationary external flow is obtained
in the limit ε → 0, which defines the unperturbed system.
The unperturbed systemhas two fixed points at x± = (x±, y) =

(1/2 ±
√
1/4− ν, 0) for 0 < ν < 1/4 and (non-Hamiltonian)

conserved energy

E =
1
2
x2 +

1
2
y2 + ν log |x− 1| . (20)

The phase plane for this system is plotted in Fig. 6(a). The fixed
point x− is a center, and it is surrounded by periodic orbits. The
fixed point x+ is a saddle point, with one positive, and one negative
eigenvalue.
Before proceeding with further analysis, we introduce compact

notation. Namely, the system (16) is rewritten as

ẋ = F(x)+ εG(x, t), (21)
where x = (x, y), F = (F1, F2), and G = (G1,G2). We also define
the solution operator φεt (x0) to be the solution to system (21) with
initial condition x0, evaluated at time t .
Since the fixed point x+ is a saddle point, there exist invari-

ant curves W u(x+) = {x0| limt→−∞ φ0t (x0) = x+} (the unstable
manifold) and W s(x+) = {x0| limt→∞ φ0t (x0) = x+} (the sta-
ble manifold). These intersect identically in a homoclinic orbit xH
which emanates from x+ to its left and which is traversed clock-
wise by the flow (cf., the heavy line in Fig. 6(a)). Trajectories that
escape to infinity correspond to drop breakup (although the small-
deformation analysis would fail before this could occur), while the
closed orbits inside xH correspond to drops whose shape and ori-
entation oscillate periodically.
We sketch an existence proof for chaos following Gucken-

heimer and Holmes [13]. We define the Poincaré section

Σt0 =

{
(x, y, t)|t = t0 +

2πk
Ω
; k ∈ Z

}
.

Given an initial condition (x, y, t0) ∈ Σt0 , we may follow the tra-
jectory from t = t0 to t = t0 + 2π/Ω , where the solution again
lies inΣt0 . This defines a map Pt0 : Σt0 → Σt0 .

2 Fixed points of Pt0
correspond to periodic orbits of (16).
In the limit ε → 0+, the fixed points of the map Pt0 reduce

to the fixed points of the unperturbed ODE system. The implicit
function theorem ensures that for small values of ε > 0, the hy-
perbolic fixed point x+ persists, as does its local stable and unsta-
ble manifolds; i.e. there exists a point xε

+
= Pt0(x

ε
+
) and curves

W u,sε = {x| limn→{−∞,∞} P
n
t0(x) = xε

+
}.

If ε > 0 and the manifolds W uε and W
s
ε intersect transversely,

then the Poincaré–Birkhoff homoclinic theorem guarantees the
existence of a set onwhich the dynamics of themap Pt0 are chaotic.
This intersection exists, according to Theorem 4.5.33 of [13], if the
Melnikov integral,

M(t0) =
∫
∞

−∞

e−
∫ t
0 ∇·F(xH(s))dsF(xH(t)) ∧ G(xH(t), t0)dt

=

∫
∞

−∞

e−
∫ t
0 ∇·F(xH(s))ds [F1(xH(t))G2(xH(t), t0)

− F2(xH(t))G1(xH(t), t0)] dt, (22)

has a simple zero.
The formulas for F and G in Eq. (16) give

M(t0) =
∫
∞

−∞

Y (t) [µ(1− x)+ νy cosΩ(t − t0)− νµx] dt

=

∫
∞

−∞

Y (t)
[
µ(1− x)(x2 + y2)

+ νy sinΩt sinΩt0 − νµx
]
dt (23)

where x and y are evaluated along the homoclinic orbit xH, Y (t) =
e
∫ t
0 y(s)ds, and the simplification is made by using trigonometric
identities noting that y(t) is an odd function of t . Eq. (23) can be
further simplified noting thatwe have (x2+y2) = 2(H+−ν log(1−
x)) along xH, where H+ is the energy level of the fixed point x+.
Further defining H+ = νH , we write

M(t0) = ν · (µM1 +M2 sinΩt0)

2 More accurately, a one-parameter family of maps indexed by t0 .
3 The exponential term in (22) comes from the fact that F is not a Hamiltonian
vector field. In the situation described in [13], where the underlying equations are
Hamiltonian, ∇ · F ≡ 0 and the formulas simplify.
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Fig. 6. (a) The phase plane of Eq. (16) for ε = 0 and ν = 1/8. The curves that appear
to terminate on the line x = 1 have vertical asymptotes as x → 1. The thickened
closed curve is the homoclinic orbit xH , emanating from the fixed point x+ . The two
fixed points are marked with squares. (b) Level sets of µc as a function of ν andΩ .

where

M1(ν) =
∫
∞

−∞

Y (t) [2(1− x(t)) [H − log(1− x(t))]− x(t)] dt

and

M2(ν,Ω) =
∫
∞

−∞

Y (t)y(t) sinΩtdt.

Thus, there exist transverse intersections (hence chaos) if and only
if |µM1/M2| < 1, i.e. if

µ ≤ µc ≡

∣∣∣∣M2(ν,Ω)M1(ν)

∣∣∣∣ . (24)

Aswe alreadymentioned, the parameterµ is a damping coefficient
in the system (16). Chaos arises due to a balance between
damping (resulting here from capillary relaxation) and driving—
if the damping is too large, then the solution will collapse to
(nonchaotic) simple periodic orbits. Note further that the quantity
M2 goes to zero asΩ →∞ with fixed ν, so that there is no chaos
under rapid forcing. Fig. 6(b) shows level sets of the computed
valueµc. From this plot and relations (17), the chaotic domain can
be determined for the unscaled physical parameters.

2.4. Discussion

We have demonstrated that highly viscous drops in straining
flow may undergo complex nonlinear evolution, which includes
Fig. 7. System geometry: particle array in a parallel-wall channel.

shape hysteresis, period-doubling bifurcations, and transition to
chaos. To our knowledge the only other example of chaotic
dynamics arising from interface instability in Stokes flow is the
core-annular flow with insoluble surfactant adsorbed on the fluid
interface [14].
We have shown that key features of drop dynamics can be

described using a simple small-deformation theory that involves
only two modes in the expansion of the drop shape into spherical
harmonics. We note that similar techniques can be used to study
evolution of other deformable particles, such as vesicles [15,16] or
macromolecules [17].
Our results can also be applied to evaluate rheological response

of dilute dispersions in which particles deform, but interparticle
hydrodynamic interactions can be neglected. In Section 3 we
analyze a different set of problems: we focus on the role
of interparticle hydrodynamic interactions in systems where
particles are nondeformable.

3. Collective dynamics of particle arrays in a parallel-wall
channel

Our second example of nonlinear evolution in two-phase
systems under Stokes flow conditions is the behavior of arrays
of rigid spherical particles freely suspended in a fluid. The
arrays are driven either by an external flow or force. Since the
particles are nondeformable, the nonlinear dynamics stems from
the interparticle hydrodynamic interactions.
We focus on collective dynamics induced by confinement in

parallel-wall channels. Recent investigations have revealed that
confining walls significantly affect particle evolution, leading to
phenomena that do not occur in free space [5,18–20]. These
phenomena include enhanced relative particle diffusivity due
to a backflow effect [18,21], amplified transverse hydrodynamic
resistance of long particle chains [21–25], wave propagation in
linear particle arrays in Poiseuille flow, [5,19,20], and structural
transitions in flow-driven 2D particle arrays [5].

3.1. Dynamics of ordered flow-driven particle arrays

Collective evolution of regular quasi-2D arrays of neutrally
buoyant spherical particles is examined in a parallel-wall channel
under strong-confinement conditions H/d . 2 (where H is the
channel width and d is the particle diameter). The particle arrays
are driven by Poiseuille flow produced by a constant applied
pressure gradient. The geometry of the system is depicted in Fig. 7.
Examples of collective phenomena observed in flow-driven ar-

rays with initial square ordering are illustrated in Figs. 8 and 9. The
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Fig. 8. Evolution of initially square array of N = 961 particles in Poiseuille flow
in a parallel-wall channel of width H/d = 1.1. Interparticle spacingW/d = 5. The
time t is scaled by the time an isolated particle in the channel travels the distance
equal to its diameter d. The insets show the development of the dislocation line in
the region marked by the square.

results were obtained using our highly accurate accelerated Stoke-
sian dynamics algorithm [5,22,24,26]. Fig. 8 shows the evolution of
a finite initially square array of N ≈ 103 particles driven in the di-
agonal direction. An infinite periodic array, driven in the direction
along one of the lattice vectors, is depicted in Fig. 9. The array in
Fig. 8 is in themidplane of the channel z = H/2 (where z is the dis-
tance from the lowerwall) and the array in Fig. 9 is in the off-center
plane z ≈ H/3, with some scatter of vertical particle positions z.
The finite-size array in Fig. 8 undergoes macroscopic deforma-

tion accompanied by a sequence of structural transitions. Initially,
the particles maintain their original ordering on the deformed
square lattice. Next, double rows of particles separate from the ar-
ray, forming a shape similar to airplane wings. As the evolution
progresses, an instability occurs at the junction between the wings
and the body of the array; from the instability point there spreads
a region of disordered particle motion. Moreover, the simulations
also show that at the rear end of the array the particle lattice un-
dergoes a discontinuous rearrangement along a fault line that de-
velops at the axis of symmetry. As depicted in the blowups of the
dislocation region, the particles realign into a new square lattice,
with a different (i.e. diagonal) orientation.
Intriguing topological transitions also occur in infinite arrays. In

the initial frame shown in Fig. 9(a) there is a density wave in the
rectangular lattice. This longitudinal density wave propagates in
the flow direction, but it also dissipates. At time T = 700 the wave
has nearly dissipated, and the vertical particle scatter (not shown)
has significantly decreased. At this point, the array undergoes
a sudden transition to a polycrystalline hexagonal lattice. The
fact that this transition has not occurred earlier indicates that
the array was stabilized by random particle displacements. The
lattice subsequently evolves into a state with string-like particle
arrangements but no long range order. At much later times
particles form clusters.
The complex collective dynamics illustrated in Figs. 8 and 9 is

of purely hydrodynamic origin—there are no direct interparticle
forces in our system. Hydrodynamic interactions are thus respon-
sible formacroscopic deformation of the arrays, wave propagation,
tendency of the system to maintain ordered structure, and for the
array instabilities. Detailed mechanisms responsible for this com-
plex behavior are not known. However, our effective-medium the-
ory, discussed in Section 3.2 can provide an insight.

3.2. Effective-medium approach

The macroscopic evolution of the array shape can be described
using a simple quasi-2D effective-medium approximation. In this
approach [5,26], the suspension dynamics is described in terms
of the local volume velocity u of the suspension treated as a
2D continuum medium and macroscopic particle flux jp. The
suspension velocity and the particle flux satisfy the 2D continuity
equations

∇‖ ·u = 0,
∂ns
∂t
= −∇‖ · jp, (25)

where ∇‖ denotes lateral gradient operator, t is time, and ns is
the particle density per unit area. The lateral fluxes u and jp are
linked to the localmacroscopic pressure gradient∇‖p̄ via the linear
constitutive relations

u = −κ∇‖p̄, jp = −ns ν∇‖p̄. (26)

The transport coefficient κ is the channel permeability that relates
volume flux of suspension to the local pressure gradient (similar
to Darcy’s law for porous materials). The transport coefficient
ν is the collective particle mobility that describes macroscopic
particle velocity produced the pressure gradient. Both transport
coefficients κ and ν depend on the local suspension density ns.
a b c d e

Fig. 9. Evolution of infinite quasi-2D particle array in a parallel-wall channel of widthH/d = 1.9. Particles are distributed, with some scatter, near the plane z = 0.7d (where
z = 0 is the position of the lower wall). (a) Initial configuration with a propagating longitudinal displacement wave; (b) the displacement wave and vertical fluctuations
have dispersed; (c) transition to a polycrystalline state with hexagonal order suddenly occurs; (d) string-like particle order develops; (e) particle clusters begin to form.
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Fig. 10. Evolution of initially square particle array in diagonal motion. (a) Results
of effective-medium theory; (b) simulation results for the same system as the
one depicted in Fig. 8. The two frames (a) and (b) correspond to the same stage
of evolution. The effective-medium theory predicts fingering instability in the
region indicated by the ellipse, but for the system shown in (b) this instability is
suppressed.

We have solved Eqs. (25) and (26) in the weak-coupling limit
(corresponding to the low-density regime). In this regime the
channel permeability κ = κ0 + δκ only slightly differs from the
permeability κ0 of a particle-free channel, and the collective mo-
bility coefficient ν equals the mobility of an isolated particle in the
channel.
In the low-density regime, particles interact only through the

far-field velocity and pressure fields. The particle contribution
∇‖δp̄ to the macroscopic pressure gradient

∇‖p̄ = ∇‖pext +∇‖δp̄ (27)

(where ∇‖pext is the applied pressure gradient) can thus be
obtained from the superposition of 2D dipolar far-field pressure
contributions

p1(ρ − ρ′) = −D0 ·∇‖ log(|ρ − ρ′|) (28)

resulting from interaction of the external flow with individual
particles in the array [24,26]. Here ρ and ρ′ denote the lateral
positions of the field point and particle center, respectively. The
far-field form of the far-field pressure gradient results from the
Hele-Shaw character of the far-field flow in a parallel-wall channel
[18,21,24,27].
The particle dipole moment D0 depends on the channel width

and the position of the array with respect to the channel walls, but
it is independent of the particle position in the array. Assuming
constant particle density ns in the array and using the Gauss
formula, the particle contribution to the local pressure gradient

∇‖δp̄(ρ) = ns

∫
A′
∇‖p1(ρ − ρ′) dρ′ (29)

(where A′ is the area of the array) can be expressed as a line integral

∇‖δp̄(ρ) = nsD0 ·
∫
C ′
n̂′∇‖ log(|ρ − ρ′|) dl′ (30)
over the contour C ′ representing the boundary of the array A′. Here
n̂′ denotes the outward vector normal to the contour C ′.
We have used relations (26) and (30) to calculate the evolution

of an initially square arraywith rounded corners (smoothing of the
initial condition is needed to avoid a singular behavior). In Fig. 10
our calculations are comparedwith the direct simulations depicted
in Fig. 8. The comparison shows that our theory reproduces
quite well the evolution of the overall array shape, until complex
structural features develop.
The theory also predicts a fingering instability near the array

corners (in the region indicated in Fig. 10(a) by the ellipse). In the
array depicted in Figs. 8 and 10(b) this instability is suppressed
due to the tendency of the particles to maintain their order. Such
an instability occurs, however, for a smaller interparticle distance
W/d = 2 (cf. Fig. 11).
The effective-medium theory is successful in describing the

effect of the flow scattered by the array particles on the overall
array motion. However, this model is insufficient for a description
of fine structural features in the array. A discussionhow the validity
range of the effective-medium theory can be extended is presented
at the end of Section 3.3.

3.3. Stability of confined particle arrays

Collective phenomena discussed in Sections 3.1 and 3.2 were
observed for strongly confined particle arrays (i.e., for channel
widths comparable to the particle diameter). The effect of the wall
separation on the array evolution has not been determined yet.
To illustrate some key differences in the behavior of strongly and
weakly confined arrays, we analyze the evolution of an infinite
linear particle chain in channels with different normalized width
H/d.
We assume that the chain is parallel to the axis x, moves in the

midplane of the channel, and is driven by the constant force F =
F êy (normal to the chain and parallel to the walls), applied to all
particles. In Fig. 12 we show evolution of a chain in channels with
three different wall separations. In the initial configuration at t =
t0 the chain is slightly perturbed from a uniform configuration. The
perturbation corresponds to a small-amplitude density wave of
length λ = 30W , with the maximum at the center of the depicted
portion of the chain. A strongly confined chain (with H/d = 1.1)
is stable (cf. Fig. 12(a)). In contrast, the moderately and weakly
confined chains represented in Figs. 12(b) and 12(c) are unstable.
The stability of strongly confined chains and instability of

weakly confined ones can be explained using a simple continuum
model. In this model it is assumed that hydrodynamic interactions
between distant parts of a chain can be neglected. Thus in the long-
wave limit, the local velocity of a deformed chain can be expressed
by the mobility relation

v(s) = µ(s) ·F, (31)

where s is the position along the chain. The local mobility µ(s)
depends on the local values of the chain orientation α(s) and
a b c d

Fig. 11. Development of fingering instability in a flow-driven square array with initial interparticle spacingW/d = 2. The remaining system parameters are the same as
in Fig. 8.
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Fig. 12. Evolution of a force-driven infinite linear particle array with average interparticle spacingW/d = 3. The array is in the midplane of the channel, and equal driving
force F (parallel to the walls and normal to the array) is applied to all particles. At the initial time t0 there is a small-amplitude density wave of length λ = 30W in the array.
particle density per unit length nl(s). This dependence is given by
the relation

µ(s) = µ0(nl(s), α(s)), (32)

where µ0(nl, α) is the mobility of an infinite undeformed chain of
density nl and orientation α.4
By symmetry, the mobility tensor µ0 can be split into the

normal and tangential components

µ0 = µ⊥n̂n̂+ µ‖ t̂t̂, (33)

where n̂ is the local normal unit vector and t̂ unit vector tangent
to the chain. The dependence of the transverse and longitudinal
mobility coefficients µ⊥ and µ‖ on the chain density, for several
values of wall separation H , is illustrated in Fig. 13. The main
features to be noted are

µ‖ > µ⊥ (34)

and

dµ⊥/ dnl < 0, for H ≈ d, (35a)
dµ⊥/ dnl > 0, for H � d. (35b)

The different signs of the derivatives (35) for strongly confined and
weakly confined chains stem from the backflow effect discussed
in [21–23]. Namely, since there is no net flow in the channel,
fluid in a tightly confined system has to squeeze through the
gaps between the wall and the moving chain or through the
spaces between the chain particles. Hence, the transverse mobility
decreases with increasing particle density. In contrast, for weakly
confined systems, dense chains move faster, because of the larger
force per unit length of the chain.
Inequalities (34) and (35) have important consequences for

stability of the chain in transverse motion. This can be seen by
considering a small perturbation

nl(x, t) = n0 + δnl(x, t), y(x, t) = y0(t)+ δy(x, t), (36)

of the chain density and shape from a uniform state with constant
density n0. The particles are positioned on the horizontal line
y0 = v0t moving with the chain velocity v0 = µ⊥(n0)F . Using

4 The flow field produced by a point force in a channel decays as ρ−2 for lateral
distances ρ � H . Therefore, relations (31) and (32) are exact in the asymptotic
regime λ � H (where λ is the characteristic distance for variation of the chain
density and shape). In the intermediate regime d < λ < H the long range O(ρ−1)
contributions from regions λ . ρ . H cannot be neglected, and thus, in this
range, our model captures key features of the system dynamics qualitatively but
not quantitatively.
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Fig. 13. (a) Transverse and (b) lateral mobility of infinite linear chain of spherical
particles in a parallel-wall channel of width H/d = 1.1 (solid line), H/d = 5
(dashed), and H/d = 80 (dotted) vs. chain density nl = d/W . The results are
normalized by the corresponding results in the low-density limit.

relations (31)–(33) and (36) we find the evolution equations for
the perturbations of the chain density and shape

∂

∂t
δnl = −n0(µ‖ − µ⊥)

∂2

∂x2
δy, (37a)

∂

∂t
δy =

dµ⊥
dnl

δnl. (37b)

Assuming a solution in the form of Fourier modes

δnl = Aei(kx−ωt), δy = Bei(kx−ωt), (38)

we obtain the dispersion relation

ω = ±

[
−n0(µ‖ − µ⊥)

dµ⊥
dnl

]1/2
k. (39)
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Fig. 14. Dynamics of (a) strongly confined and (b) weakly confined particle chain
in transverse motion. In the strongly confined chain the dense region stays behind,
which causes relaxation of the density perturbation because adjacent portions of
the chain slide outwards. In the weakly confined chain the dense region moves
faster, which causes growth of the density perturbation because the adjacent
portions of the chain move inwards.

The inequalities (34) and (35) thus imply that the frequency ω is
real for strongly confined systems with H ≈ d and ω is imag-
inary for weakly confined systems with H � d. In the former
case the system is stable, with coupled longitudinal and transverse
waves. In the latter case the system is unstable, and initial pertur-
bations grow exponentially. The mechanism leading to the differ-
ent behavior of weakly and strongly confined chains is illustrated
in Fig. 14.
The chain evolution depicted in Fig. 12 is consistent with the

above analysis. For H/d = 1.1 we observe standing-wave oscilla-
tions of coupled longitudinal and transverse modes (cf. Fig. 12(a)).
For H/d = 80 Fig. 12(c) shows an instability due to the exponen-
tial growth of the initial long-wave perturbation. For H/d = 5 the
long-wave modes are stable, but the system decomposes via un-
stable short-wave modes (cf. Fig. 12(b)).
The analysis presented above can be generalized to 2D arrays.

To determine the effect of the deformation of particle lattice on
the array motion, the scalar transport coefficients κ and ν in the
effective-mediumequations (26) should be replacedwith tensorial
coefficients κ and ν that depend on the local lattice vectors. We
expect that such a modified effective-medium theory will explain
why the fingering instability occurs only in sufficiently dense
suspensions. It is also tempting to speculate that the fault line
that develops in the rear end of the array (shown in Fig. 8) can be
described as a shock in the solution.

3.4. Discussion

Our Stokesian dynamics simulations revealed that strongly
confined regular particle arrays in Poiseuille flow undergo
complex structural evolution. We have observed discontinuous
reorientation of particle lattice, stabilization of quasi-2D ordered
systems by random particle displacements, and order–disorder
transitions.
Some aspects of the system dynamics, such as the evolution

of the array shape and a fingering instability have been described
using an effective-medium theory. A simple continuummodel has
also been used to elucidate differences in stability of confined and
unconfined particle arrays.
Our present results are numerical and theoretical. We would

like to point out, however, that related phenomena were observed
in recent laboratory experiments. These phenomena include
propagation of displacement waves in linear arrays of drops in
microfluidic channels [19,20] and breakup of a low viscosity drop
into a square array of droplets in a Hele-Shaw cell [28]. It would
also be interesting to performexperiments inwhich ordered arrays
of micron-size particles are assembled using holographic optical
tweezers [29].

4. Conclusions

We have analyzed nonlinear hydrodynamic phenomena that
occur in creeping flows of two-phase dispersions. Two important
classes of nonlinear behavior have been considered: the dynamics
of individual deformable drops in external flows, and the motion
of assemblies of hydrodynamically coupled rigid particles. In
the first case the nonlinear evolution results from the coupling
between the fluid flow and the drop shape. In the second
case the nonlinear dynamics is a consequence of multiparticle
hydrodynamic interactions.
For both systems we have found complex nonlinear evolution:

bistability and chaotic dynamics for individual drops; and wave
propagation, lattice rearrangements, and fingering instabilities
in flow-driven regular particle arrays. Moreover, our additional
simulations have revealed complex irregular evolution of coupled
harmonic waves in flow-driven particle chains—in our future
investigations we will determine if this irregular evolution is
chaotic.
We have given separate descriptions of particle deformation

and interparticle hydrodynamic interactions because of the
complexity of these nonlinear phenomena. In many physical
problems, however, the effects described in our paper need to
be considered together. For example, in studies of emulsion
flows [30–32] and blood circulation [33] particle deformation and
interparticle hydrodynamic interactions are coupled.
The techniques used here to analyze the behavior of individual

drops and the motion of particle arrays can be combined to
describe the evolution of suspensions of soft particles. We have
recently shown that the dynamics of chains of deformable drops
in parallel-wall channels can be described in this way [34].
Finally, macromolecular solutions can also be studied using

our methods. For example, the approach that we have applied to
analyze bistable dynamics of viscous drops can be successfully
employed to describe the evolution of DNA macromolecules in
linear flows [17]. Our results can thus shed light on numerous
aspects of nonlinear dynamics of complex fluids.
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