Home
Publications
Other Writing
Talks
Teaching
Students
Collaborators
Posts
Contact
Light
Dark
Automatic
Bifurcation
Stability of Leapfrogging Vortex Pairs: A Semi-analytic Approach
Erratum The matrix in Eq. (19) should read $$\left.A_{h}(\theta)\right\rvert_{h=\frac18}= \begin{pmatrix} -\frac{4 \sin {2\theta}}{\sqrt{8 \cos {2\theta}+17}} & \frac{8 \cos ^2{2\theta}-12 \cos {2\theta}+3 \sqrt{8 \cos {2\theta}+17}-11}{2 (1-\cos {2\theta}) \sqrt{8 \cos {2\theta}+17}} \\ \frac{-8 \cos^2{2\theta}-4 \cos {2\theta}-\sqrt{8 \cos {2\theta}+17}+7}{2 (\cos {2\theta}+1) \sqrt{8 \cos {2\theta}+17}} & \frac{4 \sin{2 \theta}}{\sqrt{8 \cos {2\theta}+17}} \end{pmatrix} $$ This is an isolated error in the writing and does not effect any of the mathematics in the paper.
Brandon Behring
,
Roy Goodman
Drift of spectrally stable shifted states on star graphs
Adilbek Kairzhan
,
Dmitry Pelinovsky
,
Roy Goodman
NLS bifurcations on the bowtie combinatorial graph and the dumbbell metric graph
Roy Goodman
Bifurcations of relative periodic orbits in NLS/GP with a triple-well potential
Roy Goodman
Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger / Gross-Pitaevskii Equation
Roy Goodman
,
Jeremy Marzuola
,
Michael Weinstein
Hamiltonian Hopf bifurcations and dynamics of NLS/GP standing-wave modes
Erratum: At the end of section 2.4.3, top of page 10, I state that “a straightforward calculation” shows that the HH bifurcation studied by Johansson for the periodic NLS trimer to come from a semisimple -1:1 resonance.
Roy Goodman
Stability and instability of nonlinear defect states in the coupled mode equations---analytical and numerical study
Roy Goodman
,
Michael Weinstein
Cite
×