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The Porfir1 Lab

A big group working in a lot of areas, both
theoretical and through laboratory experiments:

F'luid mechanics: fluid structure interactions during water
impact

Artificial Muscles and Soft Robotics

Telerehabilitation

Network-based modeling of infectious diseases

F'ish schooling

Using robotics and zebrafish to study substance-abuse
disorders

Information-theoretic analysis of social science datasets
more...

A unifying theme in this work 1s using methods from
information theory for modeling and analysis



What 1s this talk about?

A lot of words to define here:

@ransfer entropy jfor metwork!reconstruction
In a simple dynamical model

@ : a graph composed of vertices and edges, the subject

at the heart of graph theory
® [ransfer entropy: a quantity describing the transfer of
information from one evolving variable to another, from

information theory
o : to be described, a simple probabilistic

dynamics.
e : figure out properties of the graph based on the

dynamics

18 months ago I knew € about any of this



Graph Theory

Graph theory is central to the mathematics of Computer Science,
describing the connections between interacting agents.

A graph is defined by a set V of vertices,

connected by a set € of edges. The
graph at right 1s both directed and
weighted.

The weight matrix has entries

0 03 0 0 055 0

W;; defined as follows 5 0 0 0 0 0o
® If an edge exists from node j to node 1 the w_|0 03 0 0 0 0
entry is the associated weight 001 0(34 gj (1) 8 (1)

® If no edge exists, the entry zero. _0:9 0 0 0 045 0

An important notion for us will be the weighted
imcomang degree &; = Zj Wi .

In this example 6g=1+04+0.1=1.5



Information Theory

® Initiated by Claude Shannon’s 1948 “A Mathematical Theory of
Communication”

® Originally used to study the transmission of signals down noisy
channels and to develop optimal strategies for encoding
information

® Recently become popular tool for analyzing dynamical systems

Fundamental quantity:
Consider a discrete random variable X drawn from a sample space X

The information associated with the event X=x measures how
“surprising” 1t 1s that X=x

[(x) = —log (Pr(X = x))

The Shannon entropy of the random variable is the expectation
value fo the information

H(X) = E[I(X)] = — Y .., Pr(X = x) log Pr(X = x)




Basic example: biased coin toss

Consider a biased coin that gives heads with probability p and
tails with probability 1-p

H(p) = —plogp — (1 —p)log (1 —p]

0 0.2 0.4 0.6 0.8 1
p

® When p~0 or p~1, entropy small since surprising outcomes rarely

occur
® When p~0.5, entropy large since both outcomes equally likely



TraIleeI elltropy Schreiber 2000

Consider two random variables X and Y.

Define the j0mnt entropy and the conditional entropy:

H(X,Y) = — Z Pr(X=x,Y=y)logPr(X=x,Y =)
xeX,ye)y

HXY)=— ) Pr(X=x,Y=y)logPr(X=xY =y)
xeX,yey

Entropy can be defined analogously for stationary stochastic processes
Transfer entropy from Y to X 1s the difference between the entropy of

X(t+1) conditioned on X(t) and that conditioned on both X(t) and Y(t)
TEY X = H(X(t 4+ 1)|X(t)) — H(X(t + 1)[X(t), Y(t))

— Z {PI[X(t+1) =x,,X(t) =x,Y(t) =y] x log

xexXx
yey

PriX(t+1) =x,X(t) =x,Y(t) =y] }
Pr(X(t+1) =x,X(t) =x]

Transfer entropy measures the reduction in the uncertainty of predicting
X(t + 1) from both X(t) and Y(t) relative to predicting it from X(t) alone.



Contrived transfer entropy example

Source: A Tutorial for Information Theory in Neuroscience
Nicholas M. Timme and Christopher Lapish 2018
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e Series 1: X & Y uncorrelated: TE=0
e Series 2 & 3: X tends to fire before Y: TE large

e Series 4: X(t+1) determined entirely from X(t), no improvement
from knowing Y(t): TE=0



Transfer entropy used to infer climate network
Hlinka et al. 2013

® Divide the earth into N

patches using principal
component analysis

® Look at time series of
surface-area temperature
deviations

® Compute transfer entropies,
estimating PDFs using
specially-tuned kernel
density estimators

® Threshold to find links with
non-negligible transfer
entropy




Transfer Entropy used to analyze

connections between corporations
Sandoval 2014
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Analysis based on time series of stock prices. Transfer
entropy predicts that the price of a stock has an influence
on other stocks in 1ts sector and geographic area




Advantages and disadvantages of
Transfer Entropy

® Model free
® Nonlinear
® Relatively simple to compute

® Requires the estimation of underlying probability
distribution, e.g. by binning or kernel density estimation

® Lots of hidden parameters to fiddle with that might effect
the computation

® Inherently dyadic: quantifies the interaction between two
agents while ignoring the effects of others. Unclear how
much this matters.




Random Boolean Network (RBN) Model

Porfiri & Ruiz Marin 2018
A system of nodes Xi(t), i=1...n, each of which can take values in {0,1}

At time step t+1, the state of node 1 depends on the state of the system
at time step t, according to

PriXi(t+1)=1X"(t) =x",...,.XN(t) =x"] =e 1—|—ZW1]x)
j=1

Conceived as a model “Policy Diffusion”—How the passage of laws in
one jurisdiction influences the passage of laws in other jurisdictions.

The terms W;j;=0 represent the “network of influence.”

A .._ 1 - " 4 " (- L - . .. = - il " " . . - - . ' - - = T om
o0 100 150 200 250 300 350

Sample time series



Porfiri & Ruiz Marin’s result (2018)

Setting e«1 allows the use of perturbation methods to approximately
calculate Transfer Entropy in terms of the weights

Inverting gives an approximate formula for Wi in terms of transfer

entropy
TE 7' = e?G (W) + O(e”)
where
G (x)=—x+ (1 +x)log (1 +x) ~ %xz for x < 1

Takeaway: To leading order transfer entropy from j to i depends
on the strength of the weight from j to 1
Obvious next question: By calculating next term in the expansion,

can we quantify the effect the global topology of the network has on
the computed transfer entropy?



An example to show that next-order terms matter

8’ 8’
The transpose I'" of a directed graph I' g Sa—"
has the same vertices, oppositely- » p !
directed edges, and a weight matrix W' - 1 | X o1
b‘. / b‘. I 4
[ ) [
o) ol

Two networks I' and I'" that behave differently

A 50-vertex, 282-edge directed
Barabéasi-Albert network with Procedure:
Weight matrix W, random weights

0 . 1
[ ]

5.- - ® Compute dynamics for 10° steps
LRk i ® Repeat 100 times

20 | . :.Il B "

. CRNCLE ® Compute TE from time series

30+ I 10.4

of e flos ® Estimate W, from formula

50’ . . . . L1




Computed weight

Result: Distribution of error much
wider for I than I'™

Nonzero computed
weights vs exact weights

0 0.5 1
Exact weight

10+

Normalized frequency
o

-

o

Error in computed
weights

-0.1 0 0.1
Weight computation error



Strategy for analyzing the
dynamics

® Recast the system as a Markov chain, dependent on a
small parameter €

® Calculate the stationary vector of the Markov chain
via perturbation theory in €

® Use the stationary probability vector and the
transition law to derive a formula for transier entropy
in terms of the weights Wi;

® Invert to get approximation for the weights in terms
of the pairwise transfer entropy

® Apply to numerically-generated time series of the
model



'To analyze: recast as a Markov Chain

SO, a quick review
Consider a discrete-time finite-state Markov chain Z(t), i.e.

e /(t),t € N, takes values z1,...,zm In a space Z of cardinality M
e v(t) € RM is the probability vector vi(t) = Pr[Z(t) = zi]
e Transition matrix P with entries

Pij = PI[Z(t + 1) — Z)'|Z(t) = Zi]

e Then v evolves according to

v(it+1)=v(t)P

e The long term behavior is v(t) — where the stationary vector 7
— 00

satisfies
7T = 7P

under mild assumptions on P



Recasting as a Markov chain: Main Idea

The states are binary vectors

( 0 ] 0 ] \
0 0 ] /1
<Z1: 0 )ZZZ 0 >Z3: 0 >Z4: 0 y )ZZN: >
\ 0 0 0 \O 1/

The state vector is a 2N-dimensional probability vector v with

components
vi(t) = Pr[X(t) = Zi]

The transition law is determined from the dynamics



Recasting as a Markov Chain: Ugly Details
Our RBN Model:

PriXf(t+1)=1X"() =x",...,XN(t) =x"] =€ [14+ ) Wiy

Letting z=[x1...,xN] this becomes
Pr X' (t+1)=1X(t) =z|] =€ [1 + ¢ Wz

Allowing xi; {0,1}

PriX'(t+1)= x\ 1Zt)=z] = (1—x}) +e (2xL —1) [1+e Wz]
—~— —— —

€{0,1} X = IR
{(1), xh_(]) :{1,1 x b :(1)

Taking a product of such terms yields the Markov transition matrix

Pij(t) =Pr(Z(t+1) = z|Z(t) H{ —enzj) +€(2epzy— 1) [1+e Wz}

:P( )+eP( V+ 2P 1 O(e%)



Setting up perturbation calculation

Expand m=mt0)4-em0)+ e+,

(7’[(0) + ertt!) + 627'((2)) (P(O) + eptl) + eZP(2)> — (0] + ertt!) + e2mt?) + ...

Separating by orders yields

N

o1): (I—P(O)):O Y ol =1,
j=1
N

O(e) Ttm(I—P(O)>:7t(O)Pm, Y =0
j=1
N

Oe): ) (1-PO) =@ L alp F 2

Actually solving this was really hard...



Solving the perturbation series I

The matrices PU) are 2Nx2N so we can only write them

down explicitly for small N, need to work “in the abstract,”

hybrid pencil&paper/Mathematica workflow

it

2

\

(2e) z; — 1) [T+ e, Wz{] H (

k=1

k#T

i

1

— 142/ Wz [N =14 (1]

=

=

\

1—epz)

where [|Z]| = ¥, x«

/

>
(Eneor {1+ el Wz [1+e]Wail},
T>S

z ) Wzi],

X {1 —|—zTWZ + [eI Wz} [ )_)Wzi]},
0,

—[N+1TW21] zi|| = 0
> = < [ TWZJ Zj =1
O Zj|| > 1

N
{ 2e) zy — 1) [1+e Wzi] (2ef z; — 1) [1 + e Wzi] H 1—e.z) }
ke

Iz || = 0,
Izl =1,
Iz; || = 2.
15[ > 2,



Solving the Perturbation Series Il

Solve for the stationary vector order by order

1, Zi

O, Zi

— (),
> 0,




Calculating Transfer Entropy

from node 2 to node 1

Pr [X1t+1 =xy X =x,X{ = XZ}

TE* ! = Z Pr[ (e 1) —XL,X1:x1,X%:x2}10g

1 2
X_|_X y X

Pr [X1t+1 =x1 X} :X]}

® Use the transition rule and the asymptotic expansions
to approximate the various probabilities and
conditional probabilities

® Use some tricks to avoid dividing by small numbers

® Get terms like

Pr[Xiq = x4 Xy =x, X3 (t) =x7] =

N
(1 _Xlu) + (ZXL — 1) € [1 + Wi1x +W12x2] +€ZZW1)- + O(e3)
j=3



The next-order correction

Finally, we arrive at

TE 7' = e2GP (Wy;) + 3G (W) + 0(eh)

Y

where

G (x) = —x+ (1 +x)log (1 +x)

G (W) = Wiy (Wi — di — dj) + log (1 4+ Wy5) (di — Wy + (1 + Wi5)d;)

Y

and d; 1s the weighted 1n-degree of node ]

N
d)' — Z ij.
k=1



Solving for the weights: one more

perturbation expansion

Letting
TE ™ (2) (3) 2
Tij — - =3¢ (Wi)') + eGij (W) 4+ O(e?)

and
W =W L ewl) 4 0(e?)

we arrive at desired formula




Interpreting the correction term

If Wi; < 1 then the correction to the computed transfer entropy is

The difference in | N
. . \ J .. TE] 4 I /
weighted in-degree of  ~— A,

the two nodes / Wi \

This yields a correction to the computed weight

(0)
W.. 2
Wi(j” N ; (dj(O) _dgm JrWi(jO)) Lo (HW(O)H )




Return to numerical example

0.6

The network I' was constructed so | S dearec

[ ] Out-degree

e
S

that its in-degrees vary more widely
than 1ts out-degrees

o
W

Normalized frequency
@) (@}
N wo

o
[

)

0 ) 10

This leads to a larger variance in the Weighted degree
computed weights for I than for I''

= [\
ot )

Computed weight
=
()

ot

O

0 0.5 1 -0.1 0 0.1
Exact weight Weight computation error



Putting in the correction

(a) b
® 30 (b)
1t a I 2nd order
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Question: Is this a general phenomenon?

Does this long and painful calculation actually tell us
anything about connection between the network structure
and the accuracy of the computation?

Let’s look at another model.

The tent map 1s a simple chaotic system

4
ZXt, 0 < X < % -

X = F(x¢) = <
t+1 = F(x¢) 21 —x) L <xe<

\
X 1

We consider a system of coupled tent maps with noise

Xt =F(x) + e)iwij (F(x) = F(x})) + on'(t)



The coupled tent map example

Simulate for two 30-node networks I

and T' and observe oscillators going in

and out of synchronization

The networks constructed such that
their distribution of weighted in-
degrees very different

0 10 20 30 40

0 10 20 30 40

0 10 20 30 40
]. T T T
0 | | |

0 10 20 30 40
1 T T T
0 1 1 1

0 10 20 30 40

t

Variance in computed transfer entropy increases with variance in

welghted 1n-degree r

Transfer entropy

0 0.05 0.1 0.15
Weight

0.2

0.25

Transfer entropy




Extending the model: a multi-layered graph

There are many generalizations
of the concept of a graph, e.g.
multigraph in which there exist
different types of edges.
organized in layers

Maurizio’s interest: Fish communicate over multiple channels
Stimulus fish

Fluid flow, lateral line, delayed



Multilayered delay RBN model
Pr(xi(t) =1) (1+ZZ )

m=1j

Rewrite as a suspended system with coordinate

x(t) Y1) (t)
1
o(t) = X(t: ) _ U(z:)(t) C (0, 1M
x(t+1—M) Yym) (t)

The first N coordinates are updated probabilistically

MN
Pr(yi(t)=1)=¢€ (1 + Z Wijy;(t — 1)) , Where W = {Wm wis) ... W(M)}
j=1

and the remaining (N-1)M deterministically
y(m)(t) :U(m—ﬂ(t_ 1), form=2,...,M



The result of the calculation

e Repeat our procedure
e Reformulate as a Markov chain on a 2ZMN dimensional

state space
e Calculate stationary vector
e Use the transition law and the stationary vector to
compute transfer entropy in terms of weights W9
e T'his 1s the worst calculation I had to do in my entire
life
e The result 1s entirely analogous to what I obtained in
the first problem
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