Complex Behavior in Coupled Nonlinear Waveguides

Roy Goodman, New Jersey Institute ofTechnology

Nonlinear Schrödinger/Gross-Pitaevskii Equation

$$
i \psi_{t}=-\nabla^{2} \psi+V(r) \psi \pm|\psi|^{2} \psi
$$

Two contexts for today:

- Propagation of light in a nonlinear waveguide
- $\psi(x, z)$ gives the electric field envelope
- "Evolution" occurs along axis of waveguide $(t \rightarrow z)$ plus one transverse spatial dimension
- Potential represents waveguide geometry
- Evolution of a Bose-Einstein condensate (BEC)
- Everyone's favorite nonlinear playground. A "new" state of matter achieved experimentally in the 1990's.
- One, two, or three space dimensions
- Potential represents magnetic or optical trap

Periodic and chaotic tunneling in a 3-well waveguide

Why three wells?

- Other work on two-waveguide arrays shows symmetry-breaking bifurcations and an associated wobbling dynamics.
- Three waveguides provide the simplest system in which Hamiltonian Hopf bifurcations, which lead to complex dynamics, are possible.
- Significant interest in many-waveguide arrays. Useful to proceed:

Simple Geometry \rightarrow Complex Geometry,
Simple Dynamics \rightarrow Complex Dynamics

What got me thinking: Double well $V(x)=V_{0}(x+L)+V_{0}(x-L)$

Stationary
$\psi(x, t)=\Psi(x) e^{-i \Omega t}$
$\int_{\mathbb{R}} \Psi(x)^{2} d x=\|\Psi\|_{2}^{2}=\mathcal{N}$

Spontaneous symmetry breaking above critical intensity that is found analytically.
Kirr, Kevrekidis, Shlizerman, Weinstein 2008
see also Fukuizumi \& Sacchetti 20।।

Time-dependent dynamics

- Time dependent dynamics in a single or double well

Albiez et al. 2005

- Rigorous result: long-time shadowing of ODE solutions by
PDE solutions Marzuola \& Weinstein 2010
Pelinovsky \& Phan 2012
Goodman, Marzuola, Weinstein 2015

What got me thinking: Triple well

3-well potential \& eigenfunctions $V(x)=V_{0}(x+L)+V_{0}(x)+V_{0}(x-L)$

Bifurcations of standing waves
(Kapitula/Kevrekidis/Chen SMADS 2006)

Periodic SchrödingerTrimer
(Johansson J. Phys. A 2004)

$$
\frac{d}{d t} \psi_{n}+C\left(\psi_{n-1}-2 \psi_{n}+\psi_{n+1}\right)+\left|\psi_{n}\right|^{2} \psi_{n}=0
$$

subject to $\psi_{n+3}=\psi_{n}$
"Hamiltonian Hopf Bifurcations"

Numerically-generated chaos

Two goals

- Understand what takes place at HH bifurcation as paradigm for nonlinear wave oscillatory instability.

- Flesh out the dynamics of relative periodic orbits in the system. Eventual Goal: Which of these dynamics can we prove exist?

Finite dimensional reduction

Decompose the solution as
$\psi=c_{1}(t) \Psi_{1}(t)+c_{2}(t) \Psi_{2}(t)+c_{3}(t) \Psi_{3}(t)+\eta(x, t)$
projection onto eigenmodes $\quad \eta(x, t) \perp \Psi_{j}(x)$

Ignoring contribution of $\eta(x, t)$ gives finite-dimensional Hamiltonian system with (approximate) Hamiltonian

$$
\begin{aligned}
\bar{H}= & \Omega_{1}\left|c_{1}\right|^{2}+\Omega_{2}\left|c_{2}\right|^{2}+\Omega_{3}\left|c_{3}\right|^{2}-A\left[\frac{3}{2}\left(\left|c_{1}\right|^{2}+\left|c_{3}\right|^{2}\right)^{2}+2\left|c_{2}\right|^{4}+4\left|c_{2}\right|^{2}\left|c_{3}-c_{1}\right|^{2}+\right. \\
& \left.\left(\left|c_{1}\right|^{2}+\left|c_{3}\right|^{2}\right)\left(c_{1} c_{3}+\bar{c}_{1} \bar{c}_{3}\right)+\frac{3}{2}\left(c_{1}^{2} \bar{c}_{3}^{2}+\bar{c}_{1}^{2} c_{3}^{2}\right)+\left(\left(c_{3}-c_{1}\right)^{2} \bar{c}_{2}^{2}+\left(\bar{c}_{3}-\bar{c}_{1}\right)^{2} c_{2}^{2}\right)\right]
\end{aligned}
$$

For well-separated potential wells, the spectrum has the form

$$
\left(\Omega_{1}, \Omega_{2}, \Omega_{3}\right)=\left(\Omega_{2}-\Delta+\epsilon, \Omega_{2}, \Omega_{2}+\Delta+\epsilon\right)
$$

with $\epsilon \ll \Delta \ll 1$

Symmetry reduction

System conserves squared L2 norm N

- Reduces \# of degrees of freedom from 3 to 2
- Removes fastest timescale

$$
\begin{aligned}
\bar{H}_{\mathrm{R}}= & (-\Delta+\epsilon)\left|z_{1}\right|^{2}+(\Delta+\epsilon)\left|z_{3}\right|^{2}- \\
& A N\left(z_{1}^{2}+\bar{z}_{1}^{2}+z_{3}^{2}+\bar{z}_{3}^{2}-2\left(z_{1} z_{3}+\bar{z}_{1} \bar{z}_{3}\right)-4\left(z_{1} \bar{z}_{3}+\bar{z}_{1} z_{3}\right)\right)- \\
& A\left[-\frac{1}{2}\left|z_{1}\right|^{4}+2\left|z_{1}\right|^{2}\left|z_{3}\right|^{2}-\frac{1}{2}\left|z_{3}\right|^{4}+\frac{3}{2}\left(z_{1}^{2} \bar{z}_{3}^{2}+\bar{z}_{1}^{2} z_{3}^{2}\right)+\right. \\
& \left.\left(\left|z_{1}\right|^{2}+\left|z_{3}\right|^{2}\right)\left(5\left(z_{1} \bar{z}_{3}+\bar{z}_{1} z_{3}\right)+2\left(z_{1} z_{3}+\bar{z}_{1} \bar{z}_{3}\right)-z_{1}^{2}-\bar{z}_{1}^{2}-z_{3}^{2}-\bar{z}_{3}^{2}\right) \cdot\right]
\end{aligned}
$$

-Relative fixed points in full system \rightarrow fixed points in reduction

- Relative periodic orbits \rightarrow periodic orbits

At $\epsilon=N=0$, semisimple double frequency $i \Omega= \pm i \Delta$.
When $\epsilon>0$, non-simple double eigenvalues at $N_{\mathrm{HH} 1} \approx \frac{\epsilon}{2 A}$ and $N_{\mathrm{HH} 2} \approx \frac{\Delta-2 \epsilon}{2 A}$, with instability in between.

Menagerie of standing waves

Three branches continue from linear system

Six branches arise in saddlenode bifurcations

Four stabilizations/ destabilizations in HH bifurcations

More about this picture

Lyapunov CenterTheorem: (Roughly) For each pair of imaginary eigenvalues of a fixed point, excepting resonance, there exists a oneparameter family of periodic orbits that limits to that fixed point.

Bifurcations in Hamiltonian systems

 change the topology of Lyapunov branches of periodic orbitsStandard Example: Hamiltonian Pitchfork $\ddot{x}=\delta x+x^{3}$

$\delta>0$

$\delta<0$

ODE \& PDE simulations

Trivial solution stable

Poincaré Section

$|\psi(t)|$

ODE \& PDE simulations

Chaotic heteroclinic bursting

$\operatorname{Real}\left(\mathbf{z}_{1}\right)$

Poincaré
Section

$|\psi(t)|$

ODE \& PDE simulations

$\operatorname{Real}\left(\mathbf{z}_{1}\right)$

Poincaré Section

$\psi(t) \mid$

Reduced Hamiltonian has 4 I daunting terms!

$$
\begin{aligned}
\bar{H}_{\mathrm{R}}= & (-\Delta+\epsilon)\left|z_{1}\right|^{2}+(\Delta+\epsilon)\left|z_{3}\right|^{2}- \\
& A N\left(z_{1}^{2}+\bar{z}_{1}^{2}+z_{3}^{2}+\bar{z}_{3}^{2}-2\left(z_{1} z_{3}+\bar{z}_{1} \bar{z}_{3}\right)-4\left(z_{1} \bar{z}_{3}+\bar{z}_{1} z_{3}\right)\right)- \\
& A\left[-\frac{1}{2}\left|z_{1}\right|^{4}+2\left|z_{1}\right|^{2}\left|z_{3}\right|^{2}-\frac{1}{2}\left|z_{3}\right|^{4}+\frac{3}{2}\left(z_{1}^{2} \bar{z}_{3}^{2}+\bar{z}_{1}^{2} z_{z}^{2}\right)+\right. \\
& \left.\left(\left|z_{1}\right|^{2}+\left|z_{3}\right|^{2}\right)\left(5\left(z_{1} \bar{z}_{3}+\bar{z}_{1} z_{3}\right)+2\left(z_{1} z_{3}+\bar{z}_{1} \bar{z}_{3}\right)-z_{1}^{2}-\bar{z}_{1}^{2}-z_{3}^{2}-\bar{z}_{3}^{2}\right) .\right]
\end{aligned}
$$

Goal: understand periodic orbits of $\bar{H}_{\mathrm{R}} u s i n g$ Hamiltonian Normal Forms
Given a system with Hamiltonian $H=H_{0}(z)+\epsilon \tilde{H}(z, \epsilon)$ find a near-identity canonical transformation $z=\mathcal{F}(y, \epsilon)$ such that the transformed Hamiltonian

$$
K(y, \epsilon)=H(\mathcal{F}(y, \epsilon), \epsilon)=H_{0}(y)+\epsilon \tilde{K}(y, \epsilon)
$$

is "simpler" than $H(z, \epsilon)$.

What does "simpler" mean?

- Try to remove terms from H to construct K
- Eliminating terms at a given order in ϵ, y introduces new terms of higher order
- A term can be removed if it lies in the range of the adjoint operator of $\operatorname{ad}_{H_{0}}=\left\{\cdot, H_{0}\right\}$.
- Invoke Fredholm alternative. Resonant terms in adjoint null space. Project Hamiltonian onto this subspace.
- For example in our problem

$\alpha_{1} \backslash \alpha_{3}$	0	1	$\alpha_{1} \backslash \alpha_{3}$	0	1	2					
0	$\bar{z}_{1} \bar{z}_{3}$	$\left\|z_{3}\right\|^{2}$									
1	$\left\|z_{1}\right\|^{2}$	$z_{1} z_{3}$						$\bar{z}_{1}^{2} \bar{z}_{3}^{2}$		$\left\|z_{3}\right\|^{2} \bar{z}_{1} \bar{z}_{3}$	$\left\|z_{3}\right\|^{4}$
:---:	:---:	:---:	:---:								
1	$\left\|z_{1}\right\|^{2} \bar{z}_{1} \bar{z}_{3}$	$\left\|z_{1}\right\|^{2}\left\|z_{3}\right\|^{2}$	$\left\|z_{3}\right\|^{2} z_{1} z_{3}$								
2	$\left\|z_{1}\right\|^{4}$	$\left\|z_{1}\right\|^{2} z_{1} z_{3}$	$z_{1}^{2} z_{3}^{2}$								

(a) Degree Two
(b) Degree Four
Three normal form calculations

- Semisimple - I:I resonance for $\epsilon \ll 1, N=O(\epsilon)$ Gives HHI at $N_{\text {crit }}=\frac{\epsilon}{2 A}+O\left(\epsilon^{2}\right)$
- Nonsemisimple - l:I resonance at $N_{\text {crit }}$ using a further simplification of above normal form
- Nonsemisimple -I:I resonance computed numerically at numerical location of HH 2

Normal form near semisimple double eigenvalue (Chow/Kim 1988)

$$
H=-\Delta\left|z_{1}\right|^{2}+\Delta\left|z_{3}\right|^{2}
$$

Normal Form

$$
\begin{aligned}
H_{\text {norm }}= & -\Delta\left|z_{1}\right|^{2}+\Delta\left|z_{3}\right|^{2}+\epsilon\left(\left|z_{1}\right|^{2}+\left|z_{3}\right|^{2}\right)+2 A N\left(z_{1} z_{3}+\bar{z}_{1} \bar{z}_{3}\right) \\
& +A\left[\frac{1}{2}\left|z_{1}\right|^{4}-2\left|z_{1}\right|^{2}\left|z_{3}\right|^{2}+\frac{1}{2}\left|z_{3}\right|^{4}-2\left(\left|z_{1}\right|^{2}+\left|z_{3}\right|^{2}\right)\left(z_{1} z_{3}+\bar{z}_{1} \bar{z}_{3}\right)\right]
\end{aligned}
$$

In Canonical Polar Coordinates

$$
\begin{aligned}
H= & \Delta\left(-J_{1}+J_{3}\right)+\epsilon\left(J_{1}+J_{3}\right)+4 A N \sqrt{J_{1} J_{3}} \cos \left(\theta_{1}+\theta_{3}\right) \\
& +A\left(\frac{1}{2} J_{1}^{2}-2 J_{1} J_{3}+\frac{1}{2} J_{3}^{2}-4 \sqrt{J_{1} J_{3}}\left(J_{1}+J_{3}\right) \cos \left(\theta_{1}+\theta_{3}\right)\right)
\end{aligned}
$$

Independent of $\left(\theta_{1}-\theta_{3}\right)$ implying the existence of a conserved quantity and the integrability of the Normal Form.

Advantage: Easier to find solution structure in Normal Form.

The system can be further reduced. Periodic orbits $\binom{J_{1}}{J_{3}} e^{i \Omega t}$ solve:
$\sqrt{J_{1} J_{3}}\left(2 \epsilon-A\left(J_{1}+J_{3}\right)\right)+2 A\left(N\left(J_{1}+J_{3}\right)-J_{1}^{2}-6 J_{1} J_{3}-J_{3}^{2}\right) \cos \Theta=0$

$$
\sqrt{J_{1} J_{3}}\left(N-J_{1}-J_{3}\right) \sin \Theta=0
$$

With $\Theta=\left(\theta_{1}+\theta_{3}\right)$
J_{1} and J_{3} act as barycentric coordinates on the triangle of admissible solutions showing relative strength of the three modes.

Sequence of bifurcations in Normal Form

Unphysical branches cross into physical region

Lyapunov
branches
"pinch off"

Question: At second bifurcation point HH 2 , must have Lyapunov families of fixed point. Where do they come from?

Normal form for non-semisimple - I:I resonances at HHI and HH 2 (Meyer-Schmidt 1974)

In symplectic polar coordinates $\left(r, \theta, p_{r}, p_{\theta}\right)$, this is:

$$
\begin{array}{ccc}
H=H_{0}\left(r, p_{r}, p_{\theta}\right) & +\mu^{2} \delta H_{2}\left(r, p_{\theta}\right) & +H_{4}\left(r, p_{\theta}\right) \\
=\Omega p_{\theta}+\frac{\sigma}{2}\left(p_{r}^{2}+\frac{p_{\theta}^{2}}{r^{2}}\right) \quad+\mu^{2} \delta\left(a p_{\theta}+\frac{b}{2} r^{2}\right) & +\frac{c}{2} p_{\theta}^{2}+\frac{d}{2} p_{\theta} r^{2}+\frac{e}{8} r^{4} \\
\delta= \pm 1, \mu \ll 1 & &
\end{array}
$$

Poincaré-Lindstedt argument: periodic orbits with "amplitude" μr and frequency $\Omega+\mu \omega_{1}$ when there is a solution to $2 \omega_{1}^{2}-\sigma e r^{2}=2 \delta \sigma \beta$

The bifurcation at HH

Computations using previous normal form

"Amplitude"
Increasing $N \rightarrow$
Numerically Computed Periodic orbits (not normal form)

Some computed PDE solutions

 on this branch

The bifurcation at HH 2

Numerically Computed Periodic orbits ODE Computation

PDE Computation

Increasing N

Solutions must satisfy $\left|z_{1}\right|^{2}+\left|z_{3}\right|^{2}<N$.

PDE $N=0.82$

ODE
$N=0.8135$

What's going on?

Getting close to other fixed points

What about the other Lyapunov branches of periodic orbits?

I thought saddle-node bifurcations were boring

Normal form for $0^{2} i \omega$

bifurcation

Small beyond all orders remainder

$$
\begin{array}{l}
H=\left(\frac{q_{1}^{2}}{2}+\frac{p_{1}^{2}}{2}\right)
\end{array}+\alpha\left(\frac{p_{2}^{2}}{2}+\delta q_{2}-\frac{q_{2}^{3}}{3}\right)+\underbrace{\left(\beta I q_{2}\right)}_{\text {Coupling }}+\underbrace{\left.H_{\infty}\left(q_{2}, I\right)+R_{1}, q_{2}, p_{1}, p_{2}\right)}_{\text {higher }}) \text { where } I=\left(\frac{q_{1}^{2}}{2}+\frac{p_{1}^{2}}{2}\right)
$$

Three families of periodic orbits:

- Fast
- Slow
- Mixed

Perturbation expansion shows two regimes

$$
N<N_{\text {crit }}
$$

$$
N>N_{\text {crit }}
$$

Saddle-node I

Saddle-node 2

Mixed periodic orbits bifurcate when $\delta=\frac{1}{\alpha^{4} n^{4}}$

Saddle-node

Gelfreich-Lerman 2003

Saddle-node 2

Parting Words

- This problem has an ODE part and a PDE part
- Increasing from two wells to three makes the ODE part of the problem hard
- In addition to standing waves, there is a whole lot of additional structure in solutions that oscillate among the three waveguides
- Normal forms give us a partial picture of the reduced dynamics
- Even saddle-node bifurcations are interesting.
- Big question:What can be proven about shadowing these orbits in NLS/GP?
For re/preprints http://web.njit.edu/~goodman

Thanks!

