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Abstract. We study the scattering of a vortex dipole by a point vortex in the Helmholtz model
of point-vortex interactions. We reduce a system of three vortices by stages to a one-degree-of-
freedom conservative system. We relate properties of the scattering dynamics to features in the
phase space of the reduced system. We first change variables to the Jacobi coordinates, followed by
a Nambu reduction. This shows that the natural phase space of this problem is the upper sheet of a
two-sheeted hyperboloid, which degenerates to an upper half-cone in a critical case. Gröbli (1877)
derived the standard reduction of this system in which the system’s state is represented by the
lengths of the triangle’s sides. The new coordinate system overcomes two related shortcomings of
Gröbli’s reduction that have made understanding the dynamics difficult: the lack of a phase plane
and the singularity at all configurations in which the vortices are collinear. We then generalize the
problem to consider when the circulation of the third, initially stationary, vortex differs from the
circulations of the two that form the propagating dipole.

1. Introduction

The mutually-induced motion of point vortices in a two-dimensional inviscid incompressible fluid
is a classical topic in fluid mechanics. The positions of the vortices are described by a Hamiltonian
system of ordinary differential equations that has been well-studied over 150 years [23, 26]. These
ODEs remain relevant because of their deep connection to turbulence in Bose-Einstein condensates
and other quantum fluids, as summarized, for example, in Ref. [22].

In this paper, we develop a phase-plane approach to the scattering of three such vortices. It is
well-known that two vortices with circulations of identical magnitude but opposite orientation form
a dipole that propagates at constant velocity perpendicular to the line joining them. The presence
of a third vortex can deflect its uniform motion, an example of scattering. Three such scattering
solutions are shown in Fig. 1.1, in which the third vortex has the same absolute circulation as the
two that form the dipole. While these three solutions obey very similar conditions as t → −∞,
their behavior as t→ ∞ are quite different. Subfigures (a) and (b) show exchange scattering events:
the dipole that exits the collision region is not composed of the same two vortices as the dipole
that entered. By contrast, subfigure (c) displays direct scattering ; the same two vortices form the
dipole before and after the interaction. In addition to tracking whether the scattering event is of
exchange or direct type, a usual question is to find a formula for the angle between the direction of
propagation of the entering and exiting dipoles. These two questions have already been answered
in separate papers by Aref and Lydon et al. in [2, 22]. Here, we derive a new reduced form of the
equations of motion that sheds significant light on the scattering process. Since the dynamics of
larger point vortex systems largely consist of a sequence of isolated three-vortex interactions, this
should be useful in other vortex dynamics problems.

First, we discuss the need for a new reduction of three-vortex dynamics. Phase-space visualization
and analysis are among the most important tools in dynamical systems, but the most commonly
used form of the three-vortex equations makes phase-space reasoning difficult. Consider, by analogy,
the pendulum. By the nineteenth century, the equations of motion for the well-known to be
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(a) (b) (c)

Figure 1.1. Three solutions of the scattering problem showing (a) Exchange scat-
tering for ρ = −0.999. (b) Exchange scattering for ρ = 2.5. (c) Direct Scattering
for ρ = 3.8. The vortex dipole arrives from −∞ traveling parallel to the x axis, and
vortex 3 sits at rest at the marked point as t→ −∞.

integrable, and the exact solution could be found in terms of the Jacobi elliptic integrals sn (ϕ, k),
cn (ϕ, k), and dn (ϕ, k), and its period in terms of the complete elliptic integral K(k). Today,
such solutions are rarely taught and are needed only to obtain specific quantities, such as the
period of an orbit. Instead, we teach students about the pendulum’s phase space, which is most
naturally represented as a cylinder whose coordinates are given by the pendulum’s angle and angular
velocity; see Fig. 1.2. The earliest publication we can find of the pendulum phase space is in the
1937 book of Andronov and Chaikin [1]. An educated reader can easily pick out all the features
of the dynamics from this image: it has two fixed points, a center corresponding to the stable
downward-pointing equilibrium and a saddle corresponding to the unstable inverted equilibrium.
The center is surrounded by a family of closed curves corresponding to the librations. The limit of
this family is a pair of homoclinic orbits connecting the inverted equilibrium to itself, and on the
other side of the homoclinic orbits, closed curves encircling the cylinder corresponding to rotational
periodic orbits. This diagram helps us reason about the dynamics: since both the librating and
rotating families of periodic orbits limit to the homoclinic orbit, we may conclude there exist initial
conditions arbitrarily close to each other, on opposite sides of the homoclinic orbit, with very
different dynamics. Because orbits slow down as they approach a fixed point, the orbits’ periods
diverge as they approach the homoclinic orbit.

The equations of motion for a system of point vortices were first derived by Helmholtz and put
into Hamiltonian form by Kirchhoff [19, 33]. Gröbli’s 1877 doctoral thesis was the first detailed
exploration of their solutions. In it, he derived the most commonly used reduction of the three-
vortex system, a closed system of equations for the side lengths ℓj of the triangle with vertices at
the three vortices. This system and others derived from it are used in most subsequent studies of
the three-vortex problem [2, 6, 24, 27, 30, 31]. Aref and his collaborators researched this history
extensively [5, 23]. We have translated the dissertation into English [12].

This reduction, however, is ill-suited to phase-space reasoning, though past researchers have
made some progess [2, 30]. The coordinates ℓj must satisfy the triangle inequality, so not all triples
(ℓ1, ℓ2, ℓ3) represent physical configurations that satisfy this constraint. Let Dphys ⊂ R3 denote
the domain of physical configurations. Each point on its interior represents two triangles that are
mirror images. The boundary ∂Dphys consists of collinear configurations of the three vortices. Such
arrangements are common: many families of periodic orbits pass through such states twice per
period, and three of the five possible rigidly rotating configurations of three vortices are collinear.
Since the equations are singular on ∂Dphys, linearization fails, and even finding the linear stability
of the collinear states is difficult. More advanced reasoning, such as separating orbits into different
families, like the librating and rotating pendulum orbits, is similarly difficult. The singularity of the

2



Figure 1.2. The phase space of the pendulum, in the plane and wrapped into a
cylinder; after [1].

reduced ODE system is an artifact of the reduced coordinate system. It is not present in the vortex
motion equations, which are only singular at configurations where two or more vortices occupy the
same location. An alternate system of equations, based on the angles between the sides of the
triangle and the radius of its circumcircle, has proved useful in certain situations but suffers from
similar artificial singularities[3, 20].

The chief innovations of this paper are introducing a new reduction of the equations of motion
that makes phase-space reasoning significantly easier and using this phase-plane to obtain a more
thorough understanding of the scattering.

The paper is organized as follows. In Sec. 2, we introduce the equations of motion of the N -vortex
system and review the Hamiltonian formalism used to study them. In Sec. 2.1, we focus on the
problem of three vortices with circulations Γ1 = Γ2 = −Γ3 = 1 and set up the scattering problem
of interest. Sec. 3 reduces the system to the form needed to analyze the dynamics and is divided
into subsections. We use Jacobi coordinates to reduce the number of degrees of freedom from three
to two in Sec. 3.1 and then introduce Nambu brackets to further reduce the system in Sec. 3.2. In
Sec. 3.3, we pause to interpret the relationship between the fully reduced coordinate system and the
laboratory frame, allowing us to understand the new coordinates geometrically. Sec. 3.4 discusses
how to recover two angles important for describing the dynamics: the system’s orientation and
the heading of the third vortex. This last quantity, when integrated, gives the scattering angle.
Sec. 4 contains our analysis and visualization of the reduced system: we discuss its fixed points and
singularities in Sec. 4.1 and visualize and interpret its phase space in Sec. 4.2. The separatrices
divide the phase space into regions of topologically equivalent trajectories by the separatrices, and
these, in turn, allow us to identify important transitions in the dynamics in Sec. 4.3. In Sec. 5, we
generalize to the case where the initially stationary vortex has circulation Γ ̸= 1, generalizing the
reduction in Sec. 5.1, the phase space visualization in Sec. 5.2 and the explanation of the scattering
in Sec. 5.3. We conclude in Sec. 6 with a discussion of the possible future applications of the
coordinate reduction method.

3



2. The N-vortex system

The point-vortex model idealizes a near-two-dimensional inviscid incompressible fluid in which
the vorticity is confined to a finite number of discrete points that induce a velocity that, in turn,
causes the vortices to move. It is a standard topic in elementary fluid mechanics textbooks such
as [9] and is well covered in Newton’s textbook devoted to the subject [26].

Helmholtz derived the model of point-vortex motion describing the interaction of N point vor-
tices, defined by the system of 2N ODEs in 1858 [33]:1

(2.1)
dxi
dt

= −
N∑
j ̸=i

Γj
(yi − yj)

∥ri − rj∥2
,

dyi
dt

=

N∑
j ̸=i

Γj
(xi − xj)

∥ri − rj∥2
.

Here ri = ⟨xi, yi⟩ denotes the position of the ith point vortex and Γi represents its circulation. The
equations conserve an energy

(2.2) H(r1, . . . , rN ) = −1

2

N∑
i<j

ΓiΓj log ∥ri − rj∥2.

In 1876, Kirchhoff noted that system (2.1) has a Hamiltonian formulation [19],

(2.3)
dxi
dt

=
1

Γi

∂H

∂yi
,

dyi
dt

= − 1

Γi

∂H

∂xi
.

This system possesses a Poisson bracket

(2.4) {F (r), G(r)} =
N∑
i=1

1

Γi

(
∂F

∂xi

∂G

∂yi
− ∂F

∂yi

∂G

∂xi

)
.

Together with the chain rule, this implies that any function F (r) evolves according to

(2.5)
dF

dt
= {F,H}.

The factor of 1
Γi

in these equations means that Hamiltonian system (2.3) is not quite in canonical
form. This may be remedied by introducing variables

(2.6) qi =
√

|Γi|xi and pi =
√

|Γi| sign(Γi)yi,

which renders both the equations and the Poisson brackets into the canonical forms

(2.7)
dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

.

and

(2.8) {F,G} =

N∑
i=1

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
.

Using these coordinates generally renders the equations harder to read and interpret so that we
will avoid them except at one crucial step of the following reduction.

System (2.1) has three well-known conservation laws, which we write as

(2.9) M = ⟨Mx,My⟩ =
N∑
i=1

Γiri, and Θ =

N∑
i=1

Γi∥ri∥2.

1We systematically ignore a factor of 1
2π

on the right-hand side of these equations and all that follows. This
amounts to a rescaling of time.
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The quantities M and Θ are called the linear impulse and the moment of vorticity, respectively.
In the case that Γtot =

∑N
i=1 Γi ̸= 0, then

(2.10) r0 = M/Γtot

defines the location of the conserved center of vorticity.

2.1. The three-vortex system and dipole-vortex scattering. We consider a system of three
vortices: the vortices at positions r1 and r2 having circulation +1 and the vortex at r3 with
circulation −1, previously considered in several other works [2, 22]. It is the subject of sections 3-5
of Gröbli’s dissertation [5, 14].

This system has Hamiltonian

(2.11) H = −1

2
log ∥r1 − r2∥2 +

1

2
log ∥r1 − r3∥2 +

1

2
log ∥r2 − r3∥2.

The conserved center of vorticity is thus

(2.12) r0 = r1 + r2 − r3

and the angular impulse is

(2.13) Θ = ∥r1∥2 + ∥r2∥2 − ∥r3∥2.

The Hamiltonian for the N -vortex system (2.1) with N = 1 vanishes identically. Therefore, a
single point vortex remains in its initial position for all time. When N = 2 and the two vortices
have equal strength and opposite circulation, they form a dipole that moves with constant velocity
along the perpendicular bisector to the segment connecting them. Several previous studies have
examined the behavior of the three-vortex system in which a dipole impinges on a stationary
vortex. A schematic of this setup is shown in Fig. 2.1. A dipole consisting of a positive-circulation
vortex at position r1 = ⟨−L, ρ + d

2⟩, where L ≫ 1, and a negative-circulation vortex at position

r3 = ⟨−L, ρ−d
2⟩ propagates to the right toward a positive-circulation vortex at position r2 = ⟨0,−d⟩.

These are chosen to set r0 = 0. Without loss of generality, we take d = 1. This is justified given
the invariance of system (2.1) under rescaling of space and time, as discussed by Chapman [8].

Eventually, vortex 3 escapes to infinity as part of a dipole. We call the case when the escaping
dipole comprises vortices 1 and 3 a direct scattering event and the case when it comprises vortices
2 and 3 an exchange scattering event.

1

2

3

d

d
L

;

(x1; y1)

(x2; y2)

(x3; y3)

(x0; y0) = (0; 0)

Figure 2.1. Setup of the scattering problem. The dipole formed by vortices 1 and
3 propagates toward the target, vortex 2. Without loss of generality, we take d = 1
throughout the study.
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Examples are shown in Fig. 1.1. The initial conditions are posed as in the schematic, showing
exchange scattering in panels (a) and (b) and direct scattering in panel (c). Since vortex 3 has
opposite circulation to the two others, it must be part of both the entering and exiting dipoles.
We define the scattering angle ∆α to be its change of heading; see Eq. (3.26). Figure 2.2 shows
the scattering angle as a function of the offset ρ, with the scattering angles of the three solutions
shown in Fig. 1.1 marked.

!1 ! 1
2

7
2

;

-4

-2

0

2

4

6

"
,

(a)

(b)
(c)

Figure 2.2. The deflection of the angle of vortex 3 plotted as a function as the
distance ρ, showing singularities at ρ = −1 and ρ = 7

2 as expected. The solid
line is the result of direct simulation, and the red dots are the formulas derived in
Appendix A. The points marked (a)–(c) correspond to the three simulations shown
in Fig. 1.1.

If |ρ| ≫ 1, the isolated vortex will scarcely deflect the dipole, so direct scattering will occur.
Previous authors have determined, via fairly involved calculations, that exchange scattering occurs
for −1 < ρ < 7

2 [2, 22], and direct scattering outside this interval. The points ρ = −1 and

ρ = 7
2 separate distinct domains of behavior in this system, and the scattering angle diverges

as ρ approaches these values. In a dynamical system, such domains of behavior are typically
bounded by separatrices: manifolds dividing initial conditions with different dynamical behavior.
No separatrices are identified in these prior studies, and the purpose of the present paper is to find
them and see how they illuminate the phenomenon. To do so, we first introduce a sequence of
transformations that will allow us to compute and visualize these separatrices.

3. Reduction by stages

Choosing the proper coordinate system may significantly clarify the study of a particular phe-
nomenon, but how to construct such a coordinate system may not be obvious. In the ideal case, any
such coordinates should be easy to interpret, which implies, among other things, that they should
have a clear meaning and be invertible so that we may reconstruct the original motion from the
transformed motion. We are particularly interested in canonical changes of variables, those which
preserve the Hamiltonian form of the evolution equations. The first change of variables to Jacobi
coordinates is canonical, while the second change, a Nambu reduction, requires us to generalize the
framework of Hamiltonian systems.

Müller and Névir showed that Gröbli’s reduced equations could be reinterpreted as Nambu
dynamics [24], but this construction does not solve the problem of those coordinates’ singularity.

3.1. Jacobi coordinate reductions. Jacobi coordinates are a standard tool for reducing n-body
problems, especially in celestial mechanics, and are discussed at length in Jacobi’s 1866 Lectures on
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Dynamics [18]. It is a straightforward method and underlies the reductions used in many studies
of vortex interactions [29]. Still, the point-vortex paper we have found that references the method
by name is a recent one by Luo et al. [21].

The Jacobi coordinate transformation consists of iteratively applying the change of variables

r̃1 = r1 − r2; Γ̃1 =
Γ1Γ2

Γ1 + Γ2
;(3.1)

r̃2 =
Γ1r1 + Γ2r2
Γ1 + Γ2

; Γ̃2 = Γ1 + Γ2,(3.2)

where Γ1+Γ2 ̸= 0. The variables Γ̃1 and Γ̃2, are known, respectively, as the reduced circulation and
total circulation of the pair. These equations may be inverted to obtain the original coordinates

(3.3) r1 = r̃2 +
Γ2

Γ1 + Γ2
r̃1, r2 = r̃2 −

Γ1

Γ1 + Γ2
r̃1.

Substituting these back into the Hamiltonian (2.2) yields a new Hamiltonian H(r̃1, r̃2, r3, . . . , rN )

and evolution equations of the form (2.3) with circulations Γ̃1, Γ̃2,Γ3, . . . ,ΓN . We then apply a

similar transform to Eq. (3.1) to r̃2, r3, Γ̃2 and Γ3, repeating the process for each pair until rN has
been transformed. The transformed circulations redefine the Poisson bracket (2.4) and thus the
evolution equations (2.5).

We assume that

(3.4)
N∑
j=0

Γj ̸= 0,

and, moreover, that the vortex labels have been chosen to ensure that

(3.5)

k∑
j=0

Γj ̸= 0, for all k ≤ N.

Condition (3.5) ensures that this will be possible at each state. Because the mass of the jth body,
which serves as the analog to the circulation Γj , must be positive, condition (3.5) is never an issue
in the gravitational problem.

We now discuss the meanings of these coordinates. We assign the names Rj to the transformed
variables and κj to the transformed circulations. Clearly, R1 is the displacement from r2 to r1
and, similarly, R2 is the displacement from r3 to the center of vorticity of the r1, r2 subsystem. A
similar definition holds for the remaining Rj with j < N , whereas RN coincides with our previously
defined r0, the center of vorticity defined in Eq. (2.10). Since this quantity is conserved, we have
reduced the dimension of the phase space by two.
We now apply this change of variables to the three-vortex system defined by Hamiltonian (2.11).
The transformed positions and circulations are

(3.6)

R1 = r1 − r2; κ1 =
1

2
;

R2 =
r1 + r2

2
− r3; κ2 = −2;

R3 = r1 + r2 − r3; κ3 = 1.

Because R3 is simply the conserved center of vorticity r0, we may without loss of generality set

(3.7) R3 = r0 = 0.
7



In these coordinates, the Hamiltonian and angular impulse are

(3.8) H = −1

2
log ∥R1∥2 +

1

2
log

∥∥∥∥R2 +
R1

2

∥∥∥∥2 + 1

2
log

∥∥∥∥R2 −
R1

2

∥∥∥∥2,
and

(3.9) Θ =
1

2
∥R1∥2 − 2∥R2∥2.

3.2. Further reduction via Nambu brackets. Before further reducing the equations, we nor-
malize the system using Eq. (2.6) and the values of κj from Eq. (3.6), which gives

(3.10)
Q1 =

1√
2
X1, P1 =

1√
2
Y1,

Q2 =
√
2X2, P2 = −

√
2Y2.

Defining Ri = ⟨Qi, Pi⟩ and R̄i = ⟨Qi,−Pi⟩, the conserved quantities become (up to an additive
constant)

(3.11) H = −1

2
log ∥R1∥2 +

1

2
log
∥∥R1 + R̄2

∥∥2 + 1

2
log
∥∥R1 − R̄2

∥∥2,
and

(3.12) Θ = ∥R1∥2 − ∥R2∥2.
Finally, we introduce a change of variables that allows us to express the dynamics using Nambu
brackets [15–17, 25].

Z = ∥R1∥2 + ∥R2∥2,
X + iY = 2R1R2,

(3.13)

where Ri are allowed to multiply as if they were complex variables with real and imaginary parts
Qi and Pi. These coordinates satisfy

(3.14) Θ2 = Z2 −X2 − Y 2,

which we know to be conserved. Thus, the trajectory (X(t), Y (t), Z(t)) is confined to the upper
sheet of a hyperbola of two sheets, which degenerates to a cone when Θ = 0. Because Z ≥ 0 by
definition, the trajectories lie on the upper sheet.

In these variables, the Hamiltonian is just

(3.15) H = −1

2
log (Z +Θ) +

1

2
log
(
Z2 −X2

)
.

The Nambu bracket of three functions F (X,Y, Z), G(X,Y, Z), and K(X,Y, Z) may be defined as

(3.16) {F,G,K} = ∇F · (∇G×∇K) .

Then one may show that the dynamics due to the Hamiltonian (3.11) and Poisson bracket (2.8)
under the evolution law (2.5) are equivalent to allowing X, Y , and Z to evolve according to

(3.17) Ḟ = {F, 2Θ, H} ,
i.e.,

dX

dt
= + 4Z

∂H

∂Y
+ 4Y

∂H

∂Z
;(3.18a)

dY

dt
= −4Z

∂H

∂X
− 4X

∂H

∂Z
;(3.18b)

dZ

dt
= −4Y

∂H

∂X
+ 4X

∂H

∂Y
.(3.18c)
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While significant mathematical structure underlies this transformation, this calculation is simply a
long exercise in using the chain rule.

For the conserved quantities (3.15) and (3.14), this gives evolution equations

dX

dt
=

−2Y

Z +Θ
+

4ZY

Z2 −X2
;(3.19a)

dY

dt
=

2X

Z +Θ
;(3.19b)

dZ

dt
=

4XY

Z2 −X2
.(3.19c)

This is the main reduced form we will use to analyze this system. Unlike Gröbli’s side length
equations, system (3.19) is only singular at the singularities of Hamiltonian (2.2).

3.3. An interpretation of the final coordinate system. We now provide a simple geometric
interpretation relating the (X,Y, Z,Θ) coordinate system to the physical coordinates. Consider
Figure 3.1. By assumption (2.10), the center of vorticity lies at the origin, and we let vj denote the
vector from the origin to vortex j. Relation (2.10) implies that v3 = v1 + v2 so that the positions
of the three vortices and the origin form a parallelogram, a fact mentioned by Gröbli [14, §3]. We
let ϕ be the angle from v1 to v2. We then find by following through the sequence of changes of
variables that

X = −∥v1∥2 + ∥v2∥2;
Y = 2 (v1 × v2) · k = 2∥v1∥∥v2∥ sinϕ;

Z = ∥v1∥2 + ∥v2∥2;
Θ = −2v1 · v2 = −2∥v1∥∥v2∥ cosϕ.

(3.20)

Now that we know the simple relation between the original coordinate system and the (X,Y, Z,Θ)
coordinates, it may be tempting to skip over the reduction procedure used here and simply state
that a useful and straightforward coordinate system has been found. Nonetheless, writing out the
steps taken is instructive and will help generalize this calculation below.

V2

(0, 0)
V1

V3 = V1 + V2

Figure 3.1. Diagram used to interpret the (X,Y, Z,Θ) coordinates. See the text
for an explanation.

Some observations

• X is the signed difference between the lengths of v1 and v2, so vanishes when the triangle
of vortices is isosceles.
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• Y vanishes when the three vortices are collinear, which is not a singularity of the coordinate
system.

• For Θ = 0, cosϕ = 0, so at all times, the three vortices form a right triangle, with vortex
2 at the right angle. Then, trivially, they cannot be collinear, so Y ̸= 0; this can also be
deduced from the singularity of the Hamiltonian (3.15) when Θ = 0.

3.4. Recovering some angles. The argument above shows that the (X,Y, Z,Θ) variables are
insensitive to a rigid rotation of the parallelogram in Fig. 3.1 about the origin. Therefore, we
introduce a canonical form of polar coordinates (the action-angle variables of a harmonic oscillator)
to recover this angle.

Returning to the coordinates R1 and R2 used in Eq. (3.11), we let

(3.21) R1 = ⟨
√
2I1 sin θ1,

√
2I1 cos θ1⟩, R2 = ⟨

√
2I2 sin θ2,

√
2I2 cos θ2⟩.

Two observations are important here. First, the Hamiltonian depends on the angles only through
the combination θ1 + θ2. Second, the vector v3 in the figure has argument θ2 − π

2 . Therefore, we
make one additional canonical transformation

(3.22) ψ1 = θ1 + θ2, ψ2 = θ2, J1 = I1, J2 = I2 − I1,

In these variables, the Hamiltonian takes the form (again ignoring additive constants)

(3.23) H =
1

2
log
(
4J2

1 sin
2 ψ1 + 4J1J2 sin

2 ψ1 + J2
2

)
− 1

2
log (J1)

Since the equation is cyclic in ψ2, the action J2 = −Θ/2 is conserved. The dynamics of J1 and ψ1

are equivalent to system (3.19). We may recover the evolution of θ2 = ψ2 by integrating

(3.24) ψ̇2 =
2J1 sin

2 ψ1 + J2

4J2
1 sin

2 ψ1 + 4J1J2 sin
2 ψ1 + J2

2

along a scattering trajectory. In terms of the Nambu variables, this becomes

(3.25) θ̇2 =
2Y 2

√
Θ2 +X2 + Y 2 − 2ΘX2

(X2 + Y 2) (Θ2 + Y 2)
.

The angle just calculated describes the argument of v3 in Fig. 3.1, which is distinct from the
scattering angle α = arg dz3

dt plotted in Fig 2.2. In terms of the reduced coordinates, we find that

(3.26)
dα

dt
= − 8ΘY 2

(X2 + Y 2) (Θ2 + Y 2)
.

Integrating this over a trajectory then gives ∆α.

4. Analysis and visualization of the reduced system

We first derive the fixed points and singularities of system (3.19) before visualizing the system’s
phase space.

4.1. Fixed points and singularities. To find fixed points, we the right-hand sides of sys-
tem (3.19) to zero while enforcing the constraints (3.14) and Z ≥ 0. Similarly, the system has
singularities where either term in the Hamiltonian (3.15) vanishes, enforcing the same two con-
straints. Which equilibria and singularities exist depends on Θ.

When Θ < 0, the system has two equilibria E±
tri and a singularity S11 found by setting Z+Θ = 0,

which requires X = Y = 0.

(4.1) E±
tri =

X±
Y±
Z±

 =

 0

±
√
3Θ

−2Θ

 and S11 =

 0
0

−Θ

 .
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When Θ = 0, there are no equilibria, but the system is singular when Z = |X|, which requires
Y = 0.

When Θ > 0, the system has a single equilibrium

(4.2) E−1 ≡

X0

Y0
Z0

 =

0
0
Θ


and no singularities.

The fixed points E±
tri and E−1 are relative equilibria in the laboratory coordinates, i.e., they are

equilibria when viewed in an appropriate rotating reference frame. We may interpret them using
Eq. (3.20). For both equilibria X = 0 implies ∥v1∥ = ∥v2∥. The equilibrium E±

tri exists for Θ < 0.

For the equilibrium E±
tri, the value of the component Z = −2Θ implies that ϕ = ±π

3 and the
three vortices lie at the vertices of an equilateral triangle, motivating the naming convention. The
equilibrium E−1 exists for Θ > 0. This implies ϕ = π so that the three vortices are collinear with
the two positive vortices equally spaced from the negative vortex at the center. The subscript −1
indicates that the vortex with circulation −1 sits at the center. By similar reasoning, we find that
at the singularity S11, the two vortices with circulation +1 coincide, again motivating the notation.

4.2. The phase space. By the conservation law (3.14), the phase space of system (3.19) is the
upper sheet of a two-sheeted hyperbola. We visualize the dynamics by projecting this surface
into the XY plane in Fig. 4.1. The conserved angular impulse Θ plays the role of a bifurcation
parameter, but up to scaling when Θ ̸= 0, there are only three possible phase planes.

For Θ < 0 in panel (a), the point at the origin is the singularity S11. The two equilibria E±
tri sit

on the Y axis and are seen to be saddle points connected by a pair of homoclinic orbits. The two
homoclines surround a family of periodic orbits, which shrink to a point at S11. Each corresponds
to a hierarchical orbit in which the two positive vortices orbit about each other rapidly while their
mutual center of vorticity and the third vortex orbit each other; Gröbli computed this orbit in
closed form and plotted it [14, Fig. 1]. As the diameter of these closed orbits goes to zero, the
rotation rate of this tightly bound pair diverges, and the orbits approach the singularity S11. The
unbounded portions of the stable and unstable manifolds separate the remainder of the phase plane
into four unbounded quadrants. This will be important when we return to discuss the scattering
problem.

When Θ = 0 in panel (b), the entire X axis is singular, and all solutions are confined to the
upper or lower half-planes. For Θ > 0 in panel (c), the collinear equilibrium E−1 at the origin is a
saddle point. Its invariant manifolds also separate the plane into four unbounded quadrants.

Finally, note that rescalingX and Y by |Θ| and t by |Θ|−1 (when Θ ̸= 0) shows that the dynamics
for any negative (respectively, positive) value of Θ has a phase plane equivalent to that shown in
the left (respectively, right) subfigure.

4.3. Explaining the scattering. We now explain the behavior of the three-vortex scattering
problem depicted in Fig. 2.1. The critical insight of the pendulum example is that the stable and
unstable manifolds of the inverted equilibrium form boundaries, or separatrices, between different
types of dynamics. In that system, the periods diverge as one moves between curves along either
family of periodic orbits toward a separatrix. In the vortex system, the most likely explanation
for the change in behavior from direct scattering to exchange scattering and back at ρ = −1 and
ρ = 7

2 , and the divergence of the scattering angle near these points seem likely to depend on the
crossing of separatrices. That is indeed the case, as we now show.

The separatrices shown in Fig. 4.1 divide the phase plane into families of trajectories with
identical topology, and the topology of the phase plane is determined, in turn, by the conserved
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Figure 4.1. The XY phase planes of system (3.19). (a) The case Θ < 0 with
singularity S11 (point) and triangular configurations at the intersections of the thick
curves. (b) The case Θ = 0. The gray line Y = 0 is singular. (c) the case Θ > 0
with collinear equilibrium E−1. Note that the contours are not evenly-spaced level
sets of the energy (3.15) but were chosen to illustrate the topology clearly.

parameter Θ. Panel (a) depicts the case Θ < 0, where the energy level of the separatrices equals
that of the rotating triangular configurations E±

tri, given by

(4.3) E(E±
tri) =

1

2
log (−4Θ).

The energy in the two regions to the left and right of E±
tri (those containing the X-axis) is lower than

E(E−1), while the energy in the regions above and below the separatrices is higher than E(E±
tri).

Panel (c) shows the case Θ > 0, where the energy level on the separatrices equals that of the
collinear equilibrium E−1, which we compute to be

(4.4) E(E−1) =
1

2
log

Θ

2
.

The energy in the two regions to the left and right of E−1 (those containing the X-axis) is lower than
E(E−1), while the energy in the regions above and below the separatrices is higher than E(E−1).

We must compare these energies with those of the pre-scattering condition depicted in Fig. 2.1.
In this arrangement, the center of vorticity is at the origin, so we may compute the limiting behavior
of X and Y using the equations in (3.20). We directly compute that, independent of L,

(4.5) Θ = 1 + 2ρ.

We assume that as t → −∞, L → ∞, thus ∥v1∥ → ∞ while ∥v2∥ is finite, so that X → −∞, this
also implies that Y → ∞. Thus, for the situation depicted in Fig. 2.1, trajectories in the phase
planes depicted in Fig. 4.1 arrive from infinity from the northwest direction heading southeast.

Then, suppose the initial energy exceeds the separatrix energy. In that case, the trajectory
begins above the separatrix and crosses the line X = 0, where dY

dt = 0 before escaping to infinity in
the northeast direction. Because X → +∞ as t → ∞, ∥v2∥ must diverge, and this is an exchange
scattering event. At the instant the solution crosses X = 0, then ∥v1∥ = ∥v2∥ at which point the
vectors v1 and v2 form the legs of an iscosceles triangle.

If, instead, the initial energy lies below the separatrix energy, then the trajectory begins below
the separatrix. It will cross Y = 0 at which point dX

dt =0. When Y = 0, then sinϕ = 0, and the
three vortices are collinear. Because X < 0 along the entire trajectory and X → ∞ as t → ∞,
then ∥v1∥ → ∞ and this solution represents a direct scattering event.

12



For Θ < 0, that is, for ρ < −1
2 , the critical energy is given by Eq. (4.3), which, combined with

Eq. (4.5) gives a critical energy

(4.6) ρ−crit = −1.

For Θ > 0, that is, for ρ > −1
2 , the critical energy is given by Eq. (4.4), which, combined with

Eq. (4.5) gives a critical energy

(4.7) ρ+crit =
7

2
.

Fig. 2.2 shows the deflection in the angle of vortex 2 following the interaction is singular as ρ→ −1
and ρ→ 7

2 as expected.
To calculate the scattering angle, we must integrate Eq. (3.26) over each scattering trajectory.

This is equivalent to a calculation by Lydon et al. [22], and we defer it to Appendix A.
We end this section by remarking that the values ρ = 1 (Θ = −1), ρ = −1

2 (Θ = 0), and

ρ = 7
2 (Θ = 8) divide the space of initial conditions into four intervals on which the behavior is

qualitatively distinct. Gröbli made the same observation (using a constant λ = Θ/2) as did Lydon
et al. [14, 22], but without reference to a phase plane to organize the orbits. Because both prior
works focus on integrating the ODE system via quadrature, these intervals are distinguished mainly
by the change in the algebraic forms of those integrals rather than the phase space topology.

The approach taken here is especially illuminating for the transition at Θ = 0, for which there is
an algebraic change in the form of the integrals but no visible discontinuity in the scattering angle
in Fig. 2.2. We discuss this further next.

4.4. The borderline case Θ = 0. Clearly, then, the critical values of ρ separating exchange
scattering from direct scattering are those for which the energy of the initial condition as L → ∞
equals that of the separatrices, i.e., the energy of the hyperbolic fixed points. From Eq. (4.5), we
see

(4.8) Θ > 0 for ρ > −1

2
and Θ < 0 for ρ < −1

2
.

The singular case Θ = 0, when the conservation law (3.20) confines the dynamics to a cone,
therefore corresponds to ρ = −1

2 . The schematic in Fig. 2.1, which is defined for finite L, is
somewhat misleading, as the trajectories of all three vortices lie along straight lines parallel to
the line connecting vortices 1 and 3 in the figure and are not horizontal. Rotating the coordinate
system so that the trajectories are horizontal, we find that

x1 =
t−

√
t2 + 4

2
, x2 =

t+
√
t2 + 4

2
, x3 = t;

y1 = −1, y2 = −1, y3 = −2.

The dynamics of this case are shown in Fig. 4.2 and were known to Gröbli [14, §4]. Vortex 1 slows
down and comes to rest at x = 0, transferring its energy to vortex 2.

5. Generalization to Γ2 ̸= 1

In this section, we will generalize to the case in which Γ1 = −Γ3 = 1 but 0 < Γ2 = Γ ̸= 1, i.e.,
the case when the remaining vortex has a distinct positive circulation. Exchange scattering is no
longer possible since vortices 2 and 3 can no longer form a dipole and escape. Consequently, some
bifurcation must reconfigure the phase plane dynamics depicted in Fig. 4.1. To determine how this
bifurcation occurs, we must first generalize the reduction that led to ODE system (3.19).
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Figure 4.2. The x-component of the solution for ρ = 0, corresponding to a trajec-
tory in the middle phase plane of Fig. 4.1.

5.1. The reduction for Γ2 ̸= 1. We will make the canonical change of variables in two steps. The
first transformation recombines vortex r1 and r2, so that r3 and Γ3 are unchanged.

The second transformation recombines vortex r̃2 and r̃3, so that r̃1 and Γ̃1 are unchanged,

(5.1)

R1 = r̃1; κ1 = Γ̃1 =
Γ

Γ + 1
;

R2 = r̃2 − r̃3; κ2 =
Γ̃2Γ̃3

Γ̃2 + Γ̃3

= −1 + Γ

Γ
;

R3 =
Γ̃2r̃2 + Γ̃3r̃3

Γ̃2 + Γ̃3

; κ3 = Γ̃2 + Γ̃3 = Γ.

As before, we may set R3 = 0. Simplifying the coordinate transformation yields

(5.2) R1 = r1 − r2; R2 = − Γ

1 + Γ
(r1 + Γr2) .

In these coordinates, the generalized Hamiltonian and angular impulses are

(5.3) H = −Γ

2
log ∥R1∥2 +

Γ

2
log

∥∥∥∥ R1

1 + Γ

∥∥∥∥2 −R2 +
1

2
log

∥∥∥∥ Γ

1 + Γ
R1 +R2

∥∥∥∥,
and

(5.4) Θ = κ1∥R1∥2 + κ2∥R2∥2 (note κ2 < 0).

The normalization (2.6), now takes the form

(5.5)
Q1 =

√
κ1X1, P1 =

√
κ1Y1,

Q2 =
√
−κ2X2, P2 = −

√
−κ2Y2.

Using these to define the coordinates Ri and R̄i, the Hamiltonian reduces to (up to an additive
constant)

(5.6) H = −Γ

2
log ∥R1∥2 +

Γ

2
log
∥∥ΓR̄2 −R1

∥∥2 + 1

2
log
∥∥R̄2 +R1

∥∥2.
The conserved angular impulse reduces again to (3.9). We may again define coordinates X, Y , and
Z using Eq. (3.13), and the relation (3.14) still holds. Using these definitions the Hamiltonian (5.6)
is given by:

(5.7) H(X,Y, Z,Θ) =
Γ

2
log
(
Z(Γ2 + 1) + (1− Γ2)Θ− 2ΓX

)
− Γ

2
log(Z +Θ) +

1

2
log(Z +X).

As in Sec. 3.3, we may interpret the relationship between the (X,Y, Z,Θ) coordinates and the
laboratory frame. However, the results are less tidy, so we make a few remarks instead. By
definition, the variable Z remains positive, and Y = 0 whenever the three vortices are collinear. It is
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no longer the case that the triangle is isosceles when X = 0. However, X → −∞ as ∥r2 − r3∥ → ∞
and X → +∞ as ∥r1 − r2∥ → ∞. This last observation allows us to discriminate between direct
and exchange scattering.

By applying Eqs. (3.16) and (3.17) to the Hamiltonian (5.7) and the conserved quantity (3.14),
and using Eqs. (3.18), the system evolves according to

dX

dt
=

2ΓY

Z +Θ
− 2Y

X + Z
− 2Γ(1 + Γ2)Y

(Γ2 + 1)Z + (1− Γ2)Θ− 2ΓX
;(5.8a)

dY

dt
= 2− 2ΓX

Z +Θ
+

2Γ(1 + Γ2)X − 4Γ2Z

Z(Γ2 + 1) + (1− Γ2)Θ− 2ΓX
;(5.8b)

dZ

dt
=

2Y

Z +X
− 4Γ2Y

Z(Γ2 + 1) + (1− Γ2)Θ− 2ΓX
.(5.8c)

5.2. The phase space for Γ2 ̸= 1. The equilibria of (5.8), which must satisfy both Z > 0 by (3.13)
and satisfy the constraint (3.14) are:

E±
tri = Θ

(
Γ(Γ−1)
Γ+1

±
√
3Γ

)
, for Θ < 0;(5.9a)

E−1 =
ΓΘ

Γ2 − 1

(
1− 2Γ2 +

√
4Γ2 − 3

0

)
, for Θ > 0 and Γ >

√
3

2
;(5.9b)

EΓ =
ΓΘ

Γ2 − 1

(
1− 2Γ2 −

√
4Γ2 − 3

0

)
, for Θ > 0 and

√
3

2
< Γ < 1;(5.9c)

E1 =
ΓΘ

Γ2 − 1

(
1− 2Γ2 −

√
4Γ2 − 3

0

)
, for Θ < 0 and Γ > 1.(5.9d)

These last two are described by the same formula, but represent different vortex configurations
and are defined for different parameter values. Only the X and Y coordinates are displayed; the Z
coordinate is the positive solution to (3.14).

The system also has singularities at

S1Γ =

(
0
0

)
, for Θ < 0 and Γ > 0;(5.10a)

S−1Γ =

(
2ΓΘ
Γ2−1
0

)
, for Θ(Γ− 1) > 0.(5.10b)

The dependence of the equilibria and singularities on Γ and Θ are most easily understood graph-
ically using a bifurcation diagram, as shown in Fig. 5.1. Only the equilibria E±

tri and E−1 and the
singularity S1Γ exist for Γ = 1 and satisfy S1Γ → S11 as Γ → 1. They have the same physical mean-
ing as discussed in Sec. 3.3. The other equilibria and singularities all satisfy Y = 0 and diverge
X → +∞ as Γ → ±1. The points S−1Γ, E1, and EΓ all diverge to ∞ as Γ → 1±. The equilibria

E−1 and EΓ merge in a saddle-node bifurcation at Γ =
√
3
2 .

The equilibria EΓ and E1 correspond to collinear arrangements with the vortices of strength Γ
and 1 in the middle, respectively. The singularity S−1Γ, corresponds to the limit of a family of
hierarchical orbits in which vortices 2 and 3, with circulations Γ and −1, form a tight pair orbiting
vortex 1 some distance away.

We now consider the phase space as Γ varies, again plotting the projection of the upper sheet
of the hyperboloid onto the XY plane. First, we show the case Γ > 1 as shown in Fig. 5.2. For
Θ < 0, a collinear state E1 appears on the X-axis to the right of the region of closed orbits seen in
Fig. 4.1, while for Θ > 0 a new singular state S−1Γ appears on the positive X-axis. Each of these
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Figure 5.1. The X component of the equilibria (solid lines) and singularities
(dashed lines) given in Eqs. (5.9) and (5.10). Figs. 4.1, 5.2, 5.4, and 5.5 show
phase plane diagrams at the Γ values indicated by the vertical lines.

is surrounded by a family of periodic orbits that limit to a separatrix. In contrast with Fig. 4.1, all
orbits in the right half plane cross the X-axis and do not extend to ∞.

The family of unbounded orbits corresponding to exchange scattering has been replaced by a
family of orbits that cross the X-axis and approach infinity heading southwest. We call these
extended direct scattering orbits. One such orbit with Γ = 2 is shown in Fig. 5.3. Remarkably, The
coordinates of this trajectory, but not its time-parameterization, are given by Gröbli and displayed
in the dissertation [14, Eqns (7.17), (7.19), and (7.20), and Fig. 5]. As t → ±∞, vortices 1 and
3 form a dipole that moves along a nearly straight while vortex 2, but for a finite period of time,
vortex 3 has changed partners, forming a dipole with vortex 2 and moving along a nearly circular
orbit

Fig. 5.4 shows representative phase planes with
√
3
2 < Γ < 1. While the topology in Figs. 5.2

and 5.4 looks the same, they differ in the kinds of singularities and fixed points. For Θ < 0, the
singularity S1Γ remains unchanged from Fig. 5.2, while the equilibrium E1 to the right of the origin
is replaced by a singularity S−1Γ. For Θ > 0, the equilibrium E−1 is unchanged from Fig. 5.2, while
the singular point S−1Γ is replaced by the equilibrium EΓ.

Fig. 5.5 shows phase planes for Γ <
√
3
2 . The phase plane for Θ < 0 is equivalent to that in

Fig. 5.4. However, the Θ > 0 phase plane has changed significantly. At Γ =
√
3
2 , the equilibria

EΓ and E−1 collide and annihilate in a saddle-node bifurcation, so the phase plane contains no
equilibria or singularities. All the orbits for Θ > 0 are of the direct scattering type.

5.3. Explaining the scattering for Γ ̸= 1. We now explain the three-vortex scattering phenom-
enon in the generalized system. The setup remains as shown in Figure 2.1, except that Γ2 = Γ ̸= 1
and the two points forming the dipole are separated by a distance d

Γ with positions r1 = ⟨−L, ρ+Γd
2 ⟩,

r2 = ⟨0,−d⟩, and r3 = ⟨−L, ρ − Γd
2 ⟩. We will again take d = 1. The generalized Hamiltonian and

angular momentum in the new coordinates, H → log (Γ) as L→ +∞, and,

Θ = Γ(1 + 2ρ).

To calculate the critical energy, we follow the process described in Section 4.3. For Θ < 0, that
is, for ρ < −1

2 , the critical energy level remains the energy of the equilibra E±
tri. This again leads to

the value ρ−crit = −1 given by Eq. (4.6). For Θ > 0 and Γ >
√
3
2 , the critical energy is again that of
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Figure 5.2. The phase planes for Γ = 1.7 > 1. Top: Θ < 0 case showing the
equilibria E±

tri at the separatrix intersections, the singular point S1Γ (point) and the
collinear state E1 (+). Bottom: Θ > 0 case with singular point S−1Γ (point) and
collinear state E−1 at the separatrix intersection.

Figure 5.3. An extended direct scattering solution with Γ = 2 and ρ = −9
2 . This

is a direct simulation of a solution whose trajectory Gröbli computed in closed form.

the collinear equilibrium E−1

(5.11) ρ+crit =
1

2


(
(Γ + 1)

(
Γ2 − 1

))( (B+1)(Γ+1)2(Γ2−1)
−2AΓ2+B(Γ4−1)−(1−Γ2)2

)Γ

AΓ +B (Γ2 − 1)
− 1

 ,
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(
0,

√
3
2

)
. Left: The case Θ < 0 with

singular points S1Γ (left) and S−1Γ (right). Right: The case Θ > 0, which has no
fixed points or singular points.

where

A = 1− 2Γ2 +
√
4Γ2 − 3 and B =

√
1 +

(
ΓA

Γ2 − 1

)2

.

This matches the value 7
2 given by (4.7) for Γ = 1. Since there is no hyperbolic fixed point when

Θ > 0 and Γ <
√
3
2 , there should be only one singular point in the scattering diagram. Two such

diagrams are shown in Fig. 5.6, demonstrating the disappearance of the second singularity for small
Γ. For Γ = 0.4, the curve jumps by 2π at ρ ≈ −0.88. This is explained by the disappearance of a
loop in the path of vortex 3; see Fig. 5.7.
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Figure 5.6. Top: The scattering angle as a function of ρ for Γ = 0.4, showing a
singularity at ρ = −1, but without the second singularity. Instead, the curve jumps
by 2π near ρ = −0.88, corresponding to the disappearance of a loop, as shown in
Fig. 5.7. Bottom: The case Γ = 1.7 showing singularities at ρ = −1 and at ρ ≈ 13.9,
confirming formula (5.11).

Figure 5.7. (Left) The vortex trajectories with Γ = 0.4 and ρ = −0.9. (Right)
The trajectories with ρ = −0.85. The insets show a small loop on the trajectory of
vortex 3 in the left image that has disappeared in the right image, explaining the
2π jump in the dependence of the scattering angle shown in Fig. 5.6.

6. Conclusion

In this paper, we have introduced a coordinate system for the three-vortex system that avoids
introducing artificial singularities into the equations of motion, in contrast with previously used
reduction methods. These coordinates simplify phase-space reasoning and shed new insight into
the scattering between a vortex dipole and an isolated vortex.

This reduction should be useful in analyzing additional problems in point-vortex dynamics. We
mention two problems we are currently considering. First, we may generalize the reduction to
systems of vortices with three arbitrary circulations. Classifying how the dynamics change as the
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circulations change is surprisingly complicated. A previous attempt using the triangular coordinate
system is hampered by the singularity of that representation [2]. Other studies using alternative
coordinate systems are entirely algebraic, focusing on relative equilibria and their stability, without
the ability to visualize their organization in the global phase space [4, 10]. The approach considered
here should overcome both obstacles and allow us to manage this problem’s complexity better.

Second is the scattering problem in the four-vortex system in which two vortex dipoles collide.
This problem exhibits chaotic scattering [11, 32]. Price finds a particularly simple example when
the two dipoles are of widely different widths, which he calls the slingshot effect [28]. In this
case, the dynamics consists of a sequence of three-vortex interactions, with the fourth vortex some
distance away. The approach of this paper is one building block needed to tackle that more complex
problem.
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Appendix A. Calculating the scattering angle

We now calculate the change in angle ∆α on trajectories with initial conditions as t→ −∞ given
in Fig. 2.1. The result is equivalent to one calculated in the supplementary material to Ref. [22].
We include it for completeness and to highlight the connection with the phase planes of Fig. 4.1.

To obtain an explicit integral form, we divide dα
dt from Eq. (3.26) by dY

dt , given by Eq. (3.19b),

yielding dα
dY . We remove the dependence on X and Z using the conservation laws (3.15) and (3.14),

and then replace H by its value given the initial condition in Fig. 2.1. We will use Θ instead of ρ
as the parameter in what follows because it gives somewhat simpler formulas and can use Eq. (4.5)
to rewrite this in terms of the parameter ρ defining the initial conditions. Integrating this, we find

(A.1) ∆α =

∫ ∞

Ymin

−8Θ2dY

(Y 2 +Θ2)
√
p4(Y 2; Θ)

+

∫ ∞

Ymin

8(Θ2 − 8Θ)dY

(Y 2 +Θ2 − 8Θ)
√
p4(Y 2; Θ)

where

p4(Y
2; Θ) = Y 4 + 2

(
Θ2 − 4Θ− 8

)
Y 2 + (Θ− 8)Θ3.

These are complete elliptic integrals [7]. To place them in standard form, we must first factor
p4(Y

2; Θ). We plot its zero locus in Fig. A.1 as a function of Θ and Y 2. From this image, it is clear
that p4 can be factored as follows

(A.2) p4(Y
2,Θ) =


(Y 2 − (a+ ib)2)(Y 2 − (a− ib)2), a > 0, b > 0, if Θ < −1;

(Y 2 − a2)(Y 2 − b2), a > b > 0, if − 1 < Θ < 0;

(Y 2 − a2)(Y 2 + b2), a > 0, b > 0, if 0 < Θ < 8;

(Y 2 + a2)(Y 2 + b2), a > b > 0, if 8 < Θ.

The first two cases correspond to the left phase plane of Fig. 4.1, the last two to the right phase
plane; the first and last cases correspond to direct scattering, and the second and third to exchange
scattering. The lower limit of integration is Ymin = 0 in the first and fourth cases, while in the
second and third Ymin = a. Both integrals in Eq. (A.1) can be evaluated with the help of references
such as Gradshteyn/Ryzhik and Byrd/Friedman [7, 13]. It is quite possible that these expressions
can be simplified further. For example, Lydon derived formulas in which α is the sum of one
complete elliptic integral of the first kind and one of the third kind.
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Figure A.1. The solutions to p4(Y
2,Θ) = 0, with the transitions between the

factored form in Eq. (A.2) marked be vertical lines.

In the four regions, the constants evaluate to the following

a2 =
1

2

(√
Θ− 8Θ3/2 −Θ2 + 4Θ+ 8

)
, b2 =

1

2

(√
Θ− 8Θ3/2 +Θ2 − 4Θ− 8

)
if Θ < −1;

a2 = −Θ2 + 4Θ+ 8
√
Θ+ 1 + 8, b2 = −Θ2 + 4Θ− 8

√
Θ+ 1 + 8 if − 1 < Θ < 0;

a2 = −Θ2 + 4Θ+ 8
√
Θ+ 1 + 8, b2 = Θ2 − 4Θ + 8

√
Θ+ 1− 8 if 0 < Θ < 8;

a2 = Θ2 − 4Θ + 8
√
Θ+ 1− 8, b2 = Θ2 − 4Θ− 8

√
Θ+ 1− 8 if 8 < Θ.

In each of the four ρ intervals, the scattering angle can be written as a linear combination of
complete elliptic integrals of the first kind

K(m) =

∫ 1

0

dx√
(1− x2) (1−mx2)

=

∫ π
2

0

dθ√
1−m sin2 θ

.

and the third kind

Π(n,m) =

∫ 1

0

dx

(1− nx2)
√
(1− x2) (1−mx2)

=

∫ π
2

0

dθ(
1− n sin2 θ

)√
1−m sin2 θ

.

The convention is to define these functions for 0 < m < 1, though they are analytic for all m except
for a branch cut from m = 1 to m = ∞.

We report the values found in each of the cases.

Direct scattering with ρ < −1. Here Θ < −1, and

∆α =
64 4

√
Θ− 8

4
√
Θ
(
Θ− 8 +

√
Θ2 − 8Θ

)(
Θ+

√
Θ2 − 8Θ

) (−K(m) + Π(n,m))

with

m =
1

2
+

4−Θ

2
√
Θ2 − 8Θ

and n =
1

2
− Θ2 − 4Θ− 8

2Θ
√
Θ2 − 8Θ

.

Exchange scattering with −1 < ρ < −1
2 . In this case −1 < Θ < 0, and

∆α =
1√

−Θ2 + 4Θ+ 8
√
Θ+ 1 + 8

(
4ΘK(m) + 8

√
1 + Θ

(
Π(n1,m)−Π(n2,m)

))
,

where

m =
8 + 4Θ−Θ2 − 8

√
Θ+ 1

8 + 4Θ−Θ2 + 8
√
Θ+ 1

, n1 =
Θ− 2 + 2

√
Θ+ 1

Θ+ 2− 2
√
Θ+ 1

, and n2 =
Θ+ 2− 2

√
Θ+ 1

Θ+ 2 + 2
√
Θ+ 1

.

21



The borderline case ρ = −1
2 . This is the case Θ = 0 discussed in Fig. 4.2. Vortex 2 travels along

a straight line with no deflection, so the scattering angle is α = 0.

Exchange scattering with −1
2 < ρ < 7

2 . Here 0 < Θ < 8, and

∆α =
−Θ2 + 4Θ+ 8

√
Θ+ 1 + 8

2 4
√
Θ+ 1

(
Θ+ 2

√
Θ+ 1 + 2

)(Π(n1,m)−Π(n2,m)
)
,

where

m =
1

2
+

Θ2 − 4Θ− 8

16
√
1−Θ

, n1 =
2−Θ− 2

√
1 + Θ

4
, and n2 =

2 +Θ− 2
√
1 + Θ

4
.

Direct scattering with 7
2 < ρ. In this last case, Θ > 8 and

∆α = cKK(m) + cΠ,1Π1(n1,m) + cΠ,2Π(n2,m),

where

m =
16
√
Θ+ 1

Θ2 − 4Θ− 8 + 8
√
Θ+ 1

, n1 = − 4

Θ + 2
√
Θ+ 1− 2

, n2 =
4
(
Θ+ 2

√
Θ+ 1 + 2

)
Θ2

cK = − 4Θ√
Θ2 − 4Θ + 8

√
Θ+ 1− 8

, cΠ,1 =
−2Θ3 + 4Θ2 + 64Θ + 64− 4

√
Θ+ 1

(
Θ2 − 8Θ− 16

)√
(Θ− 8)Θ3

(
(Θ− 4)Θ− 8

(√
Θ+ 1 + 1

)) ,

and cΠ,2 =
−2Θ3 + 12Θ2 − 32Θ− 64 + 4

(
Θ2 − 16

)√
Θ+ 1√

(Θ− 8)Θ3
(
(Θ− 4)Θ− 8

(√
Θ+ 1 + 1

))
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[5] H. Aref, N. Rott, and H. Thomann. Gröbli’s solution of the three-vortex problem. Ann. Rev.

Fluid Mech, 24:1 – 21, 1992.
[6] D. Blackmore, L. Ting, and O. Knio. Studies of perturbed three vortex dynamics. J. Math.

Phys., 48:065402, 2007.
[7] P. Byrd and M. Friedman. Handbook of Elliptic Integrals for Engineers and Scientists.

Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2nd edition,
1971.

[8] D. M. F. Chapman. Ideal vortex motion in two dimensions: Symmetries and conservation
laws. J. Math. Phys., 19:1988–1992, 1978.

[9] A. J. Chorin and J. E. Marsden. A Mathematical Introduction to Fluid Mechanics, volume 4
of Texts in Applied Mathematics. Springer-Verlag, 3rd edition, 1993.

[10] R. Conte and L. de Seze. Exact solution of the planar motion of three arbitrary point vortices.
Mod. Phys. Lett. B, 29:1530017, 2015.

[11] B. Eckhardt and H. Aref. Integrable and chaotic motions of four vortices II. Collision dynamics
of vortex pairs. Philos. Trans. R. Soc. London, Ser. A, 326:655 – 696, 1988.
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