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Leapfrogging Vortex Rings

Helmholtz (1858):
The foremost widens and travels more slowly, the pursuer

shrinks and travels faster, till finally, if their velocities are not
too di�erent, it overtakes the first and penetrates it. Then the
same game goes on in the opposite order, so that the rings pass
through each other alternately.

Credit: Irvine Lab, University of
Chicago

Credit: thephysicsgirl on Instagram



Leapfrogging quartets of point vortices

Cutting a concentric pair of vortex rings along a diameter
gives a quartet of vortices: a simplified model of vortex rings.

Gröbli (1877) and Love (1883) independently discovered and
analyzed a one-parameter family of four point-vortex orbits:
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Helmholtz derivation of the vortex induction
equations

Let u(x, t) solve the 2D Euler’s equation.
Particles advected according to ẋ = u(x, t).
By Helmholtz decomposition

u = ∇φ+∇× ψ
where4ψ = −ω and ω = ∇× u.
Let vorticity be concentrated at N points xi of circulation Γi:

ω(x) =
N∑

i=1

Γiδ(x− xi).

Velocity due to each vortex given by the Green’s function for
2D Poisson equation, yielding evolution equations:

ẋi = − 1
2π

N∑
j 6=i

Γj
(yi − yj)

||xj − xi||2
and ẏi = +

1
2π

N∑
j6=i

Γj
(xi − xj)

||xj − xi||2
.



Kirchhoff’s Hamiltonian Formulation

Define complex position coordinates

zj(t) = xj + iyj

and Hamiltonian

H = − 1
2π

∑
1≤i<j≤N

ΓiΓj log
∣∣zi − zj

∣∣.
This gives rise to a system of 2N first order equations-of-motion

Γjżj = −2i∂H
∂zj

.

The components xi and yi are conjugates: hase space coincides
with configuration space.



Building up to it: two vortices

Opposite-signed vortices move in parallel along straight
lines.
Like-signed vortices move in a circular path with a constant
rotation rate.



Schematic of the leapfrogging solution

Solutions form a one-parameter family of relative periodic orbits
for parameter values α = d1

d2
for 3− 2

√
2 ≈ 0.171 < α < 1.
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Prior Results: Acheson (2000) Eur. J. Phys.

Acheson found (via direct numerical simulation) that for
α & 0.382 the motion is stable and, further:

For 0.172 < α < .0.29,
unstable leapfrogging orbits
disintegrate:

For 0.29 < α < 0.382, motion
goes into walkabout orbit:
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Prior Results: Tophøj & Aref (2013) Phys. Fluids

αc = 0.382 = 1
φ2 to many digits, where φ is the golden ratio.

Shown by numerical solution of linearized problem.
No clean distinction between domains of disintegration and
walkabout solutions

(a)

Our two big questions:
Derive the linear stability threshold
Explain the transitions in the nonlinear dynamics.

These require two di�erent coordinate systems
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Linear stability problem

The fundamental question
Why does the bifurcation take place at specific value

αc =
1
φ2 ?

Reference:
B. M. Behring and R. H. Goodman. Stability of leapfrogging vortex
pairs: A semi-analytic approach. To appear in Phys. Rev. Fluids
https://arxiv.org/abs/1908.08618, 2019.



Reducing the Hamiltonian

H =
1

4π
(
− log |z−2 − z−1 |2 − log |z+1 − z+2 |2 + log |z+1 − z−1 |2

+ log |z+2 − z−1 |2 + log |z+1 − z−2 |2 + log |z+2 − z−2 |2
)
.

Introduce mean-and-di�erence coordinates:
z+ = 1

2
(
z+1 + z+2

)
, z− = 1

2
(
z−1 + z−2

)
, δ+ = z+1 − z+2 , δ− = z−1 − z−2

The linear impulse M = δ+ − δ− = Mx + iMy is conserved and its
components are in involution, {Mx,My} =

∑
Γi = 0.

WLOG, take M = 2i. Using these two conserved quantities, reduce
to 2 degrees of freedom Dimer coordinates
One more change yields Aref coordinates which he gave as a
complex Hamiltonian:

H̃(Z,W) = − 1
2 log

(
1

1 + Z2 −
1

1 + W2

)
,

Z = X + iP and W = Q + iY, with conjugate pairs (X, Y) and (Q,P).
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Regularizing the leapfrogging orbits

H̃(Z,W) = − 1
2 log

(
1

1 + Z2 −
1

1 + W2

)
,

with Z = X + iP and W = Q + iY.

The invariant subspace P = Q = 0 corresponds to leapfrog
orbits.

Nonlinearly rescale the Hamiltonian

H =
1
2e−2H̃(X,Y) =

1
2

(
1

1− Y2 −
1

1 + X2

)
This regularizes the equations in a neighborhood of the
origin, i.e., as α→ 1 and the two pairs’ rotation rate diverges.
Introduce energy level h = (1−α)2

8α as the new parameter.
Periodic orbits exist for 0 ≤ h < 1

2 and are stable for
0 ≤ h ≤ hc = 1

8 .
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The leapfrogging solutions in Aref Coordinates

The (X, Y) phase plane:

Gröbli found an exact implicit solution

t(X) =
1

2h2
√

1− 4h2 F
(
sin−1 θ

∣∣k)− E
(
sin−1 θ

∣∣k)
− 1 + 2h

2h
√

(1− 2h) (2h (X2 + 1) + 1)
.

where θ = X
√

2h−1
2h , k2 = 4h2

4h2−1 .



Linearized equations

We introduce perturbation coordinates

Z(t) = X(t) + [ξ+(t) + iη+(t)],

W(t) = iY(t) + [ξ−(t) + iη−(t)],

yielding linearized equations that decouple into:
d
dt
[
ξ+, η−

]T
= AT(X, Y)

[
ξ+, η−

]T
,

d
dt

[
ξ−, η+

]T
= A(X, Y)

[
ξ−, η+

]T
,

where

A(X(t), Y(t); h) =

( XY
(X2+Y2)(1+X2)(1−Y2) − 3Y4+X2Y2+X2−Y2

2(X2+Y2)(1−Y2)3

− 3X4+X2Y2−Y2+X2

2(X2+Y2)(1+X2)3 − XY
(X2+Y2)(1+X2)(1−Y2)

)
.

The 1st ODE governs perturbation in the invariant plane and is
stable. The 2nd governs stability.



Obtaining explicit linearized equations

Problem: In the expression d
dtZ = A(X(t), Y; h)Z, (X(t), Y(t)) are

only known implicitly. To resolve:
Rewrite A(X, Y; h) in terms of canonical polar variables

X =
√

2J cos θ, Y =
√

2J sin θ.

Solve for J in terms of θ and h in

h = H(J, θ) =
2J

2− J2 − 4J cos 2θ + J2 cos 4θ .

Replace t derivative with θ derivative using:
d
dt

=
dθ
dt

d
dθ

=
dH
dJ

d
dθ
.

Then
d
dθ

Z(θ) = Ãh(θ)Z(θ) where Ãh(θ) =

(
dH
dJ

∣∣∣∣
H=h

)−1
A(θ,h).
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The linearized problem at h = 1
8

When h = 1/8, the relevant linearized equation is

Ã 1
8

(θ) = 1
4
√

17+8 cos 2θ×(
− sin 2θ 7+12 cos 2θ−4 cos 4θ−3

√
17+8 cos 2θ

2−2 cos 2θ
3−4 cos 2θ−4 cos 4θ−

√
17+8 cos 2θ

2+2 cos 2θ sin 2θ

)
.

Floquet theory in 3 lines:
I For h < hc Floquet multipliers on unit circle: linearized orbits

quasiperiodic.
I For h > hc real, reciprocal Floquet multipliers: linearized

orbits grow or decay.
I For h = hc, double unit Floquet multiplier: the linearized

system has an orbit of period 2π.
Numerical evidence: Simulation with 30th-order ODE solver &
high-precision arithmetic shows that ~Z(2π) is within 10−120

of Z(0) when h = 1
8 .
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The method of harmonic balance (Hill, Poincaré)

Consider an ODE
d
dt
~x = Ãh(θ)~x =

∞∑
n=0

hnAn(θ)~x

where h� 1 and An(θ + 2π) = An(θ).

Looking for periodic solutions of the form

~x =

( ∞∑
n=0

αn cos nθ,
∞∑

n=1
βn sin nθ

)T

,

derive a countable system of algebraic equations for (~α, ~β).
Truncating in both h and in Fourier space yields a sequence
of finite-dimensional linear equations

M(N)(h)

(
~αN
~βN

)
= 0.

Solving det M(N)(h) = 0 yields a sequence of polynomials
whose roots approximate h at which periodic orbits exist.
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~x = Ãh(θ)~x =

∞∑
n=0

hnAn(θ)~x

where h� 1 and An(θ + 2π) = An(θ).
Looking for periodic solutions of the form

~x =

( ∞∑
n=0

αn cos nθ,
∞∑

n=1
βn sin nθ

)T

,

derive a countable system of algebraic equations for (~α, ~β).
Truncating in both h and in Fourier space yields a sequence
of finite-dimensional linear equations

M(N)(h)

(
~αN
~βN

)
= 0.

Solving det M(N)(h) = 0 yields a sequence of polynomials
whose roots approximate h at which periodic orbits exist.



The method of harmonic balance (Hill, Poincaré)

Consider an ODE
d
dt
~x = Ãh(θ)~x =

∞∑
n=0

hnAn(θ)~x

where h� 1 and An(θ + 2π) = An(θ).
Looking for periodic solutions of the form

~x =

( ∞∑
n=0

αn cos nθ,
∞∑

n=1
βn sin nθ

)T

,

derive a countable system of algebraic equations for (~α, ~β).
Truncating in both h and in Fourier space yields a sequence
of finite-dimensional linear equations

M(N)(h)

(
~αN
~βN

)
= 0.

Solving det M(N)(h) = 0 yields a sequence of polynomials
whose roots approximate h at which periodic orbits exist.



Harmonic balance, applied

First few terms in expansion:

A0(θ) =

(
− sin 2θ − cos 2θ
− cos 2θ sin 2θ

)
,A1(θ) =

(
sin 4θ 3 + cos 4θ

3 + cos 4θ − sin 4θ

)
,

A2(θ) =
1
2

(
sin 2θ − 3 sin 6θ −12− 9 cos 2θ − 3 cos 6θ

12 + 9 cos 2θ − 3 cos 6θ − sin 2θ + 3 sin 6θ

)
.

. . . after many, many implementation details . . .∣∣∣M(1)
∣∣∣ =

∣∣∣∣−1 + h 2 + 2h
−2h 1− h

∣∣∣∣ = −1 + 6h + 3h2,

∣∣∣M(2)
∣∣∣ =

∣∣∣∣∣∣∣∣∣
−1 + h 2 + 2h + 8h2 −h− h2

2 −2h− 2h2

−2h− 4h2 1− h −2h + 2h2 −h + h2

2
h− h2

2 −2h− 2h2 −3 2 + 8h2

−2h + 2h2 h + h2

2 −4h2 3

∣∣∣∣∣∣∣∣∣
= 9− 54h− 109h2 − 210h3 − 977h4

2 +
1049h5

2

+
75h6

2 + 1074h7 +
11233h8

16 .



Harmonic balance, applied

First few terms in expansion:

A0(θ) =

(
− sin 2θ − cos 2θ
− cos 2θ sin 2θ

)
,A1(θ) =

(
sin 4θ 3 + cos 4θ

3 + cos 4θ − sin 4θ

)
,

A2(θ) =
1
2

(
sin 2θ − 3 sin 6θ −12− 9 cos 2θ − 3 cos 6θ

12 + 9 cos 2θ − 3 cos 6θ − sin 2θ + 3 sin 6θ

)
.

Implement to arbitrary order in Mathematica:

N h(N)
c

1 0.154700538379256
2 0.125362196172840
3 0.125302181592097
4 0.125039391697053
...

...
20 0.125000000000009



Nonlinear organization of orbits

The fundamental question
How do new nonlinear behaviors emerge as the parameters
change?
As α is decreased from 1 (as h is increased from 0) how do
leapfrogging and escape begin to appear?

Reference: Under preparation



Aref coordinates work poorly for walkabout
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Poincaré surfaces of section

In Aref coordinates, orbits
live on several
disconnected pieces.

In dimer
coordinates,
orbits
structure
more logical
and. . .

. . . resembles
a reduced
3-vortex
dynamics
with
vorticities
1 : 1 : −2
studied by
Rott and Aref.
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A better coordinate system

After some work, we (i.e., Brandon) rewrite the system in Dimer Coordi-
nates in a new form

H(ζ−, ζ+) = H01(ζ−) + H02(ζ+) + H1(ζ−, ζ+),

with coordinates

ζ− = z−1 −z−2 , ζ+ = z+1 −z+2 , z− =
1
2z−1 + z−2 , z+ =

1
2z+1 + z+2 , M = z+−z−,

and where

H01(ζ−) = − log |ζ−|2 , Nonlinear phase oscillator

H02(ζ+) = −
(
log |ζ+|2 − 2 log |ζ+ + M|2 − 2 log |ζ+ −M|

)
, Rott-Aref Hamiltonian

H1(ζ+, ζ−) = log
|ζ+ − ζ− −M|2

|ζ+ −M|2
+ log

|ζ+ + ζ− −M|2

|ζ+ −M|2
+

log
|ζ+ − ζ− + M|2

|ζ+ + M|2
+ log

|ζ+ + ζ− + M|2

|ζ+ + M|2
. Coupling Term



The Reduced 1 : 1 : −2 System (Rott-Aref 1989)
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Saddles:
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How Escape Happens (Preliminary)

The (newish) technology of Lagrangian Descriptors allows
visualization of invariant manifold without explicitly computing
them.

h = 0.12

h = 0.135

h = 0.19 h = 0.2
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Future directions

Still need to fully understand how to use Lagrangian
descriptors.
Leapfrogging with nonidentical pairs Γ−1 = −Γ+

1 and
Γ−2 = −Γ+

2

Leapfrogging orbits with n ≥ 3 (+1,−1) pairs.
Leapfrogging on a sphere.
Closely connected problem of scattering of vortex dipoles

Thanks! Suggestions to goodman@njit.edu are very welcome.
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