LEAPFROGGING VORTEX PAIRS
 Linear Stability, Nonlinear Dynamics, \& EsCape

Roy H. Goodman
Brandon M. Behring

CMS Winter Meeting, Toronto
December 8, 2019

DRAMATIS PERSONAE

Act I: 19th Century

Leapfrogging Vortex Rings

Helmholtz (1858):
The foremost widens and travels more slowly, the pursuer shrinks and travels faster, till finally, if their velocities are not too different, it overtakes the first and penetrates it. Then the same game goes on in the opposite order, so that the rings pass through each other alternately.

Credit: Irvine Lab, University of Chicago

Credit: thephysicsgirl on Instagram

LEAPFROGGING QUARTETS OF POINT VORTICES

- Cutting a concentric pair of vortex rings along a diameter gives a quartet of vortices: a simplified model of vortex rings.

LEAPFROGGING QUARTETS OF POINT VORTICES

- Cutting a concentric pair of vortex rings along a diameter gives a quartet of vortices: a simplified model of vortex rings.
■ Gröbli (1877) and Love (1883) independently discovered and analyzed a one-parameter family of four point-vortex orbits:

■ Let $\mathbf{u}(\mathbf{x}, t)$ solve the 2D Euler's equation.
■ Particles advected according to $\dot{\mathbf{x}}=\mathbf{u}(\mathbf{x}, t)$.
■ By Helmholtz decomposition

$$
\mathbf{u}=\nabla \phi+\nabla \times \psi
$$

where $\Delta \psi=-\omega$ and $\omega=\nabla \times \mathbf{u}$.
$■$ Let vorticity be concentrated at N points \mathbf{x}_{i} of circulation Γ_{i} :

$$
\omega(\mathbf{x})=\sum_{i=1}^{N} \Gamma_{i} \delta\left(\mathbf{x}-\mathbf{x}_{\mathbf{i}}\right)
$$

■ Velocity due to each vortex given by the Green's function for 2D Poisson equation, yielding evolution equations:

$$
\dot{x}_{i}=-\frac{1}{2 \pi} \sum_{j \neq i}^{N} \Gamma_{j} \frac{\left(y_{i}-y_{j}\right)}{\left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|^{2}} \quad \text { and } \quad \dot{y}_{i}=+\frac{1}{2 \pi} \sum_{j \neq i}^{N} \Gamma_{j} \frac{\left(x_{i}-x_{j}\right)}{\left\|\mathbf{x}_{j}-\mathbf{x}_{i}\right\|^{2}}
$$

KIRCHHOFF'S HAMILTONIAN FORMULATION

Define complex position coordinates

$$
z_{j}(t)=x_{j}+i y_{j}
$$

and Hamiltonian

$$
H=-\frac{1}{2 \pi} \sum_{1 \leq i<j \leq N} \Gamma_{i} \Gamma_{j} \log \left|z_{i}-z_{j}\right|
$$

This gives rise to a system of 2 N first order equations-of-motion

$$
\Gamma_{j} \dot{z}_{j}=-2 i \frac{\partial H}{\partial \bar{z}_{j}} .
$$

The components x_{i} and y_{i} are conjugates: hase space coincides with configuration space.

BUILDING UP TO IT: TWO VORTICES

■ Opposite-signed vortices move in parallel along straight lines.
■ Like-signed vortices move in a circular path with a constant rotation rate.

SCHEMATIC OF THE LEAPFROGGING SOLUTION

Solutions form a one-parameter family of relative periodic orbits for parameter values $\alpha=\frac{d_{1}}{d_{2}}$ for $3-2 \sqrt{2} \approx 0.171<\alpha<1$.

SCHEMATIC OF THE LEAPFROGGING SOLUTION

Solutions form a one-parameter family of relative periodic orbits for parameter values $\alpha=\frac{d_{1}}{d_{2}}$ for $3-2 \sqrt{2} \approx 0.171<\alpha<1$.

[^0]
SCHEMATIC OF THE LEAPFROGGING SOLUTION

Solutions form a one-parameter family of relative periodic orbits for parameter values $\alpha=\frac{d_{1}}{d_{2}}$ for $3-2 \sqrt{2} \approx 0.171<\alpha<1$.

[^1]

PRIOR ReSULTS: Acheson (2000) EUR. J. PhYS.

Acheson found (via direct numerical simulation) that for $\alpha \gtrsim 0.382$ the motion is stable and, further:

PRIOR RESULTS: AchESON (2000) EUR. J. PhYS.

Acheson found (via direct numerical simulation) that for $\alpha \gtrsim 0.382$ the motion is stable and, further:

For $0.172<\alpha<.0 .29$, unstable leapfrogging orbits disintegrate:

Prior Results: Acheson (2000) Eur. J. Phys.

Acheson found (via direct numerical simulation) that for $\alpha \gtrsim 0.382$ the motion is stable and, further:

For $0.172<\alpha<.0 .29$, unstable leapfrogging orbits disintegrate:

For $0.29<\alpha<0.382$, motion goes into walkabout orbit:

Prior Results: Toph \emptyset J \& Aref (2013) PhYs. FLuids

- $\alpha_{c}=0.382=\frac{1}{\phi^{2}}$ to many digits, where ϕ is the golden ratio. Shown by numerical solution of linearized problem.
■ No clean distinction between domains of disintegration and walkabout solutions

Prior Results: Toph \emptyset J \& Aref (2013) PhYs. FLuids

- $\alpha_{c}=0.382=\frac{1}{\phi^{2}}$ to many digits, where ϕ is the golden ratio. Shown by numerical solution of linearized problem.
■ No clean distinction between domains of disintegration and walkabout solutions

Our two big questions:
■ Derive the linear stability threshold
■ Explain the transitions in the nonlinear dynamics.

Prior Results: Toph \emptyset J \& Aref (2013) PhYs. FLuids

- $\alpha_{c}=0.382=\frac{1}{\phi^{2}}$ to many digits, where ϕ is the golden ratio. Shown by numerical solution of linearized problem.
■ No clean distinction between domains of disintegration and walkabout solutions

Our two big questions:
■ Derive the linear stability threshold
■ Explain the transitions in the nonlinear dynamics.

These require two different coordinate systems

LINEAR STABILITY PROBLEM

The fundamental question

Why does the bifurcation take place at specific value

$$
\alpha_{c}=\frac{1}{\phi^{2}} ?
$$

Reference:
B. M. Behring and R. H. Goodman. Stability of leapfrogging vortex pairs: A semi-analytic approach. To appear in Phys. Rev. Fluids https://arxiv.org/abs/1908.08618, 2019.

Reducing the Hamiltonian

$$
\begin{aligned}
\mathcal{H}=\frac{1}{4 \pi} & \left(-\log \left|z_{2}^{-}-z_{1}^{-}\right|^{2}-\log \left|z_{1}^{+}-z_{2}^{+}\right|^{2}+\log \left|z_{1}^{+}-z_{1}^{-}\right|^{2}\right. \\
& \left.+\log \left|z_{2}^{+}-z_{1}^{-}\right|^{2}+\log \left|z_{1}^{+}-z_{2}^{-}\right|^{2}+\log \left|z_{2}^{+}-z_{2}^{-}\right|^{2}\right) .
\end{aligned}
$$

■ Introduce mean-and-difference coordinates:

$$
z_{+}=\frac{1}{2}\left(z_{1}^{+}+z_{2}^{+}\right), z_{-}=\frac{1}{2}\left(z_{1}^{-}+z_{2}^{-}\right), \delta_{+}=z_{1}^{+}-z_{2}^{+}, \delta_{-}=z_{1}^{-}-z_{2}^{-}
$$

Reducing the Hamiltonian

$$
\begin{aligned}
\mathcal{H}=\frac{1}{4 \pi} & \left(-\log \left|z_{2}^{-}-z_{1}^{-}\right|^{2}-\log \left|z_{1}^{+}-z_{2}^{+}\right|^{2}+\log \left|z_{1}^{+}-z_{1}^{-}\right|^{2}\right. \\
& \left.+\log \left|z_{2}^{+}-z_{1}^{-}\right|^{2}+\log \left|z_{1}^{+}-z_{2}^{-}\right|^{2}+\log \left|z_{2}^{+}-z_{2}^{-}\right|^{2}\right) .
\end{aligned}
$$

■ Introduce mean-and-difference coordinates:

$$
z_{+}=\frac{1}{2}\left(z_{1}^{+}+z_{2}^{+}\right), z_{-}=\frac{1}{2}\left(z_{1}^{-}+z_{2}^{-}\right), \delta_{+}=z_{1}^{+}-z_{2}^{+}, \delta_{-}=z_{1}^{-}-z_{2}^{-}
$$

- The linear impulse $M=\delta_{+}-\delta_{-}=M_{x}+i M_{y}$ is conserved and its components are in involution, $\left\{M_{x}, M_{y}\right\}=\sum \Gamma_{i}=0$.

Reducing the Hamiltonian

$$
\begin{aligned}
\mathcal{H}=\frac{1}{4 \pi}(& -\log \left|z_{2}^{-}-z_{1}^{-}\right|^{2}-\log \left|z_{1}^{+}-z_{2}^{+}\right|^{2}+\log \left|z_{1}^{+}-z_{1}^{-}\right|^{2} \\
& \left.+\log \left|z_{2}^{+}-z_{1}^{-}\right|^{2}+\log \left|z_{1}^{+}-z_{2}^{-}\right|^{2}+\log \left|z_{2}^{+}-z_{2}^{-}\right|^{2}\right)
\end{aligned}
$$

■ Introduce mean-and-difference coordinates:

$$
z_{+}=\frac{1}{2}\left(z_{1}^{+}+z_{2}^{+}\right), z_{-}=\frac{1}{2}\left(z_{1}^{-}+z_{2}^{-}\right), \delta_{+}=z_{1}^{+}-z_{2}^{+}, \delta_{-}=z_{1}^{-}-z_{2}^{-}
$$

- The linear impulse $M=\delta_{+}-\delta_{-}=M_{x}+i M_{y}$ is conserved and its components are in involution, $\left\{M_{x}, M_{y}\right\}=\sum \Gamma_{i}=0$.
■ WLOG, take $M=2 i$. Using these two conserved quantities, reduce to 2 degrees of freedom Dimer coordinates

Reducing the Hamiltonian

$$
\begin{aligned}
\mathcal{H}=\frac{1}{4 \pi}(& -\log \left|z_{2}^{-}-z_{1}^{-}\right|^{2}-\log \left|z_{1}^{+}-z_{2}^{+}\right|^{2}+\log \left|z_{1}^{+}-z_{1}^{-}\right|^{2} \\
& \left.+\log \left|z_{2}^{+}-z_{1}^{-}\right|^{2}+\log \left|z_{1}^{+}-z_{2}^{-}\right|^{2}+\log \left|z_{2}^{+}-z_{2}^{-}\right|^{2}\right)
\end{aligned}
$$

■ Introduce mean-and-difference coordinates:

$$
z_{+}=\frac{1}{2}\left(z_{1}^{+}+z_{2}^{+}\right), z_{-}=\frac{1}{2}\left(z_{1}^{-}+z_{2}^{-}\right), \delta_{+}=z_{1}^{+}-z_{2}^{+}, \delta_{-}=z_{1}^{-}-z_{2}^{-}
$$

■ The linear impulse $M=\delta_{+}-\delta_{-}=M_{x}+i M_{y}$ is conserved and its components are in involution, $\left\{M_{x}, M_{y}\right\}=\sum \Gamma_{i}=0$.
■ WLOG, take $M=2 i$. Using these two conserved quantities, reduce to 2 degrees of freedom Dimer coordinates

- One more change yields Aref coordinates which he gave as a complex Hamiltonian:

$$
\tilde{\mathcal{H}}(Z, W)=-\frac{1}{2} \log \left(\frac{1}{1+Z^{2}}-\frac{1}{1+W^{2}}\right),
$$

$Z=X+i P$ and $W=Q+i Y$, with conjugate pairs (X, Y) and (Q, P).

Regularizing the leapfrogging orbits

$$
\begin{aligned}
\tilde{\mathcal{H}}(Z, W) & =-\frac{1}{2} \log \left(\frac{1}{1+Z^{2}}-\frac{1}{1+W^{2}}\right), \\
\text { with } Z & =X+i P \text { and } W=Q+i Y .
\end{aligned}
$$

■ The invariant subspace $P=Q=0$ corresponds to leapfrog orbits.

Regularizing the leapfrogging orbits

$$
\begin{aligned}
\tilde{\mathcal{H}}(Z, W) & =-\frac{1}{2} \log \left(\frac{1}{1+Z^{2}}-\frac{1}{1+W^{2}}\right) \\
\text { with } Z & =X+i P \text { and } W=Q+i Y
\end{aligned}
$$

■ The invariant subspace $P=Q=0$ corresponds to leapfrog orbits.
■ Nonlinearly rescale the Hamiltonian

$$
H=\frac{1}{2} e^{-2 \tilde{H}(X, Y)}=\frac{1}{2}\left(\frac{1}{1-Y^{2}}-\frac{1}{1+X^{2}}\right)
$$

Regularizing the leaprrogging orbits

$$
\begin{aligned}
\tilde{\mathcal{H}}(Z, W) & =-\frac{1}{2} \log \left(\frac{1}{1+Z^{2}}-\frac{1}{1+W^{2}}\right), \\
\text { with } Z & =X+i P \text { and } W=Q+i Y .
\end{aligned}
$$

■ The invariant subspace $P=Q=0$ corresponds to leapfrog orbits.
■ Nonlinearly rescale the Hamiltonian

$$
H=\frac{1}{2} e^{-2 \tilde{H}(X, Y)}=\frac{1}{2}\left(\frac{1}{1-Y^{2}}-\frac{1}{1+X^{2}}\right)
$$

■ This regularizes the equations in a neighborhood of the origin, i.e., as $\alpha \rightarrow 1$ and the two pairs' rotation rate diverges.

Regularizing the leapfrogging orbits

$$
\begin{aligned}
\tilde{\mathcal{H}}(Z, W) & =-\frac{1}{2} \log \left(\frac{1}{1+Z^{2}}-\frac{1}{1+W^{2}}\right) \\
\text { with } Z & =X+i P \text { and } W=Q+i Y .
\end{aligned}
$$

■ The invariant subspace $P=Q=0$ corresponds to leapfrog orbits.
■ Nonlinearly rescale the Hamiltonian

$$
H=\frac{1}{2} e^{-2 \tilde{H}(X, Y)}=\frac{1}{2}\left(\frac{1}{1-Y^{2}}-\frac{1}{1+X^{2}}\right)
$$

- This regularizes the equations in a neighborhood of the origin, i.e., as $\alpha \rightarrow 1$ and the two pairs' rotation rate diverges.
■ Introduce energy level $h=\frac{(1-\alpha)^{2}}{8 \alpha}$ as the new parameter.

Regularizing the leapfrogging orbits

$$
\begin{aligned}
\tilde{\mathcal{H}}(Z, W) & =-\frac{1}{2} \log \left(\frac{1}{1+Z^{2}}-\frac{1}{1+W^{2}}\right) \\
\text { with } Z & =X+i P \text { and } W=Q+i Y .
\end{aligned}
$$

■ The invariant subspace $P=Q=0$ corresponds to leapfrog orbits.
■ Nonlinearly rescale the Hamiltonian

$$
H=\frac{1}{2} e^{-2 \tilde{H}(X, Y)}=\frac{1}{2}\left(\frac{1}{1-Y^{2}}-\frac{1}{1+X^{2}}\right)
$$

- This regularizes the equations in a neighborhood of the origin, i.e., as $\alpha \rightarrow 1$ and the two pairs' rotation rate diverges.
■ Introduce energy level $h=\frac{(1-\alpha)^{2}}{8 \alpha}$ as the new parameter.
■ Periodic orbits exist for $\mathrm{O} \leq h<\frac{1}{2}$ and are stable for $0 \leq h \leq h c=\frac{1}{8}$.

The leapfrogging solutions in Aref Coordinates

■ The (X, Y) phase plane:

■ Gröbli found an exact implicit solution

$$
\begin{aligned}
& t(X)=\frac{1}{2 h^{2} \sqrt{1-4 h^{2}}} F\left(\sin ^{-1} \theta \mid k\right)-E\left(\sin ^{-1} \theta \mid k\right) \\
&-\frac{1+2 h}{2 h \sqrt{(1-2 h)\left(2 h\left(X^{2}+1\right)+1\right)}} .
\end{aligned}
$$

where $\theta=X \sqrt{\frac{2 h-1}{2 h}}, k^{2}=\frac{4 h^{2}}{4 h^{2}-1}$.

LINEARIZED EQUATIONS

We introduce perturbation coordinates

$$
\begin{aligned}
Z(t) & =X(t)+\left[\xi_{+}(t)+i \eta_{+}(t)\right], \\
W(t) & =i Y(t)+\left[\xi_{-}(t)+i \eta_{-}(t)\right],
\end{aligned}
$$

yielding linearized equations that decouple into:

$$
\begin{aligned}
\frac{d}{d t}\left[\xi_{+}, \eta_{-}\right]^{\top} & =A^{\top}(X, Y)\left[\xi_{+}, \eta_{-}\right]^{\top}, \\
\frac{d}{d t}\left[\xi_{-}, \eta_{+}\right]^{\top} & =A(X, Y)\left[\xi_{-}, \eta_{+}\right]^{\top},
\end{aligned}
$$

where

$$
A(X(t), Y(t) ; h)=\left(\begin{array}{cc}
\frac{X Y}{\left(X^{2}+Y^{2}\right)\left(1+X^{2}\right)\left(1-Y^{2}\right)} & -\frac{3 Y^{4}+X^{2} Y^{2}+X^{2}-Y^{2}}{\left.2 X^{2}+Y^{2}\right)\left(1-Y^{2}\right)^{3}} \\
-\frac{3 X^{4}+X^{2} Y^{2}-Y^{2}+X^{2}}{2\left(X^{2}+Y^{2}\right)\left(1+X^{2}\right)^{3}} & -\frac{X^{2}}{\left(X^{2}+Y^{2}\right)\left(1+X^{2}\right)\left(1-Y^{2}\right)}
\end{array}\right) \text {. }
$$

The 1st ODE governs perturbation in the invariant plane and is stable. The 2nd governs stability.

OBTAINING EXPLICIT LINEARIZED EQUATIONS

Problem: In the expression $\frac{d}{d t} Z=A(X(t), Y ; h) Z,(X(t), Y(t))$ are only known implicitly. To resolve:

- Rewrite $A(X, Y ; h)$ in terms of canonical polar variables

$$
X=\sqrt{2 J} \cos \theta, Y=\sqrt{2 J} \sin \theta .
$$

OBTAINING EXPLICIT LINEARIZED EQUATIONS

Problem: In the expression $\frac{d}{d t} Z=A(X(t), Y ; h) Z,(X(t), Y(t))$ are only known implicitly. To resolve:

- Rewrite $A(X, Y ; h)$ in terms of canonical polar variables

$$
X=\sqrt{2 J} \cos \theta, Y=\sqrt{2 J} \sin \theta .
$$

- Solve for J in terms of θ and h in

$$
h=H(J, \theta)=\frac{2 J}{2-J^{2}-4 J \cos 2 \theta+J^{2} \cos 4 \theta} .
$$

OBTAINING EXPLICIT LINEARIZED EQUATIONS

Problem: In the expression $\frac{d}{d t} Z=A(X(t), Y ; h) Z,(X(t), Y(t))$ are only known implicitly. To resolve:

- Rewrite $A(X, Y ; h)$ in terms of canonical polar variables

$$
X=\sqrt{2 J} \cos \theta, Y=\sqrt{2 J} \sin \theta .
$$

■ Solve for J in terms of θ and h in

$$
h=H(J, \theta)=\frac{2 J}{2-J^{2}-4 J \cos 2 \theta+J^{2} \cos 4 \theta} .
$$

- Replace t derivative with θ derivative using:

$$
\frac{d}{d t}=\frac{d \theta}{d t} \frac{d}{d \theta}=\frac{d H}{d J} \frac{d}{d \theta} .
$$

OBTAINING EXPLICIT LINEARIZED EQUATIONS

Problem: In the expression $\frac{d}{d t} Z=A(X(t), Y ; h) Z,(X(t), Y(t))$ are only known implicitly. To resolve:
■ Rewrite $A(X, Y ; h)$ in terms of canonical polar variables

$$
X=\sqrt{2 J} \cos \theta, Y=\sqrt{2 J} \sin \theta .
$$

- Solve for J in terms of θ and h in

$$
h=H(J, \theta)=\frac{2 J}{2-J^{2}-4 J \cos 2 \theta+J^{2} \cos 4 \theta} .
$$

- Replace t derivative with θ derivative using:

$$
\frac{d}{d t}=\frac{d \theta}{d t} \frac{d}{d \theta}=\frac{d H}{d J} \frac{d}{d \theta} .
$$

- Then

$$
\frac{d}{d \theta} Z(\theta)=\tilde{A}_{h}(\theta) Z(\theta) \text { where } \tilde{A}_{h}(\theta)=\left(\left.\frac{d H}{d J}\right|_{H=h}\right)^{-1} A(\theta, h) .
$$

The LINEARIZED PROBLEM AT $h=\frac{1}{8}$

\square When $h=1 / 8$, the relevant linearized equation is

$$
\begin{aligned}
\tilde{A}_{\frac{1}{8}}(\theta)= & \frac{1}{4 \sqrt{17+8 \cos 2 \theta}} \times \\
& \left(\begin{array}{cc}
-\sin 2 \theta & \frac{7+12 \cos 2 \theta-4 \cos 4 \theta-3 \sqrt{17+8 \cos 2 \theta}}{2-2 \cos 2 \theta} \\
\frac{3-4 \cos 2 \theta-4 \cos 4 \theta-\sqrt{17+8 \cos 2 \theta}}{2+2 \cos 2 \theta} & \sin 2 \theta
\end{array}\right) .
\end{aligned}
$$

THE LINEARIZED PROBLEM AT $h=\frac{1}{8}$

■ When $h=1 / 8$, the relevant linearized equation is

$$
\begin{aligned}
\tilde{A}_{\frac{1}{8}}(\theta)= & \frac{1}{4 \sqrt{17+8 \cos 2 \theta}} \times \\
& \left(\begin{array}{cc}
-\sin 2 \theta & \frac{7+12 \cos 2 \theta-4 \cos 4 \theta-3 \sqrt{17+8 \cos 2 \theta}}{2-2 \cos 2 \theta} \\
\frac{3-4 \cos 2 \theta-4 \cos 4 \theta-\sqrt{17+8 \cos 2 \theta}}{2+2 \cos 2 \theta} & \sin 2 \theta
\end{array}\right) .
\end{aligned}
$$

■ Floquet theory in 3 lines:

- For $h<h_{c}$ Floquet multipliers on unit circle: linearized orbits quasiperiodic.
- For $h>h_{c}$ real, reciprocal Floquet multipliers: linearized orbits grow or decay.
- For $h=h_{c}$, double unit Floquet multiplier: the linearized system has an orbit of period 2π.

THE LINEARIZED PROBLEM AT $h=\frac{1}{8}$

■ When $h=1 / 8$, the relevant linearized equation is

$$
\begin{aligned}
\tilde{A}_{\frac{1}{8}}(\theta)= & \frac{1}{4 \sqrt{17+8 \cos 2 \theta}} \times \\
& \left(\begin{array}{cc}
-\sin 2 \theta & \frac{7+12 \cos 2 \theta-4 \cos 4 \theta-3 \sqrt{17+8 \cos 2 \theta}}{2-2 \cos 2 \theta} \\
\frac{3-4 \cos 2 \theta-4 \cos 4 \theta-\sqrt{17+8 \cos 2 \theta}}{2+2 \cos 2 \theta} & \sin 2 \theta
\end{array}\right) .
\end{aligned}
$$

■ Floquet theory in 3 lines:

- For $h<h_{c}$ Floquet multipliers on unit circle: linearized orbits quasiperiodic.
- For $h>h_{c}$ real, reciprocal Floquet multipliers: linearized orbits grow or decay.
- For $h=h_{c}$, double unit Floquet multiplier: the linearized system has an orbit of period 2π.
■ Numerical evidence: Simulation with $30^{\text {th }}$-order ODE solver \& high-precision arithmetic shows that $\vec{Z}(2 \pi)$ is within 10^{-120} of $Z(0)$ when $h=\frac{1}{8}$.

The method of harmonic balance (Hill, Poincaré)

■ Consider an ODE

$$
\frac{d}{d t} \vec{x}=\tilde{A}_{h}(\theta) \vec{x}=\sum_{n=0}^{\infty} h^{n} A_{n}(\theta) \vec{x}
$$

where $h \ll 1$ and $A_{n}(\theta+2 \pi)=A_{n}(\theta)$.

The method of harmonic balance (Hill, Poincaré)

■ Consider an ODE

$$
\frac{d}{d t} \vec{x}=\tilde{A}_{h}(\theta) \vec{x}=\sum_{n=0}^{\infty} h^{n} A_{n}(\theta) \vec{x}
$$

where $h \ll 1$ and $A_{n}(\theta+2 \pi)=A_{n}(\theta)$.
■ Looking for periodic solutions of the form

$$
\vec{x}=\left(\sum_{n=0}^{\infty} \alpha_{n} \cos n \theta, \sum_{n=1}^{\infty} \beta_{n} \sin n \theta\right)^{\top}
$$

derive a countable system of algebraic equations for $(\vec{\alpha}, \vec{\beta})$.

The method of harmonic balance (Hill, Poincaré)

■ Consider an ODE

$$
\frac{d}{d t} \vec{x}=\tilde{A}_{h}(\theta) \vec{x}=\sum_{n=0}^{\infty} h^{n} A_{n}(\theta) \vec{x}
$$

where $h \ll 1$ and $A_{n}(\theta+2 \pi)=A_{n}(\theta)$.
■ Looking for periodic solutions of the form

$$
\vec{x}=\left(\sum_{n=0}^{\infty} \alpha_{n} \cos n \theta, \sum_{n=1}^{\infty} \beta_{n} \sin n \theta\right)^{\top}
$$

derive a countable system of algebraic equations for $(\vec{\alpha}, \vec{\beta})$.
■ Truncating in both h and in Fourier space yields a sequence of finite-dimensional linear equations

$$
M^{(N)}(h)\binom{\vec{\alpha}_{N}}{\vec{\beta}_{N}}=0 .
$$

The method of harmonic balance (Hill, Poincaré)

■ Consider an ODE

$$
\frac{d}{d t} \vec{x}=\tilde{A}_{h}(\theta) \vec{x}=\sum_{n=0}^{\infty} h^{n} A_{n}(\theta) \vec{x}
$$

where $h \ll 1$ and $A_{n}(\theta+2 \pi)=A_{n}(\theta)$.
■ Looking for periodic solutions of the form

$$
\vec{x}=\left(\sum_{n=0}^{\infty} \alpha_{n} \cos n \theta, \sum_{n=1}^{\infty} \beta_{n} \sin n \theta\right)^{\top}
$$

derive a countable system of algebraic equations for $(\vec{\alpha}, \vec{\beta})$.
■ Truncating in both h and in Fourier space yields a sequence of finite-dimensional linear equations

$$
M^{(N)}(h)\binom{\vec{\alpha}_{N}}{\vec{\beta}_{N}}=0 .
$$

■ Solving $\operatorname{det} M^{(N)}(h)=0$ yields a sequence of polynomials whose roots approximate h at which periodic orbits exist.

HARMONIC BALANCE, APPLIED

First few terms in expansion:

$$
\begin{aligned}
& A_{0}(\theta)=\left(\begin{array}{cc}
-\sin 2 \theta & -\cos 2 \theta \\
-\cos 2 \theta & \sin 2 \theta
\end{array}\right), A_{1}(\theta)=\left(\begin{array}{cc}
\sin 4 \theta & 3+\cos 4 \theta \\
3+\cos 4 \theta & -\sin 4 \theta
\end{array}\right), \\
& A_{2}(\theta)=\frac{1}{2}\left(\begin{array}{cc}
\sin 2 \theta-3 \sin 6 \theta & -12-9 \cos 2 \theta-3 \cos 6 \theta \\
12+9 \cos 2 \theta-3 \cos 6 \theta & -\sin 2 \theta+3 \sin 6 \theta
\end{array}\right) .
\end{aligned}
$$

... after many, many implementation details ...

$$
\left.\begin{aligned}
&\left|M^{(1)}\right|=\left|\begin{array}{ccc}
-1+h & 2+2 h \\
-2 h & 1-h
\end{array}\right|=-1+6 h+3 h^{2} \\
&\left|M^{(2)}\right|= \left\lvert\, \begin{array}{ccc}
-1+h & 2+2 h+8 h^{2} & -h-\frac{h^{2}}{2} \\
-2 h-4 h^{2} & -2 h-2 h^{2} \\
h-\frac{h^{2}}{2} & -2 h-2 h^{2} & -2 h+2 h^{2} \\
-2 h+2 h^{2} & h+\frac{h^{2}}{2} & -4 h^{2}
\end{array} c c+3 h^{2}\right. \\
&-2
\end{aligned} \right\rvert\,
$$

HARMONIC BALANCE, APPLIED

First few terms in expansion:

$$
\begin{aligned}
& A_{0}(\theta)=\left(\begin{array}{cc}
-\sin 2 \theta & -\cos 2 \theta \\
-\cos 2 \theta & \sin 2 \theta
\end{array}\right), A_{1}(\theta)=\left(\begin{array}{cc}
\sin 4 \theta & 3+\cos 4 \theta \\
3+\cos 4 \theta & -\sin 4 \theta
\end{array}\right), \\
& A_{2}(\theta)=\frac{1}{2}\left(\begin{array}{cc}
\sin 2 \theta-3 \sin 6 \theta & -12-9 \cos 2 \theta-3 \cos 6 \theta \\
12+9 \cos 2 \theta-3 \cos 6 \theta & -\sin 2 \theta+3 \sin 6 \theta
\end{array}\right) .
\end{aligned}
$$

Implement to arbitrary order in Mathematica:

N	$h_{\mathrm{c}}^{(N)}$
1	0.154700538379256
2	0.125362196172840
3	0.125302181592097
4	0.125039391697053
\vdots	\vdots
20	0.125000000000009

NONLINEAR ORGANIZATION OF ORBITS

The fundamental question

How do new nonlinear behaviors emerge as the parameters change?
As α is decreased from 1 (as h is increased from 0) how do leapfrogging and escape begin to appear?

Reference: Under preparation

AREF COORDINATES WORK POORLY FOR WALKABOUT

AREF COORDINATES WORK POORLY FOR WALKABOUT

AREF COORDINATES WORK POORLY FOR WALKABOUT

AREF COORDINATES WORK POORLY FOR WALKABOUT

AREF COORDINATES WORK POORLY FOR WALKABOUT

AREF COORDINATES WORK POORLY FOR WALKABOUT

AREF COORDINATES WORK POORLY FOR WALKABOUT

AREF COORDINATES WORK POORLY FOR WALKABOUT

AREF COORDINATES WORK POORLY FOR WALKABOUT

Poincaré surfaces of section

In Aref coordinates, orbits
live on several disconnected pieces.

Poincaré surfaces of section

In Aref coordinates, orbits
live on several disconnected pieces.

In dimer coordinates, orbits
structure more logical and. . .

POINCARÉ SURFACES OF SECTION

In Aref coordinates, orbits live on several disconnected pieces.

... resembles a reduced 3-vortex dynamics with vorticities
1: 1:-2
studied by Rott and Aref.

A BETTER COORDINATE SYSTEM

After some work, we (i.e., Brandon) rewrite the system in Dimer Coordinates in a new form

$$
H\left(\zeta_{-}, \zeta_{+}\right)=H_{01}\left(\zeta_{-}\right)+H_{02}\left(\zeta_{+}\right)+H_{1}\left(\zeta_{-}, \zeta_{+}\right),
$$

with coordinates
$\zeta_{-}=z_{1}^{-}-z_{2}^{-}, \zeta_{+}=z_{1}^{+}-z_{2}^{+}, z_{-}=\frac{1}{2} z_{1}^{-}+z_{2}^{-}, z_{+}=\frac{1}{2} z_{1}^{+}+z_{2}^{+}, M=z_{+}-z_{-}$,
and where

$$
H_{01}\left(\zeta_{-}\right)=-\log \left|\zeta_{-}\right|^{2}, \text { Nonlinear phase oscillator }
$$

$$
H_{02}\left(\zeta_{+}\right)=-\left(\log \left|\zeta_{+}\right|^{2}-2 \log \left|\zeta_{+}+M\right|^{2}-2 \log \left|\zeta_{+}-M\right|\right), \text { Rott-Aref Hamiltonian }
$$

$$
H_{1}\left(\zeta_{+}, \zeta_{-}\right)=\log \frac{\left|\zeta_{+}-\zeta_{-}-M\right|^{2}}{\left|\zeta_{+}-M\right|^{2}}+\log \frac{\left|\zeta_{+}+\zeta_{-}-M\right|^{2}}{\left|\zeta_{+}-M\right|^{2}}+
$$

$$
\log \frac{\left|\zeta_{+}-\zeta_{-}+M\right|^{2}}{\left|\zeta_{+}+M\right|^{2}}+\log \frac{\left|\zeta_{+}+\zeta_{-}+M\right|^{2}}{\left|\zeta_{+}+M\right|^{2}} . \text { Coupling Term }
$$

The Reduced 1 : 1 : - 2 System (Rott-Aref 1989)

Phase plane

The Reduced 1 : 1 : - 2 System (Rott-Aref 1989)

Phase plane

Region 1:

"Leapfrog"
$7888888888888888_{+1}^{+1}$

The Reduced 1 : 1 : - 2 System (Rott-Aref 1989)

Phase plane

Region 1:
"Leapfrog"
$788888888888888888^{+1}+1$
Region 2:
"Walkabout"

The Reduced 1 : 1 : - 2 System (Rott-Aref 1989)

Phase plane

Region 1:
"Leapfrog"

Region 2:
"Walkabout"
Region 3: "Braiding"
eveleserelereese ${ }_{-1}^{+1}$

The Reduced 1 : 1 : - 2 System (Rott-Aref 1989)

> Region 1:
> "Leapfrog"

Region 2:
"Walkabout"
Region 3: "Braiding"

Saddles:
Rigidly translating equilateral triangles

How Escape Happens (Preliminary)

The (newish) technology of Lagrangian Descriptors allows visualization of invariant manifold without explicitly computing them.

$$
h=0.12
$$

How Escape Happens (Preliminary)

The (newish) technology of Lagrangian Descriptors allows visualization of invariant manifold without explicitly computing them.

$$
h=0.12
$$

$$
h=0.135
$$

How Escape Happens (Preliminary)

The (newish) technology of Lagrangian Descriptors allows visualization of invariant manifold without explicitly computing them.

$$
h=0.12
$$

$$
h=0.135
$$

How Escape Happens (Preliminary)

The (newish) technology of Lagrangian Descriptors allows visualization of invariant manifold without explicitly computing them.

$$
h=0.12
$$

$$
h=0.135
$$

FUTURE DIRECTIONS

■ Still need to fully understand how to use Lagrangian descriptors.
■ Leapfrogging with nonidentical pairs $\Gamma_{1}^{-}=-\Gamma_{1}^{+}$and $\Gamma_{2}^{-}=-\Gamma_{2}^{+}$
■ Leapfrogging orbits with $n \geq 3(+1,-1)$ pairs.
■ Leapfrogging on a sphere.
■ Closely connected problem of scattering of vortex dipoles

FUTURE DIRECTIONS

■ Still need to fully understand how to use Lagrangian descriptors.
■ Leapfrogging with nonidentical pairs $\Gamma_{1}^{-}=-\Gamma_{1}^{+}$and $\Gamma_{2}^{-}=-\Gamma_{2}^{+}$
■ Leapfrogging orbits with $n \geq 3(+1,-1)$ pairs.
■ Leapfrogging on a sphere.
■ Closely connected problem of scattering of vortex dipoles

Thanks! Suggestions to goodman@njit. edu are very welcome.

[^0]:

[^1]:

